JPH0670435A - Measurement of burial depth of subaqueous power cable - Google Patents

Measurement of burial depth of subaqueous power cable

Info

Publication number
JPH0670435A
JPH0670435A JP4233050A JP23305092A JPH0670435A JP H0670435 A JPH0670435 A JP H0670435A JP 4233050 A JP4233050 A JP 4233050A JP 23305092 A JP23305092 A JP 23305092A JP H0670435 A JPH0670435 A JP H0670435A
Authority
JP
Japan
Prior art keywords
power cable
light
cable
optical
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4233050A
Other languages
Japanese (ja)
Other versions
JP2534008B2 (en
Inventor
Ryosuke Hata
良輔 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4233050A priority Critical patent/JP2534008B2/en
Publication of JPH0670435A publication Critical patent/JPH0670435A/en
Application granted granted Critical
Publication of JP2534008B2 publication Critical patent/JP2534008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4427Pressure resistant cables, e.g. undersea cables

Abstract

PURPOSE:To make it possible to monitor the underground depth over the full length by a method wherein light is cast on an optical fiber and then a temperature distribution in the longitudinal direction of a power cable is detected due to Raman scattering light of the light cast on the optical fiber. CONSTITUTION:An optical combined subaqueous power cable 1 wherein optical fibers 2 are combined is buried in the water bottom soil 4 at the depth of L. The optical fibers 2 in the buried optical combined subaqueous power cable 1 are used as a licensor. Light from a laser light source or an LED light source is cast on the optical fibers 2 and then the intensity of Raman scattering light contained in back scattering light of the light cast on the optical fibers 2 is detected. By this, data about a temperature distribution in the longitudinal direction of the optical compound subaqueous power cable 1 can be attained. By this method, a change in the underground depth L of the cable 1 can be known accurately and the underground depth L can be monitored over the full length of the cable 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水底に埋設布設されてい
る光ファイバを複合した水底電力ケーブルの埋設深度測
定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a buried depth of a submarine power cable which is a composite of optical fibers buried under the water.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】水底電
力ケーブルの事故の大半はアンカー、漁具等によるケー
ブルの外傷にあり、これを防止することが水底電力ケー
ブルの信頼性向上のきめ手となる。このため、水底ケー
ブルを布設する場合、外傷防止の観点からケーブルを例
えば海底面下1〜6mの深さに埋設布設する方法がとら
れている。しかし、海底地形は一様ではなく起伏に富ん
だ場所もあり、又各場所での潮流の流れ方向は一定では
なく、しかも極めて早い潮流となっているので、それら
の影響を受けて埋設深さも刻々変化するので、布設直後
にダイバー等がチェックした埋設深度を常に監視し、浅
くなった場合には対策をとることが重要である。
2. Description of the Related Art Most of the accidents of submarine power cables are caused by damages to the cables due to anchors, fishing gears, etc., and preventing them is the key to improving the reliability of submarine power cables. . Therefore, when laying a submarine cable, a method of burying the cable at a depth of, for example, 1 to 6 m below the sea bottom is adopted from the viewpoint of preventing external damage. However, the seafloor topography is not uniform in some places, and there are many undulations. Also, the tidal current direction at each location is not constant, and the tidal current is extremely fast. Since it changes every moment, it is important to always monitor the burial depth checked by divers immediately after installation and take measures when it becomes shallow.

【0003】しかるに、埋設深度の測定は大変困難であ
り、従来は必要な時期に、 (イ)ダイバーを潜水させて直接測深する方法。 (ロ)ケーブルの発する電磁界を、サーチコイルをケー
ブルに直角に動かしながら、スポット的に測定し、これ
を繰返してゆく方法。 がとられていた。しかし、上記方法はいずれも、作業が
非常に困難であるのみならず、常時監視ではなかった。
However, it is very difficult to measure the burial depth. Conventionally, (a) a method of directly diving by diving a diver at a necessary time. (B) A method in which the electromagnetic field generated by the cable is measured in spots while moving the search coil at a right angle to the cable, and this is repeated. Was taken. However, none of the above-mentioned methods is very difficult to work and is not always monitored.

【0004】[0004]

【課題を解決するための手段】本発明は上述の問題点を
解消し、埋設布設されている光複合水底電力ケーブルの
埋設深度を常時、全長にわたって監視することを可能と
した水底電力ケーブルの埋設深度測定法を提供するもの
で、その特徴は、水底に埋設布設されている光ファイバ
複合水底電力ケーブルの上記光ファイバをラインセンサ
として用い、該光ファイバの一端又は両端から光を入射
し、その後方散乱光に含まれるラマン散乱光より前記電
力ケーブルの長さ方向の温度分布を検出し、これより埋
設深度を全長にわたって監視することにある。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and makes it possible to constantly monitor the burial depth of an optical composite submarine power cable that has been laid underground, over the entire length. The present invention provides a depth measurement method, which is characterized in that the optical fiber of the optical fiber composite submarine power cable embedded in the water bottom is used as a line sensor, and light is incident from one end or both ends of the optical fiber, The temperature distribution in the length direction of the power cable is detected from the Raman scattered light included in the side scattered light, and the buried depth is monitored over the entire length from this.

【0005】[0005]

【実施例】図2は光ファイバ複合水底電力ケーブルの一
例の概略横断面図である。図面において、11は内部に中
空の油通路11a を形成したケーブル導体、12は油浸絶縁
紙を巻回して構成したケーブル絶縁層、13は鉛被、14は
プラスチック紐等の介在物、15は例えばステンレスパイ
プ内に光ファイバを収納した光ファイバユニットで、上
記介在物14と光ファイバユニット15を交互に配置し、鉛
被13の外側に防食層等を介在させて巻付ける。その上に
座床16を介してがい装鉄線17を撚合せ、さらにその上に
外装ヤーン18を施してある。
FIG. 2 is a schematic cross-sectional view of an example of an optical fiber composite submarine power cable. In the drawing, 11 is a cable conductor having a hollow oil passage 11a formed therein, 12 is a cable insulating layer formed by winding oil-impregnated insulating paper, 13 is a lead cover, 14 is an inclusion such as a plastic string, and 15 is For example, in an optical fiber unit in which an optical fiber is housed in a stainless pipe, the inclusions 14 and the optical fiber units 15 are alternately arranged, and wound around the lead cover 13 with an anticorrosion layer or the like interposed. An armoring iron wire 17 is twisted on it via a seat 16 and an outer yarn 18 is further provided on it.

【0006】この他にも、図3のようにがい装鉄線17と
して中空17a のものを使用し、この中空部17a に光ファ
イバユニット15を収納したものを用いてもよく、又電力
ケーブルが3心の場合には、その撚合せ間隙に、例えば
ステンレスパイプ内に光ファイバを収納した光ファイバ
ユニットを介在させてもよい。
In addition to this, as shown in FIG. 3, a hollow wire 17a may be used as the glazed iron wire 17, and the hollow fiber 17a may be housed in the hollow portion 17a. In the case of a core, an optical fiber unit in which an optical fiber is housed in, for example, a stainless pipe may be interposed in the twist gap.

【0007】図1は本発明の水底電力ケーブルの埋設深
度測定法の具体例の概要説明図である。図面において、
1は光ファイバ2を複合した水底電力ケーブルで、この
水底電力ケーブル1は水底土壌4内に深度Lで埋設され
ている。このように、埋設布設されている光複合水底電
力ケーブル1中の光ファイバ2の1本又は複数本をライ
ンセンサとして用い、その一端又は両端にDTS3(Di
stributed Tempera-ture Sensor )を設置し、レーザー
光源又はLED光源から光ファイバ2に光を入射し、そ
の後方散乱光に含まれるラマン散乱光の強度を検出する
ことによって、水底電力ケーブルの長さ方向の温度分布
のデータを得ることができる。
FIG. 1 is a schematic explanatory view of a specific example of the method for measuring the buried depth of a submarine power cable of the present invention. In the drawing,
Reference numeral 1 denotes a water bottom power cable in which an optical fiber 2 is combined, and this water bottom power cable 1 is buried in a water bottom soil 4 at a depth L. In this way, one or a plurality of the optical fibers 2 in the buried optical composite underwater power cable 1 is used as a line sensor, and the DTS 3 (Di
stributed Tempera-ture Sensor) is installed, light is incident on the optical fiber 2 from a laser light source or an LED light source, and the intensity of Raman scattered light included in the backscattered light is detected to determine the length direction of the submarine power cable. It is possible to obtain data of temperature distribution of.

【0008】本発明者の実測の結果によれば、例えばD
C500KV ,1×3000mm2 の鉄線がい装海底OFケーブル
に、最大電流2800A を流した時、海底土壌の熱抵抗(実
測により確認される)を70℃・ cm/Wとすると、図2に
示すようにケーブルの鉛被の外側に光ファイバを複合し
た時でも、例えば埋設深度が3mから1mに浅くなる
と、鉛被温度は62.6℃から54.5℃と8℃低くなり、さら
に露出すると33℃(20℃差)まで低下することが確認さ
れている。
According to the result of actual measurement by the present inventor, for example, D
Assuming that the thermal resistance of the seabed soil (confirmed by actual measurement) is 70 ℃ ・ cm / W when the maximum current of 2800A is applied to the C500KV, 1 × 3000mm 2 iron-insulated submarine OF cable, as shown in Fig. 2. Even when an optical fiber is compounded on the outside of the lead cover of the cable, for example, when the burial depth decreases from 3 m to 1 m, the lead cover temperature decreases from 62.6 ° C to 54.5 ° C by 8 ° C, and when exposed further, 33 ° C (20 ° C). It has been confirmed that the difference will decrease.

【0009】従って、布設後にダイバー等により埋設深
度を別に測定しておき、この時のケーブルの長さ方向の
温度分布と本発明の方法で測定されたケーブル長さ方向
の温度分布を比較することにより、精度よく埋設深度の
変化を知ることが出来、常時、ケーブル全長にわたって
埋設深度を監視することが可能となる。そして、浅くな
った場合には早急に対策をとることが出来る。又同じケ
ーブルが複数条埋設布設されている場合には、これらを
同一使用条件下に相互に比較することにより、相対的
に、浅くなったり、逆に深く埋まりすぎたりしてゆく傾
向を把握することも出来る。
Therefore, the burial depth should be measured separately with a diver after installation, and the temperature distribution in the cable length direction at this time should be compared with the temperature distribution in the cable length direction measured by the method of the present invention. As a result, it is possible to accurately detect changes in the burial depth and constantly monitor the burial depth over the entire length of the cable. And when it becomes shallow, measures can be taken immediately. If the same cable is laid under multiple lines, by comparing them under the same conditions of use, we can understand the tendency to become relatively shallow or, on the contrary, too deeply buried. You can also do it.

【0010】[0010]

【発明の効果】以上説明したように、本発明の水底電力
ケーブルの埋設深度測定法によれば、従来のように労力
を必要とすることなく、常時、ケーブル全長にわたって
埋設深度を監視することが可能となり、水底電力ケーブ
ルの信頼性向上に極めて効果的である。
As described above, according to the buried depth measuring method for a submarine power cable of the present invention, it is possible to constantly monitor the buried depth over the entire length of the cable without requiring labor unlike the conventional method. This is possible and extremely effective in improving the reliability of submarine power cables.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水底電力ケーブルの埋設深度測定法の
具体例の概要説明図である。
FIG. 1 is a schematic explanatory view of a specific example of a method for measuring a buried depth of a submarine power cable of the present invention.

【図2】光ファイバ複合水底電力ケーブルの一例の概略
横断面図である。
FIG. 2 is a schematic cross-sectional view of an example of an optical fiber composite submarine power cable.

【図3】がい装鉄線に光ファイバユニットを収納した例
の横断面図である。
FIG. 3 is a cross-sectional view of an example in which an optical fiber unit is housed in an armouring iron wire.

【符号の説明】[Explanation of symbols]

1 光複合水底電力ケーブル 2 光ファイバ 3 DTS 4 土壌 1 Optical composite underwater power cable 2 Optical fiber 3 DTS 4 Soil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水底に埋設布設されている光ファイバ複
合水底電力ケーブルの上記光ファイバをラインセンサと
して用い、該光ファイバの一端又は両端から光を入射
し、その後方散乱光に含まれるラマン散乱光より前記電
力ケーブルの長さ方向の温度分布を検出し、これより埋
設深度を全長にわたって監視することを特徴とする水底
電力ケーブルの埋設深度測定法。
1. The Raman scattering included in the backscattered light, wherein the optical fiber of the optical fiber composite underwater power cable buried and laid at the bottom of the water is used as a line sensor and light is incident from one end or both ends of the optical fiber. A method for measuring the burial depth of a submarine power cable, which comprises detecting a temperature distribution in the lengthwise direction of the power cable from light and monitoring the burial depth over the entire length.
JP4233050A 1992-08-07 1992-08-07 Underground power cable burial depth measurement method Expired - Fee Related JP2534008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4233050A JP2534008B2 (en) 1992-08-07 1992-08-07 Underground power cable burial depth measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4233050A JP2534008B2 (en) 1992-08-07 1992-08-07 Underground power cable burial depth measurement method

Publications (2)

Publication Number Publication Date
JPH0670435A true JPH0670435A (en) 1994-03-11
JP2534008B2 JP2534008B2 (en) 1996-09-11

Family

ID=16949016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4233050A Expired - Fee Related JP2534008B2 (en) 1992-08-07 1992-08-07 Underground power cable burial depth measurement method

Country Status (1)

Country Link
JP (1) JP2534008B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825459A2 (en) * 1996-08-23 1998-02-25 Sumitomo Electric Industries, Ltd. Electrical power cable underground-laying depth measuring method
US8297835B2 (en) * 2004-04-27 2012-10-30 Siemens Aktiengesellschaft Method and regulation system for monitoring a compressor of a gas turbine in particular
KR20150064173A (en) * 2012-10-11 2015-06-10 옴니센스 에스.에이. Method for monitoring soil erosion around buried devices, instrumented device and system implementing the method
EP3514488A1 (en) * 2018-01-23 2019-07-24 Fluves NV Method for monitoring a burial depth of a submarine power cable
CN112879813A (en) * 2021-01-27 2021-06-01 南京嘉兆仪器设备有限公司 Fully-distributed pipeline soil covering depth monitoring system and method suitable for sandy soil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825459A2 (en) * 1996-08-23 1998-02-25 Sumitomo Electric Industries, Ltd. Electrical power cable underground-laying depth measuring method
EP0825459A3 (en) * 1996-08-23 2000-04-19 Sumitomo Electric Industries, Ltd. Electrical power cable underground-laying depth measuring method
US6244106B1 (en) 1996-08-23 2001-06-12 Sumitomo Electric Industries, Ltd. Electrical power cable underground laying depth measuring method
US8297835B2 (en) * 2004-04-27 2012-10-30 Siemens Aktiengesellschaft Method and regulation system for monitoring a compressor of a gas turbine in particular
KR20150064173A (en) * 2012-10-11 2015-06-10 옴니센스 에스.에이. Method for monitoring soil erosion around buried devices, instrumented device and system implementing the method
EP3514488A1 (en) * 2018-01-23 2019-07-24 Fluves NV Method for monitoring a burial depth of a submarine power cable
CN112879813A (en) * 2021-01-27 2021-06-01 南京嘉兆仪器设备有限公司 Fully-distributed pipeline soil covering depth monitoring system and method suitable for sandy soil

Also Published As

Publication number Publication date
JP2534008B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
KR102618838B1 (en) Method and device for monitoring a submarine cable
KR20150064173A (en) Method for monitoring soil erosion around buried devices, instrumented device and system implementing the method
CN102005259A (en) Submarine optical fiber composite high-voltage cable with detection function
JP2534008B2 (en) Underground power cable burial depth measurement method
AU724951B2 (en) Electrical power cable underground-laying depth measuring method
CN210142533U (en) Submarine optical cable
Tayama et al. 6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor
CN208199440U (en) The monitoring system of oil storage tank leakage
CN2669186Y (en) Distribution type optical-fiber sensitive monitoring device for dam leakage positioning
JP6389450B2 (en) Submarine cable position search method and submarine pipe position search method
Nishimoto et al. Development of 66 kV XLPE submarine cable using optical fiber as a mechanical-damage-detection-sensor
CN209281044U (en) A kind of armouring strain monitoring optical cable
CN109655982A (en) A kind of armouring strain monitoring optical cable and earthing monitoring and answer force calibration method
JP3111685B2 (en) Measurement method of strain distribution of optical cable by laying
WO2023144916A1 (en) Power cable monitoring system, and method for manufacturing sensor rope
JP2001141455A (en) Optical sensor for detecting scoured state of river bed
JPS62266449A (en) Anchor apparatus for submarine survey
TWI797786B (en) Submarine cable, device and method for monitoring fault of submarine cable
JPH1138283A (en) Optical fiber cable
CN115096471A (en) Submarine cable monitoring temperature strain separation method in long-distance optical fiber mode
WO2015161629A1 (en) Intelligent monitoring system for variation of stress of power transmission line
Michelin et al. Shape monitoring of subsea pipelines through optical fiber sensors: S-Lay process case study
JP2008203131A (en) Distributed optical fiber sensor
CN115116664A (en) Deepwater cable and laying method thereof
Weldon et al. Submersible Assisted Cathodic Protection Surveys Of Subsea Pipelines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees