JPH0670532B2 - Blower control method for refrigeration system - Google Patents

Blower control method for refrigeration system

Info

Publication number
JPH0670532B2
JPH0670532B2 JP3300486A JP3300486A JPH0670532B2 JP H0670532 B2 JPH0670532 B2 JP H0670532B2 JP 3300486 A JP3300486 A JP 3300486A JP 3300486 A JP3300486 A JP 3300486A JP H0670532 B2 JPH0670532 B2 JP H0670532B2
Authority
JP
Japan
Prior art keywords
blower
condenser
pressure
blowers
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3300486A
Other languages
Japanese (ja)
Other versions
JPS62194167A (en
Inventor
恒次 諸星
了志 住田
清司 平岡
敦士 尼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3300486A priority Critical patent/JPH0670532B2/en
Publication of JPS62194167A publication Critical patent/JPS62194167A/en
Publication of JPH0670532B2 publication Critical patent/JPH0670532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、複数個の送風機を配置した空冷凝縮器の送風
機制御方法に係り、特に上記送風機を個別あるいは群制
御して、運転停止を行い高圧圧力を常にほゞ一定値に保
持する制御方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a blower control method for an air-cooled condenser in which a plurality of blowers are arranged, and in particular, controlling the blowers individually or in groups to shut down the operation to a high pressure. The present invention relates to a control method for always keeping the pressure at a substantially constant value.

〔発明の背景〕[Background of the Invention]

圧縮機、空冷式凝縮器、減圧器、蒸発器を備えて冷凍装
置を形成し、上記空冷式凝縮器に複数個の送風機を配置
し、この送風機の運転を制御して高圧々力を制御する方
式として、三洋電気の昭和60年3月発行の小形冷凍機カ
タログには凝縮器用送風機を2個横方向に配置し、この
送風機の運転制御を行うものが記載されているが、この
方式は、凝縮器の伝熱管は横長に形成されているため、
最下段の伝熱管に貯溜する冷媒液量が多くなり伝熱面積
が減少し、冷却性能を低下させる傾向にある。また過冷
却を行う伝熱管部分のうち、熱交換が行われる部分はほ
ゞ半分であり、安定した過冷却度が得られない等の問題
点を有する。
A compressor, an air-cooled condenser, a decompressor, and an evaporator are provided to form a refrigeration system, and a plurality of blowers are arranged in the air-cooled condenser, and the operation of the blower is controlled to control high-pressure power. As a method, Sanyo Denki's small refrigerator catalog issued in March 1985 describes that two condenser blowers are arranged in the lateral direction to control the operation of this blower. Since the heat transfer tube of the condenser is horizontally long,
There is a tendency that the amount of refrigerant liquid stored in the lowermost heat transfer tube increases, the heat transfer area decreases, and the cooling performance decreases. Further, in the heat transfer tube portion for supercooling, only a half of the heat exchange tube is subjected to heat exchange, and there is a problem that a stable degree of supercooling cannot be obtained.

〔発明の目的〕[Object of the Invention]

本発明は上記に鑑みて発明されたもので、空冷式凝縮器
の性能向上と凝縮圧力の安定化及び過冷却部が安定して
確保できる送風機制御方法を提供することを目的とす
る。
The present invention has been made in view of the above, and an object thereof is to provide a blower control method capable of improving the performance of an air-cooled condenser, stabilizing the condensing pressure, and stably securing a subcooling unit.

〔発明の概要〕[Outline of Invention]

上記の目的を達成するため本発明は、空冷凝縮器を縦長
に形成し、縦方向に複数個の送風機を配置し、伝熱管の
上端を冷媒入口管、下端を冷媒出口管とし、凝縮圧力が
低下した際は、上記送風機を、冷媒入口管に近い側の送
風機より優先停止させ凝縮圧力の制御を行う特徴を有す
る。
In order to achieve the above-mentioned object, the present invention forms an air-cooled condenser in a longitudinal direction, arranges a plurality of fans in the longitudinal direction, the upper end of the heat transfer tube is a refrigerant inlet tube, the lower end is a refrigerant outlet tube, the condensation pressure is When the temperature drops, the blower is preferentially stopped from the blower on the side closer to the refrigerant inlet pipe to control the condensing pressure.

〔発明の実施例〕Example of Invention

以下本発明の一実施例を図面にもとづき説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図乃至第3図は空冷式凝縮器を示し、多数個の並列
フィン1に蛇行状の伝熱管2を貫通して熱交換器3が形
成され、この熱交換器3は図示のように全体が縦長形状
を有し、また伝熱管2は上端が冷媒ガスの入口、下端が
冷却液出口に形成されている。た、この、この熱交換器
3には縦方向に2個の送風機4,5が配置されている。
1 to 3 show an air-cooling type condenser, in which a large number of parallel fins 1 penetrate a meandering heat transfer tube 2 to form a heat exchanger 3, and the heat exchanger 3 is formed as shown in the drawing. The entire heat transfer tube 2 has a vertically long shape, and has an upper end formed as a refrigerant gas inlet and a lower end formed as a cooling liquid outlet. In addition, two blowers 4 and 5 are arranged in the heat exchanger 3 in the vertical direction.

6は枠体で一側に熱交換器3を配置し、他側に上記送風
機4,5が配置され、この送風機はベース9に取付けられ
た電動機7,8に夫々連結されている。図中、実線矢印は
空気の流通方向、破線矢印は冷媒の流通方向を示す。
Reference numeral 6 is a frame body in which the heat exchanger 3 is arranged on one side and the blowers 4 and 5 are arranged on the other side, and the blowers are connected to the electric motors 7 and 8 mounted on the base 9, respectively. In the figure, the solid arrows indicate the air flow direction, and the dashed arrows indicate the refrigerant flow direction.

上記、空冷式凝縮器は、図示されていない冷媒圧縮機、
減圧器、蒸発器にて冷凍サイクルが形成される。
The air-cooled condenser is a refrigerant compressor (not shown),
A refrigeration cycle is formed by the pressure reducer and the evaporator.

圧縮機より吐出された高圧の吐出冷媒ガスは、上記空冷
凝縮器3の伝熱管2の上端入口から流入し、伝熱管2を
下方に流通しながら、送風機4,5にて送風される空気
に、フィン1を介し放熱して凝縮し、冷媒液となり下端
出口から流出し、減圧器に至る。高圧冷媒液は減圧器を
流通して減圧され、次いで蒸発器に流入する。蒸発器で
は他側の流通媒体より吸熱し、該媒体を冷却し、冷媒自
身は蒸発し冷媒ガスとなり圧縮機に戻る。
The high-pressure discharged refrigerant gas discharged from the compressor flows into the air blown by the blowers 4 and 5 while flowing from the upper end inlet of the heat transfer tube 2 of the air-cooled condenser 3 and flowing downward through the heat transfer tube 2. The heat is radiated through the fins 1 and condensed to become a refrigerant liquid which flows out from the lower end outlet and reaches the pressure reducer. The high-pressure refrigerant liquid flows through the decompressor, is decompressed, and then flows into the evaporator. In the evaporator, heat is absorbed from the circulation medium on the other side, the medium is cooled, and the refrigerant itself evaporates to become a refrigerant gas and returns to the compressor.

上記作用は連続して行われ、冷却運転が行われる。The above operation is continuously performed, and the cooling operation is performed.

上記空冷凝縮器3は、上述のように送風機4,5にて送風
される吸込空気と熱交換し、高圧の過熱蒸気から飽和蒸
気さらには飽和液、過冷却液へと変化する。
The air-cooled condenser 3 exchanges heat with the intake air blown by the blowers 4 and 5 as described above, and changes from high-pressure superheated steam to saturated steam, and further to saturated liquid and supercooled liquid.

しかして、冬季等の外気温度が低下した場合において
は、凝縮圧力の過度の低下に依る冷凍能力の低下を防止
のため、送風機を高圧圧力開閉器等の作動信号により停
止させ、凝縮圧力の維持をはかる。送風器は先ず、冷媒
入口側の送風機4を停止する。
However, when the outside air temperature drops in winter, etc., the blower is stopped by the operation signal of the high pressure switch to prevent the decrease of the refrigeration capacity due to the excessive decrease of the condensation pressure, and the condensation pressure is maintained. Measure The blower first stops the blower 4 on the refrigerant inlet side.

次に、この送風機の停止順序について説明する。Next, the stop order of the blower will be described.

説明のための比較例として送風機を停止する優先順序を
凝縮器の冷媒ガス入口側に最も近いものを優先させる本
実施例の方法を(I)とし、逆に、凝縮器の液出口側に
最も近いものを優先させる方法を(II)とした場合を比
較し、第4図,第5図を参照して説明を行う。第4図の
横軸は凝縮器における底面からの高さ距離、縦軸は凝縮
器の熱通過率である。方法(II)の方式は凝縮器の縦方
向距離が高い位置においては熱通過率は高いが、冷媒配
管内の凝縮液量が多いため凝縮器の凝縮性能に最も関与
する凝縮域の区間は狭い。
As a comparative example for explanation, the method of this embodiment in which the priority order of stopping the blower is closest to the refrigerant gas inlet side of the condenser is (I), and conversely, to the liquid outlet side of the condenser. The case where the method of giving priority to the closest one is set to (II) will be compared, and description will be made with reference to FIGS. 4 and 5. The horizontal axis of FIG. 4 is the height distance from the bottom surface of the condenser, and the vertical axis is the heat transfer coefficient of the condenser. The method (II) has a high heat transfer rate at a position where the vertical distance of the condenser is high, but the amount of condensed liquid in the refrigerant pipe is large, so the condensing zone section that is most involved in the condensing performance of the condenser is narrow. .

また、過冷却域の区間は広いが、熱交換させるべく直近
の送風機は停止しているため熱通過率は低下し過冷却効
果を得ることができない。一方、方法(I)においては
過冷却域の区間は送風機2台運転時と同様であり、凝縮
器の伝熱面積を損うことなく有効に凝縮性能を発揮する
ことが可能であり、また過冷却域直近の送風機は運転し
ているため安定した過冷却効果を得ることが出来る。
Moreover, although the section of the supercooling region is wide, since the nearest blower is stopped for heat exchange, the heat passage rate is reduced and the supercooling effect cannot be obtained. On the other hand, in the method (I), the section of the supercooling region is the same as when two fans are operated, and it is possible to effectively exhibit the condensation performance without impairing the heat transfer area of the condenser. Since the blower in the immediate vicinity of the cooling area is operating, a stable supercooling effect can be obtained.

第5図は外気温度に対する凝縮圧力の変化を示す。P1
送風機制御用高圧圧力開閉器の作動圧力、P2は復帰圧力
を示す。外気温度の低下に追従し凝縮圧力も図中矢印に
示す如く低下する。凝縮圧力がP1に至ると送風機は停止
し、凝縮圧力は上昇するが、送風機は全数は停止してい
ないため、凝縮圧力はある点にてバランスして定まる。
(図中点)点において更に外気温度が低下した場合
は凝縮圧力を追従して低下し、第2段の送風機の停止へ
と至る。点において外気温度が上昇した場合は凝縮圧
力は上昇し、やがては復帰圧力P2に至る。凝縮圧力がP2
となった時点で停止中の送風機が再運転を開始するが、
この時点での凝縮圧力のバランスポイントは点である
ため凝縮圧力は点迄低下し、以降外気温度の変動が大
きい場合には凝縮圧力は図に示す閉ループを形成して変
化する。
FIG. 5 shows changes in the condensing pressure with respect to the outside air temperature. P 1 is the operating pressure of the blower control high-pressure switch, and P 2 is the return pressure. Following the decrease in the outside air temperature, the condensation pressure also decreases as shown by the arrow in the figure. When the condensing pressure reaches P 1 , the blowers stop, and the condensing pressure rises, but the total number of blowers is not stopped, so the condensing pressure is balanced at a certain point.
If the outside air temperature further decreases at the point (point in the figure), the condensation pressure follows and decreases, leading to the stop of the second-stage blower. When the outside air temperature rises at the point, the condensing pressure rises and eventually reaches the return pressure P 2 . Condensation pressure is P 2
When it becomes, the blower that is stopped will start restarting,
Since the balance point of the condensing pressure at this point is the point, the condensing pressure drops to the point, and when the fluctuation of the outside air temperature is large thereafter, the condensing pressure changes by forming the closed loop shown in the figure.

前述の方法(II)においては、熱交換性能が劣るため、
凝縮圧力は上昇しバランスポイント点はに移動す
る。従って閉ループは破線に示す如くとなり、送風機の
停止から運転に対する外気温度の変化幅は小さくなる。
In the above method (II), since the heat exchange performance is poor,
The condensing pressure rises and the balance point moves to. Therefore, the closed loop becomes as shown by the broken line, and the change range of the outside air temperature from the stop of the blower to the operation becomes small.

このように、方法(I)は方法(II)に比して、外気温
度の変動に対して凝縮圧力の変化を緩慢にできるため、
安定した冷凍機の運転を行うことができる。
As described above, the method (I) can slow the change in the condensation pressure with respect to the change in the outside air temperature, as compared with the method (II).
A stable operation of the refrigerator can be performed.

また、送風機が全運転状態から送風機制御運転に切り換
えられた時に、凝縮器内に貯溜される液量は小ないた
め、凝縮器以降への冷媒循環を妨げず冷凍機性能の安定
化を図る事ができるという効果がある。
Also, when the blower is switched from full operation to blower control operation, the amount of liquid stored in the condenser is not small, so refrigeration performance is stabilized without hindering the circulation of the refrigerant after the condenser. There is an effect that can be.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、送風機停止時
に、凝縮内には、熱交換性能に無効な貯溜冷媒液量を少
なくすることができる。また、外気温度の変動に対して
も凝縮圧力をより安定化させることが可能であり、更
に、過冷却度が有効に得られる等の数多の効果を有す
る。
As described above, according to the present invention, when the blower is stopped, it is possible to reduce the amount of stored refrigerant liquid that is ineffective in heat exchange performance in the condensation. Further, the condensing pressure can be more stabilized against fluctuations in the outside air temperature, and further, there are many effects such that the degree of supercooling can be effectively obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第3図は本発明の空冷式凝縮器の一実施例を
示し、第1図は側面図、第2図は背面図、第3図は正面
図、第4図は熱通過率の特性を示す線図、第5図は外気
温度に対する凝縮圧力の特性を示す線図である。 1…フィン、2…伝熱管、3…熱交換器、4,5…送風
機、6…枠、7,8…電動機、9…ベース。
1 to 3 show one embodiment of the air-cooled condenser of the present invention. FIG. 1 is a side view, FIG. 2 is a rear view, FIG. 3 is a front view, and FIG. 4 is a heat transfer coefficient. And FIG. 5 is a diagram showing the characteristic of the condensation pressure with respect to the outside air temperature. 1 ... Fin, 2 ... Heat transfer tube, 3 ... Heat exchanger, 4,5 ... Blower, 6 ... Frame, 7,8 ... Electric motor, 9 ... Base.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尼田 敦士 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (56)参考文献 実開 昭53−129757(JP,U) 実開 昭47−34348(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Amada 390 Muramatsu, Shimizu City, Shizuoka Prefecture, Shimizu Plant, Hitachi, Ltd. (56) References: 53-129757 (JP, U): 47- 34348 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも圧縮機、凝縮器、減圧器、蒸発
器を備え、上記凝縮器は、多数個の並設フィンに蛇行状
の伝熱管を貫通し、複数個の送風機を配設した空冷式凝
縮器にて形成され、送風機を運転停止して凝縮圧力を制
御するものにおいて、凝縮器を縦長に形成し、伝熱管の
上端を冷媒入口管、下端を冷媒出口管と成し、縦方向に
複数個の送風機を配置し、この送風機を冷媒入口管に近
い側の送風機より優先停止させ凝縮圧力の制御を行うこ
とを特徴とする冷凍装置の送風機制御方法。
1. An air-cooling system comprising at least a compressor, a condenser, a pressure reducer, and an evaporator, wherein the condenser has a plurality of juxtaposed fins that penetrate a meandering heat transfer tube and have a plurality of blowers. In a type that is formed by a type condenser and controls the condensing pressure by shutting down the blower, the condenser is formed vertically long, the upper end of the heat transfer pipe is the refrigerant inlet pipe, the lower end is the refrigerant outlet pipe, and the longitudinal direction A method for controlling a blower of a refrigerating apparatus, wherein a plurality of blowers are arranged in the air conditioner, and the blower is preferentially stopped from a blower closer to the refrigerant inlet pipe to control the condensing pressure.
【請求項2】凝縮器用送風機が夫々電動機を連結してい
る特許請求の範囲第1項記載の冷凍装置の送風機制御方
法。
2. A blower control method for a refrigerating apparatus according to claim 1, wherein each of the condenser blowers is connected to an electric motor.
JP3300486A 1986-02-19 1986-02-19 Blower control method for refrigeration system Expired - Fee Related JPH0670532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3300486A JPH0670532B2 (en) 1986-02-19 1986-02-19 Blower control method for refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3300486A JPH0670532B2 (en) 1986-02-19 1986-02-19 Blower control method for refrigeration system

Publications (2)

Publication Number Publication Date
JPS62194167A JPS62194167A (en) 1987-08-26
JPH0670532B2 true JPH0670532B2 (en) 1994-09-07

Family

ID=12374690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3300486A Expired - Fee Related JPH0670532B2 (en) 1986-02-19 1986-02-19 Blower control method for refrigeration system

Country Status (1)

Country Link
JP (1) JPH0670532B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818884B2 (en) * 2006-11-16 2011-11-16 三菱電機ビルテクノサービス株式会社 Passenger conveyor guide fence

Also Published As

Publication number Publication date
JPS62194167A (en) 1987-08-26

Similar Documents

Publication Publication Date Title
JP4358832B2 (en) Refrigeration air conditioner
PT1254618E (en) Refrigerated merchandiser
JP2009133624A (en) Refrigerating/air-conditioning device
JPH09145187A (en) Air conditioner
JPH07180943A (en) Heat exchanger and refrigerator
US3152455A (en) Refrigeration control system
GB2218499A (en) Air-cooled cooling apparatus
JP2004347135A (en) Outdoor unit for air conditioning system
JP4130636B2 (en) Refrigerator built-in showcase
JP3122223B2 (en) Ice storage device
CN104713167A (en) Air conditioning system
JPH11118199A (en) Air conditioner
CN1675507A (en) Evaporator for a refrigeration system
JP4423321B2 (en) Refrigerator built-in showcase
JPH0670532B2 (en) Blower control method for refrigeration system
JPS621520B2 (en)
KR20020038005A (en) Conductible fin for evaporator
JPH11316038A (en) Air conditioning system
JP6956297B1 (en) Air conditioner and heat exchanger
KR100331806B1 (en) device for cooling compressor in the refrigerator
TWI794745B (en) cooling device
CN219500751U (en) Quick cooling's cold-stored show cupboard
KR100562565B1 (en) flooded evaporator in chiller
JPH024139A (en) Air conditioner
JP3076397B2 (en) Heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees