JPH0670271B2 - Method of forming ultra-hard coating - Google Patents

Method of forming ultra-hard coating

Info

Publication number
JPH0670271B2
JPH0670271B2 JP1012090A JP1209089A JPH0670271B2 JP H0670271 B2 JPH0670271 B2 JP H0670271B2 JP 1012090 A JP1012090 A JP 1012090A JP 1209089 A JP1209089 A JP 1209089A JP H0670271 B2 JPH0670271 B2 JP H0670271B2
Authority
JP
Japan
Prior art keywords
film
hard coating
substrate
coating
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1012090A
Other languages
Japanese (ja)
Other versions
JPH02194175A (en
Inventor
哲男 門
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP1012090A priority Critical patent/JPH0670271B2/en
Publication of JPH02194175A publication Critical patent/JPH02194175A/en
Publication of JPH0670271B2 publication Critical patent/JPH0670271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超硬質被覆の形成方法に関するものである。
この方法により形成された被覆は高硬度コーティングと
して機械工業や化学工業分野に広く利用することができ
る。
Description: FIELD OF THE INVENTION The present invention relates to a method for forming an ultrahard coating.
The coating formed by this method can be widely used as a high hardness coating in the mechanical industry and the chemical industry.

従来の技術 従来、高硬質皮膜としては、TiC、TiB2、TiN、HfN、Si
C、Si3N4、WC、Al2O3皮膜等が知られており、これらはP
VD法、CVD法あるいはプラズマ溶射法等で形成され、工
業的に広く用いられているが、それらの微小ビッカース
硬度は2,500〜3,500kg/mm2である。また、最近高硬質皮
膜としてクロムオキシカーバイド皮膜が開発されたが、
これでも微小ビッカース硬度は2,800kg/mm2にすぎな
い。これからますます特性要求が厳しくなる構造材料と
して、さらに高硬度の種々のコーティング材料の重要性
が増すものと考えられるが、微小ビッカース硬度が3,50
0kg/mm2を越えるものはダイヤモンドとCBNしか見当たら
ないのが現状である。
Conventional technology Conventionally, as hard coatings, TiC, TiB 2 , TiN, HfN, Si
C, Si 3 N 4 , WC, Al 2 O 3 coatings, etc. are known.
It is formed by the VD method, the CVD method, the plasma spraying method, or the like and is widely used industrially, but their micro Vickers hardness is 2,500 to 3,500 kg / mm 2 . Recently, a chromium oxycarbide film was developed as a highly hard film,
Even with this, the micro Vickers hardness is only 2,800 kg / mm 2 . It is thought that various coating materials with higher hardness will become more important as structural materials whose characteristics are required more and more, but the micro Vickers hardness is 3,50.
At present, only diamonds and CBN can be found above 0 kg / mm 2 .

発明が解決しようとする課題 本発明は、従来の硬質皮膜よりもさらに硬度を向上させ
た超硬質被覆を簡単に形成させる方法を提供することを
目的としてなされたものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention has been made for the purpose of providing a method for easily forming an ultra-hard coating having a hardness further improved as compared with a conventional hard coating.

課題を解決するための手段 本発明者は、前記の超硬質被覆を形成させる方法につい
て鋭意研究を重ねた結果、ヘキサカルボニルクロムガス
をプラズマCVD法あるいは熱CVD法などで不完全分解し
て、作製したクロムオキシカーバイド皮膜は微小ビッカ
ース硬度が最大2,800kg/mm2であり、この物質は常温で
は面心立方構造をとるが、550℃以上の高温では結晶構
造の相変態を起こし、高温相の他の結晶構造に変わり、
形成された高温相結晶構造はこの熱処理後常温に戻して
も安定であって、その結晶構造は変化しないこと、及び
この物質が微小ビッカース硬度4,000kg/mm2以上の非常
に高い硬度を示すことを見出した。
Means for Solving the Problems The present inventor has conducted extensive studies on the method for forming the above-mentioned ultra-hard coating, resulting in incomplete decomposition of hexacarbonyl chromium gas by a plasma CVD method or a thermal CVD method, The chromium oxycarbide coating has a maximum Vickers hardness of up to 2,800 kg / mm 2 , and this material has a face-centered cubic structure at room temperature, but at a high temperature of 550 ° C or higher, it undergoes a phase transformation of the crystalline structure, which causes Changed to the crystal structure of
The high-temperature phase crystal structure formed is stable even after returning to normal temperature after this heat treatment, the crystal structure does not change, and the substance has a very high hardness of 4,000 kg / mm 2 or more as a micro Vickers hardness. Found.

すなわち、本発明は、基体表面にクロムオキシカーバイ
ド皮膜を施したのち、550℃以上で熱処理して結晶構造
を相変態させることを特徴とする超硬質被覆の形成方法
を提供するものである。
That is, the present invention provides a method for forming an ultra-hard coating, which comprises applying a chromium oxycarbide film on the surface of a substrate and then heat-treating it at 550 ° C. or higher to transform the crystal structure into a phase.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明方法においては、先ず基体表面にクロムオキシカ
ーバイド皮膜を施すことが必要である。
In the method of the present invention, it is first necessary to apply a chromium oxycarbide film on the surface of the substrate.

この基体としては、従来クロム皮膜で成膜されている基
体であればよく、特に制限されないが、例えばガラス、
セラミックスや高速度鋼、ステンレス鋼のような金属等
が用いられる。
The substrate is not particularly limited as long as it is a substrate that is conventionally formed of a chromium film, and is, for example, glass,
Ceramics, high speed steel, metals such as stainless steel, etc. are used.

この皮膜形成方法としては、例えば加温減圧下における
プラズマCVD法が好ましいが、その他熱CVD法やレーザー
光線あるいは紫外線を用いる光CVD法等も利用すること
ができる。
As a method for forming this film, for example, a plasma CVD method under heating and reduced pressure is preferable, but a thermal CVD method, an optical CVD method using a laser beam or an ultraviolet ray, and the like can also be used.

上記プラズマCVD法によれば、成膜時の真空チャンバー
内の圧力が3torrの低真空下においても良好な面心立方
構造の結晶構造の皮膜を形成することができる。したが
って、このような皮膜形成の場合には、低い排気容量の
油回転ポンプを用いても容易に成膜できるという利点が
ある。
According to the plasma CVD method described above, it is possible to form a film having a favorable crystal structure having a face-centered cubic structure even under a low vacuum of 3 torr in the vacuum chamber during film formation. Therefore, in the case of forming such a film, there is an advantage that the film can be easily formed even by using an oil rotary pump having a low exhaust capacity.

本発明方法においては、次いで、基板表面に施されたク
ロムオキシカーバイド皮膜を550℃以上で熱処理するこ
とが必要である。熱処理雰囲気としては、大気、アルゴ
ンあるいは真空等の任意の雰囲気でよいが、大気中や酸
素を含む雰囲気では表面が酸化され、酸化の程度によっ
て干渉色が現れ、また、基板が高温酸化されるので、雰
囲気としてはアルゴンあるいは真空中が好ましい。加熱
時間は熱処理温度によって異なり、温度が高い程加熱時
間が短かくなる。
In the method of the present invention, it is then necessary to heat-treat the chromium oxycarbide coating applied to the surface of the substrate at 550 ° C or higher. The heat treatment atmosphere may be any atmosphere such as air, argon, or vacuum, but in the air or an atmosphere containing oxygen, the surface is oxidized, an interference color appears depending on the degree of oxidation, and the substrate is oxidized at high temperature. The atmosphere is preferably argon or vacuum. The heating time depends on the heat treatment temperature, and the higher the temperature, the shorter the heating time.

本発明方法は、特に基板などに超硬質被覆を形成させる
のに有利に用いられる。基板が工具鋼等では基板の熱履
歴を考慮してできるだけ低い熱処理温度が好ましく、通
常600〜620℃、1時間の熱処理で良好な被覆が形成され
る。
The method of the present invention is advantageously used particularly for forming a super hard coating on a substrate or the like. When the substrate is tool steel or the like, the heat treatment temperature is preferably as low as possible in consideration of the heat history of the substrate, and a good coating is usually formed by heat treatment at 600 to 620 ° C. for 1 hour.

発明の効果 本発明方法によれば、熱処理温度もさほど高くないの
で、例えばクロムオキシカーバイド皮膜をCVD装置で作
製後、チャンバーから皮膜を取り出さないでそのままの
真空状態で基板温度を所定温度以上に保つという簡単な
操作が可能である。
According to the method of the present invention, since the heat treatment temperature is not so high, for example, after the chromium oxycarbide film is produced by the CVD device, the substrate temperature is kept at a predetermined temperature or higher in the vacuum state without removing the film from the chamber. That is a simple operation.

さらに、本発明方法により形成されたクロムオキシカー
バイド被覆における皮膜は微小ビッカース硬度4,000kg/
mm2以上という超硬質のものであり、このような被覆は
超硬質コーティングとして自動車、航空機、船舶、精密
機械及び化学装置などの機械工業や化学工業分野に好適
に利用される。
Further, the film in the chromium oxycarbide coating formed by the method of the present invention has a fine Vickers hardness of 4,000 kg /
It is an ultra-hard coating of mm 2 or more, and such a coating is preferably used as an ultra-hard coating in the fields of machinery and chemical industry such as automobiles, aircraft, ships, precision machines and chemical devices.

実施例 次に、実施例により本発明をさらに詳細に説明する。EXAMPLES Next, the present invention will be described in more detail with reference to Examples.

実施例 ヘキサカルボニルクロムの加熱温度が44℃、ヘキサカル
ボニルクロムを随伴する水素の流量が150SCCM、RFパワ
ーが基板面積78cm2当り20W、基板温度が375℃、成膜時
の真空度が0.3Torr、成膜時間が2時間の条件下でプラ
ズマCVD法により約5μmの厚さのクロムオキシカーバ
イド皮膜を高速度鋼SKH−4及びスライドガラス基板上
にそれぞれ形成させた。得られた各皮膜をアルゴン中62
0℃で1時間加熱し、室温まで徐冷した。この各皮膜を
微小ビッカース硬度計により測定した結果、硬度はガラ
ス基板上に成膜したもので4,400kg/mm2、高速度鋼上に
成膜したもので3,700kg/mm2であった。これらの皮膜をC
uKα線を用いてX線回折により解析した結果、2θが20
°から100°になる間に約20のブラッグ反射が認められ
た。皮膜の結晶構造は確定されてはいないが、正方晶系
あるいは六方晶系に属する構造であると推定される。
Example: Heating temperature of hexacarbonyl chromium is 44 ° C., flow rate of hydrogen accompanying hexacarbonyl chromium is 150 SCCM, RF power is 20 W per substrate area 78 cm 2 , substrate temperature is 375 ° C., vacuum degree during film formation is 0.3 Torr, Under the condition that the film forming time was 2 hours, a chromium oxycarbide film having a thickness of about 5 μm was formed on the high speed steel SKH-4 and the slide glass substrate by the plasma CVD method. The obtained coatings were placed in argon 62
The mixture was heated at 0 ° C for 1 hour and gradually cooled to room temperature. Results of measurement of the respective film by micro Vickers hardness tester, hardness 4,400kg / mm 2 in one formed on a glass substrate was 3,700kg / mm 2 in one formed on high speed steel. C for these films
As a result of X-ray diffraction analysis using uKα rays, 2θ was 20
About 20 Bragg reflections were observed from 0 ° to 100 °. Although the crystal structure of the film has not been determined, it is presumed to be a structure belonging to a tetragonal system or a hexagonal system.

比較例 実施例と同様にして、ヘキサカルボニルクロムからプラ
ズマCVD法でクロムオキシカーバイド皮膜を形成させ
た。この条件で得られた皮膜の微小ビッカース硬度はガ
ラス基板上に成膜したもので1,600kg/mm2、高速度鋼上
に成膜したもので1,700kg/mm2であった。これらの皮膜
をCuKα線を用いてX線回折により解析した結果、皮膜
の結晶構造は格子定数4.10Aの面心立方構造であると認
められた。
Comparative Example A chromium oxycarbide film was formed from hexacarbonylchromium by the plasma CVD method in the same manner as in the example. The micro Vickers hardness of the film obtained under these conditions was 1,600 kg / mm 2 for the film formed on the glass substrate and 1,700 kg / mm 2 for the film formed on the high speed steel. As a result of analyzing these films by X-ray diffraction using CuKα ray, it was confirmed that the crystal structure of the films was a face-centered cubic structure with a lattice constant of 4.10A.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基体表面にクロムオキシカーバイド皮膜を
施したのち、550℃以上で熱処理して結晶構造を相変態
させることを特徴とする超硬質被覆の形成方法。
1. A method for forming an ultra-hard coating, which comprises subjecting a surface of a substrate to a chromium oxycarbide film, and then heat treating at 550 ° C. or higher to transform the crystal structure into a phase.
JP1012090A 1989-01-20 1989-01-20 Method of forming ultra-hard coating Expired - Lifetime JPH0670271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012090A JPH0670271B2 (en) 1989-01-20 1989-01-20 Method of forming ultra-hard coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012090A JPH0670271B2 (en) 1989-01-20 1989-01-20 Method of forming ultra-hard coating

Publications (2)

Publication Number Publication Date
JPH02194175A JPH02194175A (en) 1990-07-31
JPH0670271B2 true JPH0670271B2 (en) 1994-09-07

Family

ID=11795874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012090A Expired - Lifetime JPH0670271B2 (en) 1989-01-20 1989-01-20 Method of forming ultra-hard coating

Country Status (1)

Country Link
JP (1) JPH0670271B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278040A (en) * 2005-03-28 2006-10-12 National Institute Of Advanced Industrial & Technology Fuel cell separator and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278040A (en) * 2005-03-28 2006-10-12 National Institute Of Advanced Industrial & Technology Fuel cell separator and its manufacturing method
JP4604164B2 (en) * 2005-03-28 2010-12-22 独立行政法人産業技術総合研究所 Fuel cell separator and manufacturing method thereof

Also Published As

Publication number Publication date
JPH02194175A (en) 1990-07-31

Similar Documents

Publication Publication Date Title
Kester et al. Phase evolution in boron nitride thin films
Gadzira et al. Synthesis and structural peculiarities of nonstoichiometric β-SiC
KR20000060438A (en) Method for forming aluminum oxide films
JPS622133A (en) Diamond-coated blade for microtome and manufacture thereof
Peng et al. Metalorganic chemical vapor deposition of ferroelectric Pb (Zr, Ti) O3 thin films
US6013322A (en) Surface treatment of 312 ternary ceramic materials and products thereof
US4604292A (en) X-ray mask blank process
RU2286616C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
Leuchtner et al. Anion‐assisted pulsed laser deposition of lead zirconate titanate films
JPS61236604A (en) Synthesizing method for beta-si3n4
JPH0670271B2 (en) Method of forming ultra-hard coating
US4869929A (en) Process for preparing sic protective films on metallic or metal impregnated substrates
Schrader Auger electron spectroscopic study of chemisorption of oxygen to (111)-oriented gold surfaces
Silvestre et al. Structure and morphology of titanium nitride films deposited by laser-induced chemical vapour deposition
JPS61210179A (en) Coating blade for microtome and its production
KR100300850B1 (en) Method For Strengthening And Oxidation Prevention Of AIN By Formation Of Silica Layer On The Surface
Maury et al. Organo-metallic chemical vapour deposition of silicon-rich amorphous SixC1− x refractory layers using SiEt4 as a single source
JPS6381300A (en) Manufacture of graphite monochromator
JPH09195050A (en) Production of oxide or metal
Reszka et al. Catalytic properties of Al2O3 deposited by ion sputtering using DC and RF sources
Chung et al. Epitaxial iridium silicide formation during deposition of Ir on Si (100) at high temperature under ultrahigh vacuum
JP2584480B2 (en) Diamond film manufacturing method
JPS61153279A (en) Production of material coated with hard boron nitride
Müller et al. Structural stability of Si-OaC: H/Si-aC: H layered systems
Partridge et al. Laser-Assisted Chemical And Morphological Modification Of Metallic Substrates

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term