JPH0670634B2 - Supersonic velocity measuring device - Google Patents

Supersonic velocity measuring device

Info

Publication number
JPH0670634B2
JPH0670634B2 JP15178291A JP15178291A JPH0670634B2 JP H0670634 B2 JPH0670634 B2 JP H0670634B2 JP 15178291 A JP15178291 A JP 15178291A JP 15178291 A JP15178291 A JP 15178291A JP H0670634 B2 JPH0670634 B2 JP H0670634B2
Authority
JP
Japan
Prior art keywords
shock wave
flying object
measuring device
wave detection
time interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15178291A
Other languages
Japanese (ja)
Other versions
JPH04372864A (en
Inventor
秀喜 井上
Original Assignee
株式会社菅原研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社菅原研究所 filed Critical 株式会社菅原研究所
Priority to JP15178291A priority Critical patent/JPH0670634B2/en
Publication of JPH04372864A publication Critical patent/JPH04372864A/en
Publication of JPH0670634B2 publication Critical patent/JPH0670634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は主として銃弾や砲弾な
どの超音速で、直線的軌道を持つ飛翔体の飛翔速度を測
定する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the flight speed of a projectile having a linear orbit at a supersonic speed such as a bullet or shell.

【0002】[0002]

【従来の技術】従来の飛翔体速度の測定に用いられるセ
ンサは線的や光的等であった。線的は導電体の線材を張
りめぐらせた的状のもので、飛翔体がこの線的を通過す
る瞬間に、線材を破断し、これを電気的に検出するもの
である。また光的は投受光のペアから成る光線を張りめ
ぐらせた的状のもので、飛翔体がこの光的を通過する瞬
間に光線をさえぎり、これを電気的に検出するものであ
る。
2. Description of the Related Art A conventional sensor used for measuring the velocity of a flying object is linear or optical. The linear shape is a shape in which a conductive wire material is stretched around, and the wire material is broken at the moment when the flying object passes through the linear material, and this is electrically detected. Optically, it is a shape in which a light beam consisting of a light projecting and receiving light is stretched around, and intercepts the light beam at the moment when the flying object passes through this light beam, and electrically detects it.

【0003】飛翔体の軌道上の2点にこれらの的(線的
または光的)をそれぞれ配置し、飛翔体が各的を通過す
る瞬間を検出し,これらの検出タイミングの時間差
(T)と的間の距離Lとから、飛翔体の速度v=L/T
を算出する方法が一般的であった。
These targets (linear or optical) are arranged at two points on the trajectory of the flying object, and the moment when the flying object passes each target is detected, and the time difference (T) between these detection timings is detected. From the distance L between the targets, the velocity of the flying object v = L / T
Was generally used.

【0004】[0004]

【発明が解決しようとする課題】線的や光的は、その原
理から的状の形状を必要とし、飛翔体が的の形状によっ
て指定される領域の内部を通過することを必要とする。
しかしながら、飛翔体の軌道を安定に制御できる場合は
別として、銃弾や砲弾などは指定領域からずれる恐れを
まぬがれないため、的の構造部分を射ちぬいて的、つま
りセンサを破壊する事故も起こっている。そのような事
故を防ぐために、測定可能領域を拡げようとすれば、そ
の領域に見合う大きな構造の的を必要とし、コストの点
で負担がかかると同時に、取扱いも不便となる不都合が
ある。
From the principle, linear or optical requires a target-like shape, and the flying object needs to pass through the inside of a region designated by the target shape.
However, apart from the case where the trajectory of the flying object can be controlled stably, there is a risk that bullets and shells will be displaced from the specified area, so there is an accident that the target structural part is shot and the sensor is destroyed. There is. In order to prevent such an accident, if an attempt is made to expand the measurable area, a large structure corresponding to the area is required, which is burdensome in terms of cost and inconvenient to handle.

【0005】この発明は従来の線的、光的の代わりに衝
撃波を検出する小型のセンサを用いて、軌道のずれた飛
翔体で破壊される恐れがなく、測定領域が広く、経済的
で取扱いの便利な測定装置を実現しようとするものであ
る。
The present invention uses a small sensor that detects a shock wave instead of the conventional linear or optical one, and there is no fear of being destroyed by a flying object with a deviated orbit. It is intended to realize a convenient measuring device of.

【0006】[0006]

【課題を解決するための手段】この発明の超音速飛翔体
速度検出センサには、被測定超音速飛翔体の標準軌道に
対し離れて、平行な直線上に、所定の間隔Lをもって配
設される第1,第2衝撃波検出センサと、それら第1,
第2衝撃波検出センサの検出出力をそれぞれ波形整形す
る第1,第2波形整形器と、それら第1,第2波形整形
器の各出力を入力して、両者の時間間隔Tを測定する時
間間隔測定器と、その時間間隔測定器の測定データを入
力して、予めセットされている前記第1,第2衝撃波検
出センサ間の間隔Lを用いて、被測定飛翔体の速度v=
L/Tを演算する演算器とが設けられる。
The supersonic projectile velocity detection sensor of the present invention is arranged at a predetermined distance L on a straight line parallel to the standard trajectory of the supersonic projectile to be measured. First and second shock wave detection sensors, and
A time interval for measuring the time interval T between the first and second waveform shapers for respectively shaping the detection output of the second shock wave detection sensor and the respective outputs of the first and second waveform shapers. The measurement data of the measuring instrument and the time interval measuring instrument are input, and the velocity v of the flying object to be measured is calculated by using the preset interval L between the first and second shock wave detection sensors.
An arithmetic unit for calculating L / T is provided.

【0007】[0007]

【実施例】飛翔体が、一定の超音速で直線的軌道を持つ
状態では、軌道を軸とし現時点の飛翔体の位置を頂点と
する円錐状の衝撃波が発生している。いま音速をc,飛
翔体の速度をvとし、点P2 の位置に飛翔体がある瞬間
の衝撃波の断面を図示すると図2のようになる。即ち、
衝撃波の断面が直線L1 ,L2 になる。点P2 の位置に
飛翔体がある瞬間から時間tだけ以前に、点P1 の位置
に飛翔体があったものとし、点P1 より直線L2 に垂線
を立て、その交点をP3 とする。飛翔体が点P1 に存在
した時点に発生した音波は、現時点、つまり飛翔体が点
2 に来た時点には、点P1 を中心とする半径P1 3
の球面状に広がっている。図2の点線で示す円10は、
その球面の断面である。従って、直線P1 3 の長さは
ctとなる。しかしcは音速である。また直線P1 2
の長さはvtであるので、衝撃波の円錐の頂角αは、次
式で表される。
[Example] In a state where a flying object has a linear trajectory at a constant supersonic velocity, a conical shock wave is generated with the trajectory as an axis and the current position of the flying object as an apex. Now, let us say that the speed of sound is c, the velocity of the flying object is v, and the cross section of the shock wave at the moment when the flying object is at the point P 2 is illustrated in FIG. That is,
The cross section of the shock wave becomes straight lines L 1 and L 2 . Before from the moment there is a projectile in the position of the point P 2 by a time t, it is assumed that there is flying object to the position of the point P 1, make a vertical line from the point P 1 to the straight line L 2, the intersection between P 3 To do. Waves projectile occurs when you present to the point P 1 is present, that is when the projectile comes to the point P 2 is the radius P 1 P 3 around the point P 1
Spreads in a spherical shape. The circle 10 shown by the dotted line in FIG.
It is a cross section of the spherical surface. Therefore, the length of the straight line P 1 P 3 is ct. However, c is the speed of sound. In addition, straight line P 1 P 2
Is vt, the apex angle α of the shock wave cone is expressed by the following equation.

【0008】 α=sin-1(P13 /P12)=sin-1(ct/vt)=sin-1(c/v) (1) 従って、飛翔体の速度vが一定である限り、円錐状の衝
撃波はその頂角αが時間tで変化せずに、軌道9上を移
動することがわかる。図1Aに示すように、超音波マイ
クロホォン、圧力センサのような小型の第1,第2衝撃
波検出センサSA ,SB を、各々の中心を通る直線10
が飛翔体の標準軌道13と平行になるように配置する
と、第1,第2衝撃波検出センサSA ,SB が検出する
衝撃波の時間間隔Tは、これらセンサの間隔に等しい距
離を飛翔体が移動する時間間隔に等しい。これを図によ
って説明する。
Α = sin −1 (P 1 P 3 / P 1 P 2 ) = sin −1 (ct / vt) = sin −1 (c / v) (1) Therefore, the velocity v of the flying object is constant. As long as the cone-shaped shock wave is present, it can be seen that the apex angle α moves on the trajectory 9 without changing at the time t. As shown in FIG. 1A, a small straight line 10 passing through the centers of small first and second shock wave detection sensors S A and S B such as an ultrasonic microphone and a pressure sensor is used.
Is arranged so as to be parallel to the standard trajectory 13 of the flying object, the time interval T between the shock waves detected by the first and second shock wave detecting sensors S A and S B is equal to the interval between these sensors. Equal to the moving time interval. This will be described with reference to the drawings.

【0009】センサSA ,SB の位置をそれぞれA,B
とし、センサSA が衝撃波を検出した瞬間の飛翔体の位
置をPA ,センサSB が衝撃波を検出した瞬間の飛翔体
の位置をPB とすると、直線APA ,BPB は、図2で
説明したように衝撃波の断面に対応し、飛翔体の標準軌
道13と直線APA ,BPB のなす角は衝撃波の頂角α
に等しい。角αが共通で、直線ABと直線PA B が平
行なのでABPB Aは平行四辺形となる。
The positions of the sensors S A and S B are set to A and B, respectively.
Assuming that the position of the flying object at the moment when the sensor S A detects the shock wave is P A and the position of the flying object at the moment when the sensor S B detects the shock wave is P B , the straight lines AP A and BP B are as shown in FIG. As described above, the angle between the standard trajectory 13 of the flying object and the straight lines AP A and BP B corresponds to the cross section of the shock wave, and the apex angle α of the shock wave
be equivalent to. Since the angle α is common and the straight line AB and the straight line P A P B are parallel, ABP B P A is a parallelogram.

【0010】従って、直線ABの長さは、直線PA B
の長さに等しく、これをLとおく。第1,第2センサS
A ,SB が衝撃波を検出したタイミングの時間差をTと
おくと、飛翔体の速度vは、次式で得られる。 v=L/T (2) 第1,第2衝撃波検出センサSA ,SB の各検出出力
(図1Bのイおよびハ)は、波形整形器DA ,DB をそ
れぞれ通じて波形整形され、それらのパルス状の整形出
力(図1Bのロおよびニ)が時間間隔測定器Eに入力さ
れ、各整形出力の立上りの時刻tA ,tB の時間差T=
B −tA が測定され、その測定データが演算器Fに供
給される。
Therefore, the length of the straight line AB is the straight line P A P B
Equal to the length of, and let this be L. First and second sensor S
Letting T be the time difference between the timings when A and S B detect the shock wave, the velocity v of the flying object is obtained by the following equation. v = L / T (2) The respective detection outputs of the first and second shock wave detection sensors S A and S B (a and c in FIG. 1B) are waveform-shaped through the waveform shapers D A and D B , respectively. , The pulse-shaped shaping outputs (B and B in FIG. 1B) are input to the time interval measuring device E, and the time difference T A between the rising times t A and t B of the shaping outputs T =
t B −t A is measured, and the measured data is supplied to the calculator F.

【0011】演算器Fは予めセットされている第1,第
2センサSA ,SB の間隔Lを入力データTで割算して
飛翔体の速度vを演算し、その速度データを表示器Gに
供給すると共に、必要に応じ出力端子OUTを介して外
部に出力する。第1,第2衝撃波検出センサSA ,SB
の置かれる、標準軌道13に平行な直線10は、これら
のセンサが、軌道のずれた飛翔体によって破壊されない
ように、標準軌道13より十分離して設けられる。
The calculator F calculates the velocity v of the flying object by dividing the preset interval L between the first and second sensors S A and S B by the input data T, and displays the velocity data. It is supplied to G and is output to the outside through the output terminal OUT as needed. First and second shock wave detection sensors S A , S B
The straight line 10 parallel to the standard orbit 13 in which the sensor is placed is provided at a sufficient distance from the standard orbit 13 so that these sensors are not destroyed by a projectile with a deviated orbit.

【0012】[0012]

【発明の効果】この発明では、従来の線的、光的の代わ
りに小型の第1,第2衝撃波検出センサが、被測定飛翔
体の標準軌道13に対して、十分安全な場所まで離れ
て、かつ平行な直線10上に配設できるので、軌道のず
れた飛翔体で破壊される恐れはない。
According to the present invention, the small first and second shock wave detection sensors are provided in place of the conventional linear and optical distances to a sufficiently safe place with respect to the standard trajectory 13 of the flying object to be measured. Moreover, since they can be arranged on the parallel straight lines 10, there is no risk of destruction by a flying object with a deviated orbit.

【0013】この発明では、第1,第2センサを標準軌
道13より離すことが容易であるので、従来の線的、光
的による装置より速度測定可能領域を必要に応じ広くす
ることができ、その取扱いがきわめて便利である。しか
も、そのために何等経済的負担を強いるものではない。
In the present invention, since it is easy to separate the first and second sensors from the standard orbit 13, it is possible to widen the speed measurable region as necessary as compared with the conventional linear or optical device. Its handling is extremely convenient. Moreover, this does not impose any financial burden.

【図面の簡単な説明】[Brief description of drawings]

【図1】Aはこの発明のブロック図、BはAの要部の波
形図。
FIG. 1A is a block diagram of the present invention, and B is a waveform diagram of a main part of A.

【図2】飛翔体により生ずる衝撃波の形状を説明するた
めの断面図。
FIG. 2 is a cross-sectional view for explaining the shape of a shock wave generated by a flying object.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定超音速飛翔体の標準軌道に対し離
れて、平行な直線上に、所定の間隔Lをもって配設され
る第1,第2衝撃波検出センサと、それら第1,第2衝
撃波検出センサの検出出力をそれぞれ波形整形する第
1,第2波形整形器と、それら第1,第2波形整形器の
各出力を入力して、両者の時間間隔Tを測定する時間間
隔測定器と、その時間間隔測定器の測定データを入力し
て、予めセットされている前記第1,第2衝撃波検出セ
ンサ間の間隔Lを用いて、被測定超音速飛翔体の速度v
=L/Tを演算する演算器とを具備することを特徴とす
る、超音速飛翔体速度測定装置。
1. A first and a second shock wave detection sensors, which are arranged on a straight line parallel to and apart from a standard trajectory of a supersonic flying object to be measured, with a predetermined distance L, and the first and second shock wave detection sensors. First and second waveform shapers for respectively shaping the detection outputs of the shock wave detection sensor, and a time interval measuring device for inputting the respective outputs of the first and second waveform shapers and measuring the time interval T between them. And input the measurement data of the time interval measuring device, and using the preset interval L between the first and second shock wave detection sensors, the velocity v of the measured supersonic flying object.
= L / T, and a calculator for calculating L / T.
JP15178291A 1991-06-24 1991-06-24 Supersonic velocity measuring device Expired - Lifetime JPH0670634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15178291A JPH0670634B2 (en) 1991-06-24 1991-06-24 Supersonic velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15178291A JPH0670634B2 (en) 1991-06-24 1991-06-24 Supersonic velocity measuring device

Publications (2)

Publication Number Publication Date
JPH04372864A JPH04372864A (en) 1992-12-25
JPH0670634B2 true JPH0670634B2 (en) 1994-09-07

Family

ID=15526185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15178291A Expired - Lifetime JPH0670634B2 (en) 1991-06-24 1991-06-24 Supersonic velocity measuring device

Country Status (1)

Country Link
JP (1) JPH0670634B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7292501B2 (en) * 2004-08-24 2007-11-06 Bbn Technologies Corp. Compact shooter localization system and method

Also Published As

Publication number Publication date
JPH04372864A (en) 1992-12-25

Similar Documents

Publication Publication Date Title
KR100252523B1 (en) Emergency root decision method and device of projector
US4111555A (en) Apparatus for measuring the angular displacement of a body
EP0259428B1 (en) Position measuring apparatus and method
US4965453A (en) Multiple aperture ir sensor
EP0511293B1 (en) Acoustic projectile trajectory evaluation device
EP0003095B1 (en) Indicator apparatus for determining a distance of a supersonic projectile in relation to a target
US4598884A (en) Infrared target sensor and system
AU2002309532B2 (en) Method and system for correcting for curvature in determining the trajectory of a projectile
US6138944A (en) Scatterider guidance system for a flying object based on maintenance of minimum distance between the designating laser beam and the longitudinal axis of the flying object
SE506657C2 (en) Method and apparatus for projectile measurement
JPH0670634B2 (en) Supersonic velocity measuring device
US5944317A (en) Shock wave scoring apparatus employing dual concentric curved rod sensors
EP0313246A2 (en) Article orientation
EP0248018B1 (en) Target
US2997594A (en) Target-seeking head for guided missile
US5247488A (en) Apparatus and method for the electro acoustical measurement of the angular direction of projectiles passing in flight at air-tow-targets
US2958135A (en) Collision-course director
JP2000171199A (en) Passive impact splash standardizing apparatus
JPH09197037A (en) Flying object position detection device
JPH0271114A (en) Method for detecting passing position of supersonic flight body
RU2231738C2 (en) Method for determination of exterior ballistic characteristics of flight of bullets and projectiles
US6617563B1 (en) Photocell array sensor for projectile position detection
JP3657670B2 (en) Shooting training equipment
JPH0814798A (en) Guidance device of missile
JP4776301B2 (en) Guided flying object and system