JPH0671768A - Decomposable buffer material and its manufacture - Google Patents

Decomposable buffer material and its manufacture

Info

Publication number
JPH0671768A
JPH0671768A JP7512893A JP7512893A JPH0671768A JP H0671768 A JPH0671768 A JP H0671768A JP 7512893 A JP7512893 A JP 7512893A JP 7512893 A JP7512893 A JP 7512893A JP H0671768 A JPH0671768 A JP H0671768A
Authority
JP
Japan
Prior art keywords
biodegradable resin
die
cylindrical container
water
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7512893A
Other languages
Japanese (ja)
Inventor
Motoyasu Nakanishi
幹育 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Sogyo Co Ltd
Original Assignee
Suzuki Sogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Sogyo Co Ltd filed Critical Suzuki Sogyo Co Ltd
Priority to JP7512893A priority Critical patent/JPH0671768A/en
Publication of JPH0671768A publication Critical patent/JPH0671768A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Buffer Packaging (AREA)
  • Molding Of Porous Articles (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE:To make green decomposable resin cope with even highly foaming as a buffer material by a method wherein a die composing a narrowed opening is made of an open-cell material, and a swollen extruded product to be obtained by releasing suddenly from a heating pressurized state in a cylindrical container is obtained by forming into a shape according to a shape in a section of the die. CONSTITUTION:Green decomposable resin particles P which are made to contain water in a pretreatment process are supplied to a hopper 11. Temperature of the particles is increased roughly to a softening point to a melting point by shear in pushing feed and heating with a heater 14 while it is being push- supplied foreward in a cylinder 10 with a screw 13, and extruded in a fluid state from a throat part 12a. Since the green decomposable resin heated and pressurized by that time is suddenly exposed in atmospheric pressure, at that instant, the water content evaporates instantaneously. Then, through the resin is swollen as its sectional area is expanded by expansive force of water vapor in the die 12, since the die 12 is composed of an open-cell material, a continuous rod like swollen extruded product is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の目的】[Object of the Invention]

【産業上の利用分野】本発明は、地球に優しい、環境に
優しいとして、最近一段と脚光を浴びてきた生分解性樹
脂に関するものであり、詳しくはそれらの発泡及び賦形
技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable resin which has recently been in the spotlight as being environmentally friendly and environmentally friendly, and more specifically to a foaming and shaping technique for them.

【0002】[0002]

【発明の背景】合成樹脂は量産性、成形性、耐久性の何
れにも優れるため、今世紀驚異的な速度で技術的発展と
それに伴う消費拡大を遂げてきた。ところが、ここにき
て、これら合成樹脂が廃棄される量も莫大なものとなっ
てきたため、海上に漂ったり海岸線に打ち寄せるゴミの
中にも多くの合成樹脂製品が存在するようになり、ま
た、ゴミ焼却処理場においても、合成樹脂廃棄物が原因
で様々な問題が提起されるようになってきた。すなわ
ち、合成樹脂は分子間結合力が非常に強いため、焼却時
には高熱を発して炉壁を損傷し、燃焼ガスは有害ガスを
大量に含む。また、野ざらしにしても錆びたり、光やオ
ゾンで分解することもなく、只々風雨や波動等の機械的
エネルギーにより擦り削られてゆくのを待つしかない。
特に、梱包用緩衝材、断熱材、包装トレイ等として高発
泡に成形されたものにあっては、これが体積ばかりを要
して分別回収もコスト的に見合わず、海上及び海岸線等
にあってはそれが白色であることもあって目立つばかり
の厄介な存在であった。
BACKGROUND OF THE INVENTION Since synthetic resins are excellent in mass productivity, moldability, and durability, they have achieved technological development and accompanying increase in consumption at a remarkable rate in this century. However, since the amount of these synthetic resins that have been discarded has become enormous, many synthetic resin products have also been found in the garbage that drifts on the sea or rushes to the coastline. At the refuse incineration plant, various problems have come to be raised due to the waste of synthetic resin. That is, since the synthetic resin has a very strong intermolecular bonding force, it emits high heat during incineration and damages the furnace wall, and the combustion gas contains a large amount of harmful gas. In addition, even if it is exposed to the wild, it does not rust or decompose with light or ozone, and there is no choice but to wait for it to be abraded by mechanical energy such as wind and rain and waves.
In particular, in the case of highly foamed materials such as packing cushioning materials, heat insulating materials, packing trays, etc., this requires only a large volume, and separate collection is not cost-effective, so that it may occur on the sea or on the coastline. Was an embarrassing entity, as it was white in color.

【0003】このような状況下、リサイクル運動が行わ
れるようになったり、分解性の樹脂も上市されるように
なり、分解性の樹脂にあっては昨今技術開発が著しく、
消費も拡大の傾向にある。しかしながら、分解性樹脂、
特に生分解性樹脂は、その軟化点ないし融点と発泡剤の
発泡化温度との関係からか、従来の化学発泡剤では高発
泡させることがなかなか困難であり、また高発泡するほ
ど脆弱となり易く、今、特に生分解性樹脂の高発泡、賦
形技術が求められている。
Under such circumstances, the recycling movement has been carried out, and degradable resins have been put on the market, and the technological development of degradable resins has been remarkable recently.
Consumption is also expanding. However, degradable resin,
Particularly, the biodegradable resin is difficult to be highly foamed by a conventional chemical foaming agent, because of the relationship between the softening point or melting point and the foaming temperature of the foaming agent, and the higher the foaming, the more brittle the resin becomes. Nowadays, a high foaming and shaping technique of biodegradable resin is especially required.

【0004】[0004]

【開発を試みた技術的事項】そこで、本発明は、生分解
性樹脂を格別な化学発泡剤メカニズムによることなく、
緩衝材としての高発泡にも対処し得る発泡及び賦形技術
を提供しようとするものである。
[Technical Items Attempted to Develop] Therefore, the present invention uses a biodegradable resin without a special chemical blowing agent mechanism.
It is an object of the present invention to provide a foaming and shaping technique capable of coping with high foaming as a cushioning material.

【0005】[0005]

【発明の構成】[Constitution of the invention]

【目的達成の手段】すなわち、本出願に係わる第一の発
明たる分解性緩衝材の製造方法は、前方に狭窄開口を有
する筒状容器内に実質的に水分と生分解性樹脂とを投入
し、生分解性樹脂を前方の狭窄開口に押送する間にその
軟化点ないし融点程度に昇温せしめて流動状として狭窄
開口から筒状容器外に押し出すにあたり、狭窄開口を構
成するダイは連続多孔質製として、筒状容器内の加熱加
圧状態から急激に解放されて該ダイ内で膨化して得られ
る膨化押出物を該ダイの断面内形状に応じた形状に賦形
せしめて得ることを特徴とする。
[Means for Achieving the Object] That is, in the method for producing a degradable cushioning material according to the first invention of the present application, substantially water and a biodegradable resin are put into a cylindrical container having a narrowed opening in the front. , While pushing the biodegradable resin to the front narrowing opening, the die forming the narrowing opening is a continuous porous material when it is heated to the softening point or melting point and extruded as a fluid from the narrowing opening to the outside of the cylindrical container. As a manufactured product, the expanded extrudate obtained by being rapidly released from the heated and pressurized state in the cylindrical container and expanded in the die is shaped into a shape corresponding to the internal shape of the cross section of the die. And

【0006】また、本出願に係わる第二の発明たる分解
性緩衝材の製造方法は、前方に狭窄開口を有する筒状容
器内に実質的に水分と生分解性樹脂とを投入し、生分解
性樹脂を前方の狭窄開口に押送する間にその軟化点ない
し融点程度に昇温せしめて流動状として狭窄開口から先
方の賦形型内に押し入れるにあたり、賦形型は少なくも
その一部を連続多孔質製として、筒状容器内の加熱加圧
状態から急激に解放されて該賦形型内で膨化して得られ
る膨化物を該賦形型に応じた全体形状に賦形せしめて得
ることを特徴とする。
The method for producing a degradable cushioning material according to a second invention of the present application is that the water and the biodegradable resin are substantially put into a cylindrical container having a narrowed opening at the front to biodegrade. When the flexible resin is pushed into the anterior stenosis opening, it is heated up to its softening point or melting point and is pushed into the shaping die from the stenosis opening in the fluidized state. As a continuous porous product, a puffed product obtained by being rapidly released from the heated and pressurized state in the cylindrical container and expanded in the shaping mold can be shaped into an overall shape according to the shaping mold. It is characterized by

【0007】更に、本出願に係わる第三の発明たる分解
性緩衝材の製造方法は、前方に狭窄開口を有する筒状容
器内に実質的に水分と生分解性樹脂とを投入し、生分解
性樹脂を前方の狭窄開口に押送する間にその軟化点ない
し融点程度に昇温せしめて流動状として狭窄開口から先
方の賦形型内に押し入れるにあたり、賦形型は少なくも
その一部を連続多孔質製とするとともに内部にヤシ繊維
賦形体を配置しておき、筒状容器内の加熱加圧状態から
急激に解放されて該賦形型内で膨化して得られる膨化物
をヤシ繊維賦形体に入り組ませるとともに該賦形型に応
じた全体形状に賦形せしめて得ることを特徴とする。
Further, in the method for producing a degradable cushioning material according to the third invention of the present application, the water and the biodegradable resin are substantially put into a cylindrical container having a narrowed opening in the front to biodegrade. When the flexible resin is pushed into the anterior stenosis opening, it is heated up to its softening point or melting point and is pushed into the shaping die from the stenosis opening in the fluidized state. A palm fiber shaped object is placed inside while being made of a continuous porous material, and a swelling product obtained by being rapidly released from the heated and pressurized state in the cylindrical container and expanded in the shaping mold is a palm fiber. It is characterized in that it is obtained by incorporating it into a shaped body and shaping it into an overall shape corresponding to the shaping die.

【0008】また、本出願に係わる第四の発明たる分解
性緩衝材は、ヤシ繊維を母材とし、これに入り組んで生
分解性樹脂が発泡して成ることを特徴とする。もって、
前記目的を達成しようとするものである。
A degradable cushioning material according to a fourth aspect of the present invention is characterized in that a coconut fiber is used as a base material, and a biodegradable resin is foamed by being intertwined with this. So,
It is intended to achieve the above object.

【0009】[0009]

【発明の作用】本発明では、生分解性樹脂は狭窄開口に
押送される間に加熱やせん断力等を受け、その軟化点な
いし融点程度に昇温せしめられ、また同時に存在する水
分は加熱加圧状態下であって軟化点ないし融点程度に昇
温した生分解性樹脂中に無理矢理閉じ込められた状態で
存在する。そこで、狭窄開口を出ることによって、ダイ
内にて或いは賦形型内にて、加熱加圧状態から急激に解
放されて、内部に閉じ込められていた水分が一気に蒸発
しようとして膨張拡大する。その際の最外郭は連続多孔
質製のダイ或いは賦形型に規制され、ダイの断面内形状
又は賦形型内形状に応じた形状に賦形された膨化物が得
られる。このとき、賦形型内にヤシ繊維賦形体が予め配
置してあれば、ヤシ繊維賦形体に入り組んで膨化し、こ
れを母材とした膨化物となる。また、これによって得ら
れる膨化物は、ヤシ繊維の存在により高い保形性が確保
される。
According to the present invention, the biodegradable resin is heated and sheared while being pushed into the narrowed opening, and is heated to its softening point or melting point. It exists in a state of being forcedly confined in a biodegradable resin that has been heated to a softening point or a melting point under pressure. Therefore, by exiting the constriction opening, the heating and pressurizing state is rapidly released in the die or the shaping mold, and the water trapped inside expands and expands at once. At that time, the outermost contour is restricted to a die or a shaping die made of a continuous porous material, and an expanded product shaped into a shape corresponding to the inner shape of the die cross section or the shape of the shaping die is obtained. At this time, if the palm fiber shaped body is previously arranged in the shaping die, the palm fiber shaped body is entangled and swelled to form a puffed product using this as a base material. In addition, the expanded product thus obtained has a high shape-retaining property due to the presence of coconut fiber.

【0010】[0010]

【実施例】次に本発明をその構成要素たる生分解性樹
脂、膨化、及びヤシ繊維について説明した後、各実施例
について具体的に説明する。そこで、本発明における生
分解性樹脂とは生物学的作用に基づき物性を低下する樹
脂材料を意味し、これには樹脂自体が完全に分解するタ
イプと、分解し難い樹脂とブレンドし崩壊性を付与した
タイプとがある。そして、前者のタイプには微生物によ
る生産物、天然高分子の利用品、石油系原料からの生成
品等があり、また、後者のタイプにはデンプンとのブレ
ンド体、脂肪族ポリエステルとのブレンド体等がある。
これらの生分解機構としては、リパーゼ、アミラーゼ、
セルラーゼ、プロテアーゼ等の酵素による分解、活性汚
泥中等の微生物による分解、森林、耕作地等の自然環境
における土壌による分解等、種々の態様がある。更に具
体的には、ポリヒドロキシン酪酸及びその誘導体、プル
ラン、セルロース−キトサン混合体、セルロースやアミ
ロースや木粉のエステル化物、ポリエステル−ナイロン
共重合体、ポリエステル共重合体、デンプンとポリエチ
レンとのブレンド体をはじめ、ポリビニルアルコール、
ポリエーテル、ポリウレタン、ポリアミド等が挙げられ
る。これらはおしなべて低融点を有し、水の存在下に分
解促進されるものである。
EXAMPLES The present invention will be described below with respect to its constituent elements, biodegradable resin, swelling, and coconut fiber, and then each example will be specifically described. Therefore, the biodegradable resin in the present invention means a resin material whose physical properties are deteriorated based on a biological action, and this includes a type in which the resin itself is completely decomposed and a disintegrating property which is blended with a resin which is difficult to decompose. There is a type given. The former type includes products produced by microorganisms, products using natural polymers, products produced from petroleum-based raw materials, and the latter type includes blends with starch and blends with aliphatic polyesters. Etc.
These biodegradation mechanisms include lipase, amylase,
There are various modes such as decomposition by enzymes such as cellulase and protease, decomposition by microorganisms such as in activated sludge, decomposition by soil in a natural environment such as forest and cultivated land. More specifically, polyhydroxybutyric acid and its derivatives, pullulan, cellulose-chitosan mixtures, esterification products of cellulose, amylose and wood flour, polyester-nylon copolymers, polyester copolymers, blends of starch and polyethylene. The body, polyvinyl alcohol,
Examples include polyethers, polyurethanes, polyamides and the like. These generally have low melting points and are accelerated in the presence of water.

【0011】一方、膨化とは、ポップコーンを代表とす
るいわゆるスナック菓子の製造における一技術として知
られており、スナック菓子における場合には、適度な水
分を保有した穀物を用い、これを高温高圧の容器内でそ
の品温が十分に上昇するまで保持した後に突然に低圧に
放出したとき、穀物組織内の水分が瞬間蒸発を起こし、
その際の水蒸気の膨張する圧力で組織を膨らます現象を
言い、回分式パフ・ガン、ベルトコンベヤ式、流動層
式、更にはエクストルゥダー式等の各種形式の装置によ
り行われている。本発明ではこれら食品における膨化技
術を生分解性樹脂の発泡及び賦形技術として応用するも
のである。
On the other hand, puffing is known as a technique in the production of so-called snacks such as popcorn, and in the case of snacks, grains having an appropriate amount of water are used in a high-temperature and high-pressure container. When it is released to a low pressure suddenly after holding it until the product temperature rises sufficiently, the moisture in the grain tissue causes instantaneous evaporation,
It is a phenomenon in which the tissue expands due to the expanding pressure of water vapor at that time, and it is performed by various types of devices such as a batch type puff gun, a belt conveyor type, a fluidized bed type, and an extruder type. In the present invention, the puffing technique for these foods is applied as a foaming and shaping technique for a biodegradable resin.

【0012】またヤシ繊維とは、熱帯から亜熱帯地域に
かけて分布するヤシ科植物における繊維状樹皮、葉柄基
部繊維、中果皮繊維等の繊維の外、バナナの幹、パイナ
ップルの葉、アバカの葉等、果実等は収穫されるものの
従来廃棄処分されることの多かった比較的太く硬調な植
物繊維をも含むものとする。なおヤシ科の植物は、すべ
て常緑の低木または高木で、幹は単一で枝を分けること
がなく、先端に葉冠をつくるものであり、幹がほとんど
無いものや、高さ30メートルにもなるものの、表面が
なめらかなもの、古い葉鞘に密に包まれたものなどがあ
る。またトウ類のように、茎はつるとなって樹上に高く
登るもの、とっくり状に幹がふくれるもの、さらにドー
ムヤシ属Hyphaeneのように二又に分岐する例外
的なものもある。そして、その葉はふつう大型で、掌状
または羽状で革質、葉柄の基部は幅広い葉鞘となって幹
をしっかりと抱いている。葉鞘部にはたくさんの繊維が
あり、種類によっては、古くなると柔らかい組織は腐っ
て繊維だけが残り、いわゆるシュロ皮ができる。花序は
頂生又はえき生の大きな総状の肉穂花序で、よく分岐
し、頂生の場合は、花が咲くと木は枯死する。風または
昆虫によって受精し、果実は液果または核果の場合は、
内果皮は種子にくっついているのが普通であり、中果皮
は厚い繊維層を有する。具体的には、樹皮が繊維状とし
て呈するヤシ科植物に、シュロ属シュロ、トウジュロ、
葉柄基部に繊維を呈するものにチャマエロプス属チャボ
トウジュロ、クジャクヤシ属クジャクヤシ、オウギヤシ
属オウギヤシ、ナツメヤシ属ナツメヤシ、サゴヤシ属サ
ゴヤシ、クロツグ属クロツグ、サトウヤシ、中果皮の繊
維を提供するものに、ココヤシ属ココヤシ、ニッパヤシ
属ニッパヤシ等がある。
[0012] The term "palm fiber" means fibers other than fibrous bark, petiole base fiber, mesocarp fiber, etc. in palm trees distributed from tropical to subtropical regions, banana trunks, pineapple leaves, abaca leaves, etc. Fruits, etc. shall be harvested but also contain relatively thick and hard plant fibers that were often discarded in the past. All palm trees are evergreen shrubs or trees, and they have a single trunk that does not divide branches and has a leaf crown at the tip, which has almost no trunk or is 30 meters high. There are some that have a smooth surface and some that are tightly wrapped in an old leaf sheath. In addition, there are some species such as tows that climb high on the tree with a vine as a vine, ones whose stems bulge like a cone, and some exceptional species that branch into two branches, such as the genus Hyphaene. The leaves are usually large, palm-like or winged, leathery, and the base of the petiole is a wide leaf sheath to hold the stem firmly. There are many fibers in the leaf sheath, and depending on the type, when old, the soft tissue rots, leaving only the fibers, resulting in so-called palm skin. The inflorescences are large, panicle-like inflorescences of apical or aerial, and diverge well. In the case of apical, the flowers die when the flowers bloom. If fertilized by wind or insects and the fruit is berries or drupes,
The endocarp is usually attached to the seed and the mesocarp has a thick fiber layer. Specifically, palm trees presenting the bark as fibrous include palm, genus, palm,
For those that provide fibers at the base of petiole, those that provide fibers of Chamaelops genus Chabotouju, peafowl peafowl, pearl beetle, date palm, date palm, sago palm, black clover, sugar palm, mesocarp, coconut coconut, nipa There are genus Nippa palm and so on.

【0013】これらヤシ繊維は、手で丸める、積層す
る、ニードルパンチする、カットするなどして、その繊
維同士の絡み合いなどにより、シート状、ブロック状な
どの適宜形状に賦形することができる。なお、そうした
ヤシ繊維賦形体には、接着剤を塗布して繊維同士の結び
付きを強化したり、金属溶射、セラミックス溶射した
り、更に金属長繊維を絡み合わせるなどしてもよい。
These coconut fibers can be formed into an appropriate shape such as a sheet or a block by entwining the fibers with each other by rolling, laminating, needle punching, cutting or the like by hand. In addition, such a coconut fiber shaped body may be coated with an adhesive to strengthen the binding between the fibers, metal sprayed or ceramic sprayed, or further entangled with long metal fibers.

【0014】そして、本実施例では、生分解性樹脂に日
本合成化学工業株式会社販売のMater−Bi「マタ
ービー」(登録商標)のペレット状のものを用いたが、
これは、イタリアのモンテジソングループに属するNO
VAMONT社の開発に係り、デンプンなどの複数農産
物からの誘導品と変成ポリビニルアルコールとが分子レ
ベルで相互に相手分子中に潜り込み、水素結合により結
ばれてなる、熱可塑性の生分解性ポリマーとされている
ものである。また、水を吸収して膨潤することにより生
分解促進され、微生物生存の環境下で紙と同等の生分解
性を示すとされている。
In this example, the biodegradable resin used was Mater-Bi "Matterby" (registered trademark) pellets sold by Nippon Synthetic Chemical Industry Co., Ltd.
This is a NO belonging to the Montedison Group in Italy
In connection with the development of VAMONT, it is considered as a thermoplastic biodegradable polymer in which derivative products from multiple agricultural products such as starch and denatured polyvinyl alcohol infiltrate into the partner molecule at the molecular level and are linked by hydrogen bond. It is what Further, it is said that biodegradation is promoted by absorbing water and swelling, and exhibits biodegradability equivalent to that of paper in an environment in which microorganisms survive.

【0015】また、本実施例ではこの生分解性樹脂の粒
体に水を積極的に含水させる前処理工程を設けた。具体
的には、生分解性樹脂の粒体を十分な水を注いだ容器内
に一定時間漬けた後、含水させた生分解性樹脂の粒体を
取り出し、表面に付着する水滴を取り除いた後、以下の
工程に供するようにした。なお、この前処理工程は、こ
の他、適度に加温ないし沸騰した湯中に一定時間浸漬す
るようにしてもよいし、管理された高湿度雰囲気下に長
時間放置するようにしてもよい。このような前処理工程
を設けることにより、大気下における平衡水分よりも多
く、且つ均一な水分を生分解性樹脂の粒体に含ませるこ
とができるから、より安定して高発泡化させることがで
きる。勿論、大気下おける平衡水分を有する生分解性樹
脂でも、求められる発泡倍率あるいは加熱加圧の程度如
何によっては、敢えてこの前処理工程を設けるまでもな
く、大気下に放置され平衡水分を含む生分解性樹脂をそ
のまま用いてもよい。更には、最終的に生分解性樹脂内
に水分が加圧含有されるようになればよいので、生分解
性樹脂とともに水そのものを直接添加して実質的に生分
解性樹脂と水分とが供給されるようにしてもよい。
Further, in this embodiment, a pretreatment step of positively containing water in the granules of the biodegradable resin was provided. Specifically, after soaking the biodegradable resin granules in a container filled with sufficient water for a certain period of time, take out the hydrous biodegradable resin granules and remove water droplets adhering to the surface. , And was subjected to the following steps. In addition to this, in this pretreatment step, it may be immersed in appropriately heated or boiled hot water for a certain time, or may be left for a long time in a controlled high humidity atmosphere. By providing such a pretreatment step, more uniform water than the equilibrium water content in the atmosphere can be included in the particles of the biodegradable resin, so that more stable and high foaming can be achieved. it can. Of course, even with a biodegradable resin having an equilibrium water content in the atmosphere, depending on the required expansion ratio or the degree of heating and pressurization, there is no need to intentionally perform this pretreatment step, and the biodegradable resin that is left in the air and contains the equilibrium water content is not necessary. The decomposable resin may be used as it is. Furthermore, since it suffices that water is finally contained under pressure in the biodegradable resin, the water itself is directly added together with the biodegradable resin to substantially supply the biodegradable resin and water. It may be done.

【0016】図1において、10はシリンダであり、そ
の始端上方にはホッパー11が、また終先端にはダイ1
2が設けられ、これらの内部は連通されるとともにシリ
ンダ内は先端に行くに従い狭窄するテーパー壁10aと
されている。そして、シリンダ10内にはスクリュー1
3がテーパー壁10aに近接して設けられ、更にシリン
ダ10の周囲には加熱用のヒーター14が配置されて成
る。そして、ダイ12は、そのスロート部12aを介し
てシリンダ10内と連通され、かつスロート部12aよ
り先は充実無垢の金属材から構成されるのではなく、ほ
ぼ全体において内外を連通する無数の網組織状の孔を有
する多孔質材から成っている。この多孔質材としては、
発泡金属がある他、空隙を形成し得る充填材を添加して
焼結成形した金属又はセラミックス等の焼結物、更には
金網、パンチングメタル等をプレス賦形しそれらを積層
してなるもの等、種々の形態のものが挙げられる。ここ
で、その網組織状の孔が比較的大きいものであると、膨
化の際に低圧下に晒すのが急激に行なえる利点はある
が、膨化後の仕上がりにその孔による凹凸が強く出て表
面が荒れ、またこれが押し出し抵抗ともなるため、水蒸
気の流通抵抗が著しく高くならない範囲内で、その孔は
微小であるのが望ましく、好適なものとしては発泡状の
セラミックスが挙げられる。また、その長さは適度に長
い方が賦形及び形状固化に当たって有利である。
In FIG. 1, reference numeral 10 is a cylinder, a hopper 11 is provided above the starting end thereof, and a die 1 is provided at the end leading end thereof.
2 are provided, and the insides of these are communicated with each other, and the inside of the cylinder is formed as a tapered wall 10a that narrows toward the tip. The screw 1 is installed in the cylinder 10.
3 is provided in the vicinity of the tapered wall 10a, and a heater 14 for heating is arranged around the cylinder 10. The die 12 is communicated with the inside of the cylinder 10 through the throat portion 12a and is not made of a solid metal material before the throat portion 12a. It is made of a porous material having textured pores. As this porous material,
In addition to foamed metal, sintered materials such as metal or ceramics that are sintered and formed by adding fillers that can form voids, and those obtained by press-forming wire mesh, punching metal, etc., and stacking them , And various forms. Here, if the mesh-like pores are relatively large, there is an advantage that they can be rapidly exposed to low pressure during expansion, but the irregularities due to the pores appear strongly in the finish after expansion. Since the surface is rough and this also acts as extrusion resistance, it is desirable that the pores be minute within a range where the flow resistance of water vapor does not become extremely high, and a preferable example is foamed ceramics. Further, it is advantageous that the length thereof is appropriately long for shaping and solidifying the shape.

【0017】このような押出式膨化装置Aにおいて、ホ
ッパー11に前処理工程で含水させた生分解性樹脂の粒
体Pを供給すれば、シリンダ10内に投入された生分解
性樹脂の粒体Pは、スクリュー13によりシリンダ10
内を前方へ押送される間にシリンダ10内が前方に向か
うに従い狭窄されていることもあって、押送の際のせん
断力及びヒーター14によるシリンダ10の内壁からの
加熱により、軟化点ないし融点程度に昇温され、少なく
ともダイ12のスロート部12a直前では流動状とな
り、該スロート部12aからは流動状として押し出され
てゆく。このとき、シリンダ10内は、後方からは生分
解性樹脂の粒体が次々と供給され、また、前方への押し
出しはダイ12のスロート部12a及びテーパー壁10
aにより制限されているので、高温加圧下となって生分
解性樹脂の粒体に含水されていた水分は生分解性樹脂の
粒体から蒸発することなく、生分解性樹脂中に無理矢理
閉じ込められて押送される。このため、生分解性樹脂が
スロート部12aを介してダイ12内に流動状で押し出
された瞬間、今迄加熱加圧されていた生分解性樹脂は急
激に大気圧下に晒されることとなるので、これに無理矢
理閉じ込められた水分が瞬間的に蒸発を起こす。このと
き生分解性樹脂は流動状として、ダイ12内にて水蒸気
の膨張しようとする力でその断面積が膨らむがごとく膨
化してゆくが、本発明ではこのダイ12を連続多孔質製
のもので構成しているため、その際の膨張は、このダイ
12の断面内形状が最外郭として規制し、これに応じて
賦形された連続棒状の膨化押出物が得られる。このた
め、ダイ12は、そのスロート部12aより押し出され
た生分解性樹脂が自由に膨化する程度よりその断面積を
小さなものとしておく必要がある。なお、本実施例で
は、ダイ12及びそのスロート部12aは円筒状とし、
その後、ダイ12先方にて図示しない回転式カッターを
タイミング的に稼動して一定長さで切断して適宜長さの
膨化押出物S1を多数得るようにしている。
In such an extrusion-type expansion apparatus A, if the biodegradable resin granules P hydrated in the pretreatment step are supplied to the hopper 11, the biodegradable resin granules charged in the cylinder 10 are supplied. P is the cylinder 10 by the screw 13.
Since the inside of the cylinder 10 is narrowed as it moves forward while being pushed inside, the shearing force at the time of pushing and the heating from the inner wall of the cylinder 10 by the heater 14 causes a softening point or a melting point to be reached. The temperature is raised to at least, and at least immediately before the throat portion 12a of the die 12, it becomes a fluid state and is extruded as a fluid state from the throat portion 12a. At this time, granules of biodegradable resin are successively supplied from the rear into the cylinder 10, and the throat portion 12a of the die 12 and the tapered wall 10 are extruded forward.
Since it is limited by a, the water contained in the granules of the biodegradable resin under high temperature pressurization is forcibly confined in the biodegradable resin without being evaporated from the granules of the biodegradable resin. Will be sent. Therefore, at the moment when the biodegradable resin is extruded into the die 12 through the throat portion 12a in a fluid state, the biodegradable resin which has been heated and pressurized until now is rapidly exposed to the atmospheric pressure. Because of this, the water that is trapped in it will evaporate instantly. At this time, the biodegradable resin is in a fluid state and is expanded as the cross-sectional area is expanded by the force of expansion of the steam in the die 12, but in the present invention, the die 12 is made of a continuous porous material. The expansion at that time regulates the inner shape of the cross section of the die 12 as the outermost contour, and a continuous rod-shaped expanded extrudate shaped according to this is obtained. For this reason, the die 12 needs to have a cross-sectional area smaller than the extent to which the biodegradable resin extruded from the throat portion 12a freely expands. In the present embodiment, the die 12 and its throat portion 12a have a cylindrical shape,
After that, a rotary cutter (not shown) is operated at the tip of the die 12 at a timing to cut it into a certain length to obtain a large number of expanded extrudates S 1 having an appropriate length.

【0018】なお、生分解性樹脂の粒体への加熱加圧程
度及びその前処理工程としての含水程度がダイ12にお
ける膨化具合及びその直後の形状固化に大きく影響する
ため、生分解性樹脂の物性やグレード等に合わせスクリ
ュー13の回転速度やヒーター14への通電程度等の工
程諸条件を設定する必要があり、これらの条件が合致し
ないと膨張程度が不十分となったり、逆に膨張程度が大
きすぎて破裂してしまったり、一旦十分膨張してもその
後収縮してしまうこととなる。なお、ダイ12の前域を
多少拡大又は縮小し、該部分をヒーターにて加熱できる
ようにして、得られる膨化押出物の表面を融着し平滑な
スキン層を形成するようにしてもよい。
Since the degree of heat and pressure applied to the granules of the biodegradable resin and the degree of water content as a pretreatment step have a great influence on the degree of expansion in the die 12 and the solidification of the shape immediately after that, the biodegradable resin is It is necessary to set process conditions such as the rotation speed of the screw 13 and the degree of energization of the heater 14 according to the physical properties and grade. If these conditions are not met, the degree of expansion will be insufficient, or conversely the degree of expansion Is too large and bursts, or it expands once and then contracts. The front area of the die 12 may be slightly enlarged or reduced so that the portion can be heated by a heater, and the surface of the obtained extruded extrudate is fused to form a smooth skin layer.

【0019】このようにして得られる生分解性樹脂の膨
化押出物S1は、例えば梱包用段ボール箱における梱包
物の緩衝材として用いることができる。これは万一、不
法投棄された場合であっても生分解するため、海上に漂
ったり海岸線に打ち寄せていても、暫くすれば分解して
しまい、また地上に放っておいても風雨や地中の湿気を
吸って分解してゆくため、敢えてゴミ焼却処理場にて処
分する必要もない。しかも、これは比較的高発泡品とし
て得られ、また、格別な化学発泡剤メカニズムによらず
して得られる。勿論、ダイ12も円筒状のものに限ら
ず、対称、非対称の異形状のものなどが適宜使用でき、
例えば、図2に示すようなアングル状の膨化押出物S2
を得るようにすれば、そのままコーナー支持材として用
いることもできる。
The expanded extrudate S 1 of the biodegradable resin thus obtained can be used, for example, as a cushioning material for a package in a cardboard box for packaging. Even if it is illegally dumped, it will biodegrade, so even if it floats on the sea or hits the coastline, it will be decomposed after a while, and even if it is left on the ground, it will wind and rain and underground. Since it absorbs the moisture of the product and decomposes, there is no need to dispose of it at a refuse incineration plant. Moreover, it is obtained as a relatively high foaming product, and is obtained without any special chemical blowing agent mechanism. Of course, the die 12 is not limited to the cylindrical shape, but symmetrical or asymmetrical different shapes can be appropriately used.
For example, an angled expanded extrudate S 2 as shown in FIG.
Can be used as it is as a corner support material.

【0020】例えば、円柱状に賦形されて得られた膨化
押出物S1は、図3に示すごとくの縁取りした矩形偏平
な成形型15内にこれらを整列、加圧、加熱するなどし
て全体を一体化した大きな形状のものに賦形することも
できる。この際、成形型15への加熱程度が生分解性樹
脂の融点を越えてしまうと、その前に膨化押出物S1
して得た意味が失われてしまうため、融点の低い生分解
性樹脂による膨化押出物を別途加えたり、融点の低い分
解性樹脂の粉体、熱可塑性樹脂、さらには糊等の接着機
能を有する成分を添加して行ってもよい。接着成分とし
ては、この他、デンプン糊、ふのり、アラビアガム、ニ
カワ、カゼイン、アマニ油、酢酸デンプン・カルボキシ
メチルスターチ等のデンプン誘導体、メチルセルロース
・エチルセルロース等の繊維素誘導体、アルギン酸ソー
ダ、ローカストビーンガム、ポリビニルアルコール等の
ビニル系合成糊、酢酸ビニルアクリル酸共重合物等のビ
ニル系共重合物合成糊、ポリアクリル酸ソーダ等のアク
リル系合成糊、スチロールマレイン酸共重合物等のスチ
ロール系合成糊等、天然、半合成、合成糊をはじめ、接
着剤は勿論、各種樹脂を適宜溶剤に溶かした溶液、さら
には熱可塑性樹脂、融点の低い分解性樹脂の粉体等が用
いることができる。さらには、シリコーゲルやウレタン
ゲル等の粘着性を有するエラストマーにより粘接着させ
るようにしてもよい。なお、この接着成分に天然物や生
分解性のものを用いれば、完全に無公害の分解性緩衝材
が得られる。また、勿論、加熱又は加圧の一方を作用さ
せる場合であってもよく、図示の矩形偏平な成形型に限
らず、異形の成形型により特異な形状に賦形してもよ
い。
For example, the expanded extrudate S 1 obtained by shaping into a cylindrical shape is arranged, pressed and heated in a rectangular flat mold 15 with an edge as shown in FIG. It is also possible to shape it into a large shape that is wholly integrated. At this time, if the degree of heating to the mold 15 exceeds the melting point of the biodegradable resin, the meaning obtained as the expanded extrudate S 1 before that is lost, so that the biodegradable resin having a low melting point is used. It may be carried out by adding the expanded extrudate separately, or by adding powder of a decomposable resin having a low melting point, a thermoplastic resin, and a component having an adhesive function such as glue. As the adhesive component, in addition to this, starch paste, furi, gum arabic, glue, casein, linseed oil, starch derivatives such as starch acetate / carboxymethyl starch, fibrin derivatives such as methyl cellulose / ethyl cellulose, sodium alginate, locust bean gum, Vinyl synthetic glue such as polyvinyl alcohol, vinyl copolymer synthetic glue such as vinyl acetate acrylic acid copolymer, acrylic synthetic glue such as sodium polyacrylate, styrene synthetic glue such as styrene-maleic acid copolymer In addition to natural adhesives, semi-synthetic adhesives, and synthetic adhesives, adhesives, as well as solutions in which various resins are appropriately dissolved in a solvent, thermoplastic resins, decomposable resin powders having a low melting point, and the like can be used. Further, it may be made to adhere and adhere with an adhesive elastomer such as silicone gel or urethane gel. If a natural or biodegradable adhesive component is used, a completely pollution-free degradable cushioning material can be obtained. Further, of course, one of heating and pressurization may be applied, and the shape is not limited to the rectangular flat mold shown in the figure, and may be formed into a unique shape by a modified mold.

【0021】また、上記実施例の他、得られた膨化押出
物を一旦接着成分等の固化皮膜を形成し得る成分に、内
部に含浸させない程度に浸漬した後、乾燥させ、表面に
スキン層を形成してもよいし、一体化したものに対し
て、同様にしてスキン層を形成したり、更にはそれらの
外郭形状に沿ってフィルムパックしたりしてもよく、こ
のように内部を密封化すれば、内部に閉じ込められる空
気層による緩衝効果も期待できるようになる。このフィ
ルムに生分解性樹脂から製膜したものを用いれば分解性
が阻害させることはない。さらに、これとは別に、後処
理工程として、シリコーン系等の撥水又は耐水性の塗料
や着色塗料等を塗布したり、これら塗料中や前記何れか
の工程中に防虫剤ないし殺虫剤成分等を添加してもよ
い。勿論、前処理工程やこれらの後処理工程は必ずしも
必要ではなく適宜付加できるものである。
In addition to the above examples, the obtained extruded extrudate is once dipped in a component such as an adhesive component capable of forming a solidified film to such an extent as not to be impregnated inside, and then dried to form a skin layer on the surface. It may be formed, or a skin layer may be formed in the same manner with respect to the integrated body, or further, a film pack may be formed along the outer shape thereof, and thus the inside is hermetically sealed. Then, a buffer effect due to the air layer trapped inside can be expected. If a film formed from a biodegradable resin is used for this film, the degradability will not be impaired. Separately from this, as a post-treatment step, a water-repellent or water-resistant coating material such as silicone or a colored coating material is applied, and an insect repellent or an insecticide component or the like is applied in the coating material or in any of the above steps. May be added. Of course, the pre-treatment process and these post-treatment processes are not always necessary and can be appropriately added.

【0022】次に、いわゆるインラインスクリュー式射
出成形機Bを用いて、生分解性樹脂の膨化、賦形を行う
ようにした、本出願に係る第二、第三の発明の一実施例
について説明する。すなわち、図4はその要部を示すも
のであって、20はシリンダであり、その始端上方には
ホッパー21が、また先端はノズル22としてあり、こ
れらの内部は連通されるとともにシリンダ20の周囲に
は加熱用のヒーター24が配置される。そして、シリン
ダ20内にはスクリュー23がその内壁20aに近接し
て設けられる。このスクリュー23の後端はシリンダー
20外へ延長され、一軸上の中間部に油圧モータ25
を、最後端にピストン26を備える。ピストン26は射
出シリンダ27内に摺動自在に配置され、油圧によりピ
ストン26、油圧モータ25、スクリュー23とが一体
となって前後動するとともにスクリュー23は油圧モー
タ25により回転自在となっている。
Next, one embodiment of the second and third inventions according to the present application will be described in which the so-called in-line screw type injection molding machine B is used to expand and shape the biodegradable resin. To do. That is, FIG. 4 shows a main part thereof, and 20 is a cylinder, a hopper 21 is provided above the starting end of the cylinder, and a nozzle 22 is provided at the tip of the cylinder. A heater 24 for heating is arranged in the. A screw 23 is provided in the cylinder 20 close to the inner wall 20a. The rear end of the screw 23 is extended to the outside of the cylinder 20, and the hydraulic motor 25
And a piston 26 at the rear end. The piston 26 is slidably arranged in the injection cylinder 27, and the piston 26, the hydraulic motor 25, and the screw 23 integrally move back and forth by hydraulic pressure, and the screw 23 is rotatable by the hydraulic motor 25.

【0023】28は固定側金型であって、実施例では略
三角錐状のキャビティー28aを形成してある。また、
29は可動側金型であって小型の略三角錐状のコア29
aを形成しており、両者型締めしたとき、内部に図5に
示すと同様な空間が形成されるようになっている。この
金型は、図示を省略した従来公知の型締機構たるダイプ
レートの固定側と可動側のそれぞれにその他の付属パー
ツとともに固定され、ダイプレートの固定側を経由して
シリンダ20内で流動状となった生分解性樹脂がノズル
22から同金型キャビティー28a内に射出されるよう
になっている。そして、この実施例では可動側金型29
が充実無垢の金属材から構成されるのではなく、前記実
施例と同様な多孔質材から構成されている。
Numeral 28 is a fixed side mold, and in the embodiment, a cavity 28a having a substantially triangular pyramid shape is formed. Also,
Reference numeral 29 denotes a movable-side mold, which is a small core 29 having a substantially triangular pyramid shape.
a is formed, and when both molds are clamped, a space similar to that shown in FIG. 5 is formed inside. This mold is fixed together with other accessory parts on the fixed side and the movable side of a die plate, which is a conventionally known mold clamping mechanism (not shown), and flows in the cylinder 20 via the fixed side of the die plate. The biodegradable resin is injected from the nozzle 22 into the mold cavity 28a. In this embodiment, the movable mold 29 is used.
Is not made of a solid metal material, but is made of the same porous material as in the above embodiment.

【0024】そこで、図4(a)に示すごとく、型締め
した状態でホッパー21に生分解性樹脂の粒体Pを供給
することで、シリンダ20内に投入された生分解性樹脂
の粒体Pは、スクリュー23によりシリンダ20内を前
方へ押送される間に押送の際のせん断力及びヒーター2
4によるシリンダ20の内壁からの加熱により、軟化点
ないし融点程度に昇温され、スクリュー23先端部で流
動状となって溜まる。このとき、内部は高温加圧下とな
って生分解性樹脂の粒体に含水されていた水分は生分解
性樹脂の粒体から蒸発することなく、生分解性樹脂中に
無理矢理閉じ込められた状態となっている。続いて、図
4(b)に示すごとく、スクリュー23の回転を止め、
射出シリンダ27によりピストン26を稼動してスクリ
ュー23を前進させ、流動状となった材料をノズル22
から金型のキャビティー28a内に一気に注入する。
Therefore, as shown in FIG. 4A, by supplying the biodegradable resin granules P to the hopper 21 in the mold clamped state, the biodegradable resin granules put into the cylinder 20 are supplied. P is a shearing force at the time of pushing and the heater 2 while being pushed forward in the cylinder 20 by the screw 23.
By heating from the inner wall of the cylinder 20 by means of No. 4, the temperature is raised to about the softening point or the melting point and accumulated in a fluid state at the tip of the screw 23. At this time, the inside of the granules of the biodegradable resin was pressurized under high temperature, and the water contained in the granules of the biodegradable resin did not evaporate from the granules of the biodegradable resin, and it was forcibly confined in the biodegradable resin. Has become. Then, as shown in FIG. 4B, the rotation of the screw 23 is stopped,
The piston 26 is operated by the injection cylinder 27 and the screw 23 is moved forward to move the fluidized material to the nozzle 22.
From the mold into the cavity 28a of the mold at once.

【0025】生分解性樹脂は流動状でキャビティー28
a内に押し入れられた瞬間、今迄の加熱加圧されていた
状態から急激に大気圧下に晒されることとなるので、こ
れに無理矢理閉じ込められた水分が瞬間的に蒸発を起こ
し水蒸気の膨張しようとする力でその断面積が膨らむが
ごとく膨化してゆくが、適量が一気に押し入れられるこ
とで、金型内を適当に充満しつつ最外郭がキャビティー
28a形状に規制され、例えば図5のように全体が一つ
に賦形された膨化物が得られる。このとき、金型は少な
くともその一部を連続多孔質製のもので構成しているた
め、膨張の際発生するガス圧を適宜金型外に逃すことが
できて、折角膨張したのを冷却固化する前に自らのガス
圧で押し潰されることなく、膨張拡大した形状において
冷却固化する。このため、金型の少なくとも一部を連続
多孔質製とするのは、この膨張拡大と冷却固化とのタイ
ミングを図る上で重要であり、どの程度を連続多孔質製
とするか、また、何処をゲートとするか、ゲートを幾つ
にするかも、賦形する大きさ、全体形状に合わせ適宜設
計するのがよい。一方、スクリュー23を回転させなが
ら後退する間に再度流動状となった生分解性樹脂がスク
リュー23先端部に溜まり始め、次の射出に備える。こ
の間に金型のキャビティー28a内では、膨化後の冷却
固化も完了するので、型開きして膨化物S3を取り出
し、再び型締めして次の操作を行う。
The biodegradable resin is in the form of fluid in the cavity 28.
At the moment when it is pushed into a, it will be suddenly exposed to atmospheric pressure from the previously heated and pressurized state, so the water trapped in it will momentarily evaporate and the water vapor will expand. Although its cross-sectional area expands with the force of, the outermost shell is restricted to the shape of the cavity 28a while appropriately filling the inside of the mold by pushing in an appropriate amount at once, as shown in FIG. 5, for example. A swelling product in which the whole is shaped into one is obtained. At this time, at least a part of the mold is made of a continuous porous material, so that the gas pressure generated during expansion can be appropriately released to the outside of the mold, and the expanded solid is cooled and solidified. Before it is crushed by its own gas pressure, it cools and solidifies in the expanded and expanded shape. Therefore, it is important that at least a part of the mold is made of continuous porous material in order to control the timing of expansion and expansion and cooling and solidification, and to what extent is made continuous porous material. No matter how many gates are used, it is preferable to design appropriately according to the size to be shaped and the overall shape. On the other hand, the biodegradable resin which has become fluid again while retreating while rotating the screw 23 begins to accumulate at the tip of the screw 23 and prepares for the next injection. Within the mold cavity 28a during this time, since also complete cooling and solidification after swelling, remove the puffed product S 3 and the mold is opened, the following operations again clamping.

【0026】本出願に係る第三の発明の実施例として
は、図4に基づいて説明した実施例において、射出にあ
たり前もって金型キャビティー28a内にヤシ繊維賦形
体を配置しておくことで達成される。すなわち、ヤシ繊
維を手で適宜金型内に詰め込む、積層、ニードルパンチ
したシート状のものを金型内で組み合わせる、立方体に
賦形したものの角を切除する、立方体に賦形したものを
プレスしてキャビティと相似形に圧縮するなどしてヤシ
繊維賦形体として得たものを金型内に配置することがで
きる。ヤシ繊維賦形体が金型内に配置してあることによ
って、生分解性樹脂が金型内で膨化する際に、ヤシ繊維
に絡み合い、ヤシ繊維賦形体に入り組んだ膨化物が得ら
れるようになる。すなわち、図5のごとく、ヤシ繊維3
0を母材とし、これに入り組んで生分解性樹脂が発泡し
て成る膨化物S4が得られる。このため、このようにし
て得られた膨化物S4は、ヤシ繊維により繊維強化され
た状態となっているため、生分解性樹脂が高発泡してい
ても脆弱さは補強されており、高い形状復元性が付与さ
れていて、緩衝材としてより適するものとなっている。
また、これを廃棄する場合にも、ヤシ繊維が天然物であ
るため、生分解は勿論、焼却処分も可能であり、環境汚
染することはない。なお、ヤシ繊維賦形体に金属溶射し
てあったり、金属長繊維が絡み合わせてあれば、膨化物
に導電性が付与されており、静電除去、電磁波遮蔽効果
等も期待できるようになる。なお、金属は酸化するため
環境に対する悪影響も少ない。
An embodiment of the third invention relating to the present application is achieved by arranging a palm fiber shaped object in the mold cavity 28a prior to injection in the embodiment described with reference to FIG. To be done. That is, palm fibers are manually packed in a mold by hand, laminated, needle-punched sheet-shaped ones are combined in a mold, corners of a cube-shaped one are cut off, and a cube-shaped one is pressed. The obtained coconut fiber shaped body can be placed in a mold by, for example, compressing it into a shape similar to the cavity. By placing the coconut fiber shaped object in the mold, when the biodegradable resin swells in the mold, it becomes entangled with the coconut fiber and a swelling product entangled in the coconut fiber shaped object can be obtained. . That is, as shown in FIG. 5, palm fiber 3
The base material 0 is used as the base material, and a swelling product S 4 is obtained which is formed by intricately incorporating the base material into a biodegradable resin. Therefore, since the expanded product S 4 thus obtained is in a fiber-reinforced state with palm fiber, the brittleness is reinforced even if the biodegradable resin is highly foamed, which is high. It has a shape-restoring property and is more suitable as a cushioning material.
In addition, even if this is discarded, since palm fiber is a natural product, it can be biodegraded and incinerated, and it does not pollute the environment. If the palm fiber shaped body is sprayed with metal or the long metal fibers are intertwined with each other, conductivity is imparted to the expanded product, and electrostatic removal, electromagnetic wave shielding effect, etc. can be expected. Since the metal is oxidized, it has little adverse effect on the environment.

【0027】このようにして得られた膨化物S3、S4
る分解性緩衝材は、梱包用段ボール箱における四隅のコ
ーナー支持材としてそのまま用いることができる。ま
た、前記実施例と同様に他の分解性緩衝材と接着した
り、耐水性の固化皮膜やスキン層を形成してもよいし、
外郭形状に沿ってフィルムパックしたりしてもよし、シ
リコーン系等の撥水又は耐水性の塗料や着色塗料等を塗
布したり、防虫剤や殺虫剤成分等を塗布してもよい。
The decomposable cushioning materials as the expanded products S 3 and S 4 thus obtained can be used as they are as the corner supporting materials at the four corners of the packaging cardboard box. Further, it may be bonded to another degradable cushioning material in the same manner as in the above example, or a water-resistant solidified film or skin layer may be formed,
A film may be packed along the outer shape, a water-repellent or water-resistant paint such as a silicone-based paint or a colored paint may be applied, or an insect repellent or an insecticide component may be applied.

【0028】以上のとおり、本発明によれば、連続多孔
質製のダイにて賦形されたまま、その後二次成形加工等
をして、さらには連続多孔質製の賦形型で全体形状を一
挙に賦形して、各種形状の緩衝材として得ることがで
き、従来の発泡スチロール等の発泡体が用いられていた
と同様に使用することができる。また、緩衝材として用
いられると言うよりも、むしろ断熱材的な使い方等に対
しても当然対処できるものであり、この意味で、本願に
言う分解性緩衝材とは、厳密な緩衝のみを目的とした用
途だけでなく、高発泡品としての適用可能な用途、製品
を広く含むものである。また、以上の実施例では生分解
性樹脂にMater−Bi「マタービー」(登録商標)
のペレット状のものを用いるものとして説明したが、本
発明はこれらに限定されるものではなく、その他の生分
解性樹脂が、また各種の大きさ形状の生分解性樹脂が適
用できるものである。また、勿論、図示の装置、例えば
インラインスクリュー式射出成形機によるものに限られ
るものでもない。
As described above, according to the present invention, after being shaped by the continuous porous die, the secondary molding process and the like are performed, and the continuous porous shaping mold is used to form the whole shape. Can be obtained at once in the form of a cushioning material having various shapes, and can be used in the same manner as in the case where a conventional foamed material such as Styrofoam is used. Further, rather than being used as a cushioning material, it is naturally possible to deal with usage such as a heat insulating material. In this sense, the degradable cushioning material referred to in the present application is intended only for strict cushioning. In addition to the above-mentioned applications, it includes a wide range of applications and products applicable as highly foamed products. Also, in the above examples, the biodegradable resin was used as Mater-Bi "Matterby" (registered trademark).
However, the present invention is not limited to these, and other biodegradable resins, and biodegradable resins of various sizes and shapes can be applied. . Further, of course, it is not limited to the illustrated apparatus, for example, an in-line screw type injection molding machine.

【0029】[0029]

【発明の効果】以上、本発明によれば、生分解性樹脂を
格別な化学発泡剤メカニズムによることなく、高発泡に
も対処し得て、発泡及び適宜形状に賦形することがで
き、また、強度的にも従来の発泡体の代替品として提供
することができ、今や重要課題のゴミ公害の軽減に寄与
することができる。
As described above, according to the present invention, the biodegradable resin can cope with high foaming without depending on a special chemical foaming agent mechanism, and can be foamed and shaped into an appropriate shape. In terms of strength, it can be provided as a substitute for conventional foams, and can now contribute to the reduction of dust pollution, which is an important issue.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明分解性緩衝材の製造方法の一実施例を行
うための装置の一例である押出式膨化装置の概略縦断面
図である。
FIG. 1 is a schematic vertical cross-sectional view of an extrusion-type expansion device which is an example of a device for carrying out an embodiment of the method for producing a degradable cushioning material of the present invention.

【図2】膨化押出物を断面アングル状として得た場合の
斜視図である。
FIG. 2 is a perspective view of a swollen extrudate having an angled cross section.

【図3】膨化押出物の多数本を成形型内に整列させ全体
を一体化せしめる状態を示す斜視図である。
FIG. 3 is a perspective view showing a state in which a large number of expanded extrudates are aligned in a molding die to integrate the whole.

【図4】本発明分解性緩衝材の製造方法の他の一実施例
を行うための装置の一例であるインラインスクリュー式
射出成形機の概略縦断面図である。
FIG. 4 is a schematic vertical cross-sectional view of an in-line screw injection molding machine which is an example of an apparatus for carrying out another embodiment of the method for producing a degradable cushioning material of the present invention.

【図5】ヤシ繊維を母材とし、これに入り組んで生分解
性樹脂が発泡して成る分解性緩衝材をコーナー支持部材
として得た場合の斜視図である。
FIG. 5 is a perspective view showing a case where a decomposable cushioning material formed by coconut fiber as a base material and a biodegradable resin foamed intricately as a corner support member is obtained.

【符号の説明】 A 押出式膨化装置 B インラインスクリュー式射出成形機 P 含水させた生分解性樹脂の粒体 S1 膨化押出物 S2 膨化押出物 S3 膨化物 S4 膨化物 10 シリンダ 10a テーパー壁 11 ホッパー 12 ダイ 12a スロート部 13 スクリュー 14 ヒーター 15 縁取りした矩形偏平の成形型 20 シリンダ 20a シリンダ内壁 21 ホッパー 22 ノズル 23 スクリュー 24 ヒーター 25 油圧モータ 26 ピストン 27 射出シリンダ 28 固定側金型 28a 略三角錐状のキャビティー 29 可動側金型 29a 略三角錐状のコア 30 ヤシ繊維[Explanation of Codes] A Extrusion type expansion device B In-line screw type injection molding machine P Granules of biodegradable resin hydrated S 1 Expansion extruded product S 2 Expansion extruded product S 3 Expanded product S 4 Expanded product 10 Cylinder 10 a Taper Wall 11 Hopper 12 Die 12a Throat part 13 Screw 14 Heater 15 Edged rectangular flat mold 20 Cylinder 20a Cylinder inner wall 21 Hopper 22 Nozzle 23 Screw 24 Heater 25 Hydraulic motor 26 Piston 27 Injection cylinder 28 Fixed side mold 28a Substantial triangular pyramid -Shaped cavity 29 Movable side mold 29a Core of substantially triangular pyramid 30 Palm fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:00 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area B29L 31:00 4F

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】前方に狭窄開口を有する筒状容器内に実質
的に水分と生分解性樹脂とを投入し、生分解性樹脂を前
方の狭窄開口に押送する間にその軟化点ないし融点程度
に昇温せしめて流動状として狭窄開口から筒状容器外に
押し出すにあたり、狭窄開口を構成するダイは連続多孔
質製として、筒状容器内の加熱加圧状態から急激に解放
されて該ダイ内で膨化して得られる膨化押出物を該ダイ
の断面内形状に応じた形状に賦形せしめて得ることを特
徴とする分解性緩衝材の製造方法。
1. A substantially cylindrical container having a constriction opening at the front, into which water and a biodegradable resin are put, and while the biodegradable resin is pushed to the front constriction opening, its softening point or melting point. When extruding from the constriction opening to the outside of the cylindrical container by raising the temperature to the outside of the cylindrical container, the die forming the constriction opening is made of continuous porous material, and is rapidly released from the heating and pressurizing state in the cylindrical container. A method for producing a degradable cushioning material, which comprises obtaining an expanded extruded product obtained by expanding the product in a shape according to the internal shape of the cross section of the die.
【請求項2】前方に狭窄開口を有する筒状容器内に実質
的に水分と生分解性樹脂とを投入し、生分解性樹脂を前
方の狭窄開口に押送する間にその軟化点ないし融点程度
に昇温せしめて流動状として狭窄開口から先方の賦形型
内に押し入れるにあたり、賦形型は少なくもその一部を
連続多孔質製として、筒状容器内の加熱加圧状態から急
激に解放されて該賦形型内で膨化して得られる膨化物を
該賦形型に応じた全体形状に賦形せしめて得ることを特
徴とする分解性緩衝材の製造方法。
2. Water and biodegradable resin are substantially put into a cylindrical container having a front narrowed opening, and while the biodegradable resin is pushed to the front narrowed opening, its softening point or melting point is reached. When pressing into the shaping mold of the other side from the constriction opening by raising the temperature to a fluid state, the shaping mold is made of at least a part made of continuous porous material, and is rapidly heated from the heated and pressurized state in the cylindrical container. A method for producing a degradable cushioning material, which comprises releasing an expanded product obtained by swelling in the shaping mold to give an overall shape corresponding to the shaping mold.
【請求項3】前方に狭窄開口を有する筒状容器内に実質
的に水分と生分解性樹脂とを投入し、生分解性樹脂を前
方の狭窄開口に押送する間にその軟化点ないし融点程度
に昇温せしめて流動状として狭窄開口から先方の賦形型
内に押し入れるにあたり、賦形型は少なくもその一部を
連続多孔質製とするとともに内部にヤシ繊維賦形体を配
置しておき、筒状容器内の加熱加圧状態から急激に解放
されて該賦形型内で膨化して得られる膨化物をヤシ繊維
賦形体に入り組ませるとともに該賦形型に応じた全体形
状に賦形せしめて得ることを特徴とする分解性緩衝材の
製造方法。
3. A water-degradable resin and a water-degradable resin are substantially put into a cylindrical container having a narrowed opening at the front, and while the biodegradable resin is pushed to the front narrowed opening, its softening point or melting point is reached. When pressing it into the shaping mold of the other side from the constriction opening as a fluid state by raising the temperature to, the shaping mold is made at least a part of it made of continuous porous material and the palm fiber shaped body is placed inside. , A swelling product obtained by being rapidly released from the heating and pressurizing state in the cylindrical container and swelling in the shaping mold is incorporated into a coconut fiber shaped body and shaped into an overall shape corresponding to the shaping mold. A method for producing a degradable cushioning material, which is obtained by shaping.
【請求項4】ヤシ繊維を母材とし、これに入り組んで生
分解性樹脂が発泡して成ることを特徴とする分解性緩衝
材。
4. A degradable cushioning material comprising coconut fiber as a base material, and a biodegradable resin foamed in the base material.
JP7512893A 1992-06-26 1993-03-09 Decomposable buffer material and its manufacture Pending JPH0671768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7512893A JPH0671768A (en) 1992-06-26 1993-03-09 Decomposable buffer material and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20939792 1992-06-26
JP4-209397 1992-06-26
JP7512893A JPH0671768A (en) 1992-06-26 1993-03-09 Decomposable buffer material and its manufacture

Publications (1)

Publication Number Publication Date
JPH0671768A true JPH0671768A (en) 1994-03-15

Family

ID=26416271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7512893A Pending JPH0671768A (en) 1992-06-26 1993-03-09 Decomposable buffer material and its manufacture

Country Status (1)

Country Link
JP (1) JPH0671768A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858152A (en) * 1994-11-04 1999-01-12 Agency Of Industrial Science & Technology Method for production of composite material and composite material produced thereby
JP2013531743A (en) * 2010-05-25 2013-08-08 アナナス アナム リミテッド Natural non-woven material
JP2016022966A (en) * 2014-07-18 2016-02-08 王子ホールディングス株式会社 Corner protective member
JP2016088569A (en) * 2014-11-05 2016-05-23 王子ホールディングス株式会社 Corner protecting member and corner protecting member set

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858152A (en) * 1994-11-04 1999-01-12 Agency Of Industrial Science & Technology Method for production of composite material and composite material produced thereby
JP2013531743A (en) * 2010-05-25 2013-08-08 アナナス アナム リミテッド Natural non-woven material
JP2016022966A (en) * 2014-07-18 2016-02-08 王子ホールディングス株式会社 Corner protective member
JP2016088569A (en) * 2014-11-05 2016-05-23 王子ホールディングス株式会社 Corner protecting member and corner protecting member set

Similar Documents

Publication Publication Date Title
JP4291699B2 (en) Biodegradable molding
US5602188A (en) Biodegradable resin foam and method and apparatus for producing same
JP3961421B2 (en) Biodegradable molded product, method for producing the same, and foam molding composition
JP3293832B2 (en) Method for producing a molded body having a barrier layer from a biodegradable material and the molded body
JP2003519708A (en) Thermoplastic starch composition containing particulate filler component
IL95261A0 (en) Expanded articles of biode-gradable plastics materials and a method for their production
JPWO2003070592A1 (en) Sealed container
JP2004508446A (en) Molding mixture for producing molded articles
US6589327B1 (en) Organic composite material
JPH0671768A (en) Decomposable buffer material and its manufacture
CN1273204A (en) Packing material with liner of stalk (or straw) fibres and its production technology
JP2007528697A (en) Method for producing growth substrate
JP2742345B2 (en) Biodegradable nonwoven molded container and molding method thereof
JPH10151647A (en) Injection mold
JP2001103845A (en) Biodegradable foamed pot for raising seedling and method for producing the same
JP3454370B2 (en) Biodegradable resin material for foam and method for producing biodegradable resin foam using the same
KR20020006927A (en) biodegradable inorganic composition and formig method therefrom
JP2001258399A (en) Biodegradable vessel for cultivating plant
JPH07124978A (en) Manufacture of biodegradable resin foam and production equipment
JPH0797456A (en) Molding material, molded article produced therefrom, and production of molded article
CN1140438C (en) Technology for making buffer with straw or stalk as main raw material
JP3241088B2 (en) Molding method of biodegradable resin
JPH10309135A (en) Nursery container and molding of the same
WO2002088245A1 (en) Method for the production of biodegradable packaging and moulded bodies
JP3408840B2 (en) Method for producing biodegradable resin foam