JPH0669881B2 - Hydrocarbon steam reforming method - Google Patents

Hydrocarbon steam reforming method

Info

Publication number
JPH0669881B2
JPH0669881B2 JP59249259A JP24925984A JPH0669881B2 JP H0669881 B2 JPH0669881 B2 JP H0669881B2 JP 59249259 A JP59249259 A JP 59249259A JP 24925984 A JP24925984 A JP 24925984A JP H0669881 B2 JPH0669881 B2 JP H0669881B2
Authority
JP
Japan
Prior art keywords
steam reforming
gas
temperature steam
reforming reactor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59249259A
Other languages
Japanese (ja)
Other versions
JPS61127602A (en
Inventor
孝 佐々木
正雄 平野
一郎 北原
努 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP59249259A priority Critical patent/JPH0669881B2/en
Publication of JPS61127602A publication Critical patent/JPS61127602A/en
Publication of JPH0669881B2 publication Critical patent/JPH0669881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はLPG、ナフサなどの原料炭化水素から水素リツ
チガスを製造する水蒸気改質法に関するものであつて、
さらに詳しくは中温水蒸気改質反応器と高温水蒸気反応
器を組合わせて使用する2段式水蒸気改質法の改良に係
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam reforming method for producing hydrogen-rich gas from a raw material hydrocarbon such as LPG and naphtha.
More specifically, it relates to improvement of a two-stage steam reforming method using a combination of a medium temperature steam reforming reactor and a high temperature steam reactor.

LPG、ナフサなどの原料炭化水素を水蒸気改質して水素
リツチガスを製造する方法のひとつとして、原料炭化水
素とスチームをまず外部加熱型の中温水蒸気改質反応器
で処理し、次いでその生成ガスを高温水蒸気改質反応器
で処理する2段式水蒸気改質法が知られている。この方
法は高温水蒸気改質反応器の出口ガスを利用して、中温
水蒸気改質反応器を加熱できるため、前記した加熱炉に
要する熱負荷を軽減させ得る利点がある。しかしなが
ら、この方式で煙道ガスの熱回収を図つても、煙道ガス
はなおかなりの熱量を保有する。従つて、この方式では
煙道ガスの熱を充分に回収することができない。尤も、
熱の回収率だけを問題にするのなら、前記の煙道ガスを
熱源として、水蒸気改質反応に必要な水蒸気量を上廻る
量の水蒸気を生成させれば、熱回収率を向上させること
が可能である。ところが、現今の水蒸気改質プロセスで
は、これに必要な水蒸気が煙道ガスの余熱利用でまかな
えればそれで充分であり、それ以上の水蒸気が取得でき
ても、その水蒸気には格別な評価が得られないのが実情
である。このため、高温水蒸気改質反応器を加熱する加
熱炉の燃料使用量を削減することが最も望まれる。
As one of the methods for producing hydrogen-rich gas by steam reforming raw hydrocarbons such as LPG and naphtha, the raw hydrocarbons and steam are first treated in an external heating type medium temperature steam reforming reactor, and then the produced gas is treated. A two-stage steam reforming method in which a high temperature steam reforming reactor is used is known. Since this method can utilize the outlet gas of the high temperature steam reforming reactor to heat the medium temperature steam reforming reactor, it has an advantage that the heat load required for the heating furnace can be reduced. However, even if the heat recovery of the flue gas is attempted by this method, the flue gas still retains a considerable amount of heat. Therefore, this method cannot fully recover the heat of the flue gas. However,
If only the heat recovery rate is a problem, the heat recovery rate can be improved by using the above flue gas as a heat source to generate steam in an amount that exceeds the amount of steam required for the steam reforming reaction. It is possible. However, in the current steam reforming process, it is sufficient if the steam required for this can be covered by the residual heat of the flue gas, and even if more steam can be obtained, the steam can be evaluated exceptionally. The reality is that it cannot be done. Therefore, it is most desired to reduce the amount of fuel used in the heating furnace that heats the high temperature steam reforming reactor.

本発明は過剰量の水蒸気を生成させて煙道ガスの余熱を
回収するという考え方を改め、中温水蒸気改質反応器か
ら高温水蒸気改質反応器に供給されるメタンリツチガス
の予熱に、煙道ガスの余熱を利用することにより、高温
水蒸気改質反応器を所望の反応温度に維持するために使
用する加熱炉の熱負荷を一層削減せんとするものであ
る。
The present invention revises the idea of generating excess steam to recover the residual heat of flue gas, and the flue gas is preheated from the medium temperature steam reforming reactor to the high temperature steam reforming reactor. By utilizing the residual heat of the gas, the heat load of the heating furnace used for maintaining the high temperature steam reforming reactor at a desired reaction temperature can be further reduced.

而して本発明に係る炭化水素の水蒸気改質法は、中温水
蒸気改質反応器から高温水蒸気改質反応器へ供給される
ガスを、煙道ガスにて再度昇温させることにより、高温
水蒸気改質反応器を所望温度に維持するために必要な加
熱炉の熱負荷を削減せんとするものである。
Thus, the method for steam reforming of hydrocarbons according to the present invention is a method in which the gas supplied from the medium temperature steam reforming reactor to the high temperature steam reforming reactor is heated again by the flue gas to obtain high temperature steam. The purpose is to reduce the heat load of the heating furnace required to maintain the reforming reactor at a desired temperature.

すなわち、本発明に係る2段式水蒸気改質法は、(a)
原料炭化水素とスチームとを、高温水蒸気改質反応器が
収められた加熱炉の煙道ガス又は該高温水蒸気改質反応
器からの流出ガスで加熱される中温水蒸気改質反応器に
供給し、第1の改質条件下に第1の改質触媒と接触させ
て水素及びメタンを主成分とする一次改質ガスを生成さ
せ、(b)この一次改質ガスを前記加熱炉の煙道ガスと
熱交換させることにより昇温させ、(c)昇温した一次
改質ガスを、前記の高温水蒸気改質反応器に供給し、第
2の改質条件下に第2の改質触媒と接触させて水素を主
成分とする二次改質ガスを生成させることを特徴とす
る。
That is, the two-stage steam reforming method according to the present invention comprises (a)
The raw material hydrocarbons and steam are supplied to a flue gas of a heating furnace in which a high temperature steam reforming reactor is housed or a medium temperature steam reforming reactor which is heated by an outflow gas from the high temperature steam reforming reactor, Contacting the first reforming catalyst under a first reforming condition to generate a primary reformed gas containing hydrogen and methane as main components, and (b) using the primary reformed gas as a flue gas of the heating furnace. (C) The heated primary reforming gas is supplied to the high temperature steam reforming reactor and contacted with the second reforming catalyst under the second reforming condition. The secondary reformed gas containing hydrogen as a main component is generated.

本発明の2段式水蒸気改質法では、原料炭化水素の予熱
が従来法と同様、オレフインの生成を伴わない温度(ほ
ぼ520℃)に制限されるものの、予熱された原料炭化水
素は中温水蒸気改質反応器で改質されるから、520℃以
上に昇温してもオレフインの生成を伴わない一次改質ガ
スに転化するので、この一次改質ガスを昇温後、高温水
蒸気改質反応器に供給することができ、従つて該高温水
蒸気改質反応器の加熱炉に要する熱負荷を高度に削減す
ることができるのである。
In the two-stage steam reforming method of the present invention, the preheating of the raw material hydrocarbon is limited to a temperature (approximately 520 ° C.) that does not accompany olefin formation as in the conventional method, but the preheated raw material hydrocarbon is the medium temperature steam. Since it is reformed in the reforming reactor, it is converted to primary reformed gas that does not generate olefins even if it is heated to 520 ° C or higher. Can be supplied to the reactor, and thus the heat load required for the heating furnace of the high temperature steam reforming reactor can be highly reduced.

添付の第1図及び第2図はそれぞれ本発明の2段式水蒸
気改質法を実施する場合のフローシートの一例である。
第1図に示す態様では、ライン1から系内に供給される
LPG又はナフサなどの原料炭化水素と、ライン2から供
給されるスチームとが混合され、高温水蒸気改質反応器
4が収められた加熱炉5の煙道6に於て、通常500〜520
℃程度に予熱される。既述した通り、この予熱で原料炭
化水素を520℃以上に昇温することは、煙道予熱器内で
微量のオレフインを生成させる結果となり、このため高
温水蒸気改質反応器の触媒上に炭素が析出し反応活性が
著しく低下することとなる。所定の温度に予熱された原
料炭化水素とスチームとの混合物は、図示の通り、高温
水蒸気改質反応器4からの流出ガスによつて加熱される
中温水蒸気改質反応器3に供給され、第1の改質条件下
に第1の改質触媒と接触することによつて、水素及びメ
タンを主成分とし、一酸化炭素、二酸化炭素及び未反応
スチームを含有する一次改質ガスに転化する。第1の改
質条件には520〜620℃の温度、10〜30kg/cm2Gの圧力、
1.5〜3.0のスチーム比(H2Oモル/炭化水素成分のC原
子)、2000〜6000hr-1のガス空間速度が一般に採用さ
れ、第1の改質触媒としては、2wt%のRuをアルミナ担
体上に担持させた触媒が通常使用される。
FIGS. 1 and 2 attached hereto are examples of flow sheets for carrying out the two-stage steam reforming method of the present invention.
In the mode shown in FIG. 1, it is supplied from the line 1 into the system.
In the flue 6 of the heating furnace 5 in which the raw material hydrocarbon such as LPG or naphtha is mixed with the steam supplied from the line 2 and the high temperature steam reforming reactor 4 is housed, usually 500 to 520.
Preheated to about ℃. As already mentioned, raising the temperature of the feedstock hydrocarbons to above 520 ° C with this preheating results in the formation of a small amount of olefins in the flue preheater, which results in the formation of carbon on the catalyst of the high temperature steam reforming reactor. Will be deposited and the reaction activity will be significantly reduced. The mixture of the raw hydrocarbon and the steam preheated to a predetermined temperature is supplied to the medium temperature steam reforming reactor 3 heated by the outflow gas from the high temperature steam reforming reactor 4 as shown in the figure, By contacting the first reforming catalyst under the first reforming condition, it is converted into a primary reformed gas containing hydrogen and methane as main components and containing carbon monoxide, carbon dioxide and unreacted steam. The first reforming conditions include a temperature of 520 to 620 ° C., a pressure of 10 to 30 kg / cm 2 G,
A steam ratio of 1.5 to 3.0 (H 2 O mol / C atom of hydrocarbon component) and a gas hourly space velocity of 2000 to 6000 hr −1 are generally adopted. As the first reforming catalyst, 2 wt% of Ru is an alumina carrier. The catalyst supported above is usually used.

中温水蒸気改質反応器3から得られる一次改質ガスは、
次いで加熱炉5の煙道6で昇温せしめられた後、高温水
蒸気改質反応器4に供給され、第2の改質条件下に第2
の改質触媒と接触することにより、50モル%以上の水素
を含有する二次改質ガスに転化する。第2の改質条件と
しては、700〜850℃の温度、10〜30kg/cm2Gの圧力、2.5
〜5.5のスチーム比(H2Oモル/炭化水素成分のC原
子)、2000〜6000hr-1のガス空間速度を採用することが
でき、第2の改質触媒には、アルミナにニツケルを担持
させた通常の天然ガス改質用触媒が使用可能である。高
温水蒸気改質反応器4からは800〜850℃程度の二次改質
ガスが得られるが、このガスは中温水蒸気改質反応器3
を520〜620℃の第1の改質条件に維持するための熱源と
して利用される。
The primary reformed gas obtained from the medium temperature steam reforming reactor 3 is
Next, after the temperature is raised in the flue 6 of the heating furnace 5, it is supplied to the high temperature steam reforming reactor 4, and the second reforming condition is applied to the second reforming condition.
By contacting with the reforming catalyst, the secondary reformed gas containing 50 mol% or more of hydrogen is converted. The second reforming conditions are a temperature of 700 to 850 ° C., a pressure of 10 to 30 kg / cm 2 G, and a pressure of 2.5.
A steam ratio (H 2 O mol / C atom of hydrocarbon component) of ˜5.5 and a gas hourly space velocity of 2,000˜6000 hr −1 can be adopted, and the second reforming catalyst is made to have nickel supported on alumina. Ordinary natural gas reforming catalysts can be used. From the high temperature steam reforming reactor 4, a secondary reformed gas of about 800 to 850 ° C. is obtained.
Is used as a heat source for maintaining the first reforming condition of 520 to 620 ° C.

第2図は中温水蒸気改質反応器3の加熱を、高温水蒸気
改質反応器4からの流出ガス(二次改質ガス)で行なう
代わりに、加熱炉5の煙道6で行なう態様を示し、ライ
ン1から供給される原料炭化水素が、ライン2から供給
されて煙道6で予熱されたスチームと混合され、中温水
蒸気改質反応器3に導入される。反応器3は加熱炉5の
煙道6で加熱されており、該反応器内に於て原料炭化水
素とスチームとの混合物が、前記した第1の改質条件下
に第1の改質触媒と接触することにより、一次改質ガス
に転化する。この一次改質ガスは煙道6での熱交換によ
つてさらに昇温された後、高温水蒸気改質反応器4に供
給され、前記した第2の改質条件下に第2の改質触媒と
接触して、50モル%以上の水素を含有する二次改質ガス
に転化するのである。
FIG. 2 shows a mode in which the heating of the medium temperature steam reforming reactor 3 is performed by the flue 6 of the heating furnace 5 instead of by the outflow gas (secondary reforming gas) from the high temperature steam reforming reactor 4. The raw material hydrocarbons supplied from the line 1 are mixed with the steam supplied from the line 2 and preheated in the flue 6, and then introduced into the medium temperature steam reforming reactor 3. The reactor 3 is heated by the flue 6 of the heating furnace 5, and the mixture of the raw material hydrocarbon and steam in the reactor 3 becomes the first reforming catalyst under the above-mentioned first reforming condition. When converted into primary reformed gas, it is converted into primary reformed gas. This primary reformed gas is further heated by heat exchange in the flue 6, and then supplied to the high-temperature steam reforming reactor 4 to be subjected to the second reforming catalyst under the second reforming condition described above. When contacted with, it is converted to a secondary reformed gas containing 50 mol% or more of hydrogen.

尚、第1図に示す態様では原料炭化水素とスチームの混
合物を、煙道6で予熱して中温水蒸気改質反応器3に供
給しているが、これに代えて第2図に示す如く、スチー
ムのみを煙道6で予熱し、これを原料炭化水素に混合し
て中温水蒸気改質反応器3に供給することもできる。同
様にして、第2図に示す態様でも、スチームだけを予熱
する代わりに、原料炭化水素をスチームと共に予熱する
ことができる。また、第1図及び第2図では図示を省略
したが、本発明の方法では中温水蒸気改質反応器からの
流出ガス、すなわち一次改質ガスにスチームを付加的に
添加し、高温水蒸気改質反応器内でのスチーム比を増大
させることも可能である。
In addition, in the embodiment shown in FIG. 1, the mixture of the raw material hydrocarbon and steam is preheated in the flue 6 and supplied to the intermediate temperature steam reforming reactor 3. However, instead of this, as shown in FIG. It is also possible to preheat only the steam in the flue 6, mix this with the raw material hydrocarbons and supply it to the medium temperature steam reforming reactor 3. Similarly, also in the embodiment shown in FIG. 2, instead of preheating only steam, the raw material hydrocarbon can be preheated together with steam. Although not shown in FIG. 1 and FIG. 2, in the method of the present invention, steam is additionally added to the outflow gas from the medium temperature steam reforming reactor, that is, the primary reformed gas to perform high temperature steam reforming. It is also possible to increase the steam ratio in the reactor.

以上の通り、本発明の2段式水蒸気改質法は、外熱型の
中温水蒸気改質反応器と高温水蒸気改質反応器とを組合
わせ、中温水蒸気改質反応器の加熱を、高温水蒸気改質
反応器からの流出ガス又は高温水蒸気改質反応器用加熱
炉の煙道ガスで行なうと共に、中温水蒸気改質反応器か
らの流出ガスを前記煙道ガスとの熱交換によつてさらに
昇温させてから高温水蒸気改質反応器に供給するもので
あるため、高温水蒸気改質反応器用加熱炉の熱負荷を大
幅に削減することができる。LPGないしナフサなどの原
料炭化水素から2段式水蒸気改質法によつて水素リツチ
ガスを製造する場合、後段の高温水蒸気改質反応器は化
学平衡上高温に維持することが好ましく、当該反応器か
ら流出する水素リツチガスの組成は、専らその反応器の
出口温度に依存する。このため、所望組成の水素リツチ
ガスを取得するには、それに見合う出口温度が維持でき
るように加熱炉によつて高温水蒸気改質反応器を加熱し
なけばならない。従つて、当該反応器に供給されるガス
の温度が低ければ、その分だけ当該反応器の出口温度を
所望の温度に保持するのに要する加熱炉の熱負荷が増大
する。然るに、本発明の方法によれば、上に述べた理由
によつて高温水蒸気改質反応器に供給されるガスの温度
を高めることができるので、それだけ加熱炉の熱負荷を
軽減できるのである。
As described above, in the two-stage steam reforming method of the present invention, an external heat type medium temperature steam reforming reactor and a high temperature steam reforming reactor are combined to heat the medium temperature steam reforming reactor. The effluent gas from the reforming reactor or the flue gas of the heating furnace for the high temperature steam reforming reactor is used, and the effluent gas from the medium temperature steam reforming reactor is further heated by heat exchange with the flue gas. Since it is supplied to the high-temperature steam reforming reactor after the heating, the heat load of the heating furnace for the high-temperature steam reforming reactor can be significantly reduced. When hydrogen-rich gas is produced from a raw hydrocarbon such as LPG or naphtha by a two-stage steam reforming method, it is preferable to maintain the high temperature steam reforming reactor in the latter stage at a high temperature in terms of chemical equilibrium. The composition of the hydrogen-rich gas flowing out depends exclusively on the outlet temperature of the reactor. Therefore, in order to obtain the hydrogen-rich gas having the desired composition, the high temperature steam reforming reactor must be heated by the heating furnace so that the outlet temperature corresponding to it can be maintained. Therefore, if the temperature of the gas supplied to the reactor is low, the heat load of the heating furnace required to maintain the outlet temperature of the reactor at a desired temperature is correspondingly increased. However, according to the method of the present invention, the temperature of the gas supplied to the high temperature steam reforming reactor can be increased for the reason described above, so that the heat load of the heating furnace can be reduced accordingly.

次に実施例を示して本発明の2段式水蒸気改質法をさら
に具体的に説明する。
Next, the two-stage steam reforming method of the present invention will be described more specifically with reference to examples.

比較例 中温水蒸気改質反応器3出口ガスを直接高温水蒸気改質
反応器4に導入する以外は第1図と同一のフローに従つ
て、脱硫LPG5800kg/hrと過熱スチーム21624kg/hrの混合
物を450℃にてルテニウム系触媒を充填した中温水蒸気
改質反応器3に供給し、圧力16kg/cm2G、出口温度600℃
の条件で処理して表1のA欄に示す組成の一次改質ガス
を得た。
Comparative Example A mixture of desulfurization LPG of 5800 kg / hr and superheated steam of 21624 kg / hr was prepared according to the same flow as in FIG. 1 except that the outlet gas of the medium temperature steam reforming reactor 3 was directly introduced into the high temperature steam reforming reactor 4. It is supplied to the medium temperature steam reforming reactor 3 filled with a ruthenium-based catalyst at ℃, pressure 16kg / cm 2 G, outlet temperature 600 ℃
Under the conditions described above, a primary reformed gas having the composition shown in column A of Table 1 was obtained.

次にこの一次改質ガスを高温水蒸気改質反応器4に供給
し、圧力15kg/cm2G、出口温度830℃の条件下に、ニツケ
ル系触媒と接触させ、表1のB欄に示す組成の二次改質
ガス28740Nm3/hr(乾きガス)を得た。尚、本例に於け
る加熱炉5の熱負荷(反応器4での吸熱量)は13.6×10
6Kcal/hrであつた。
Next, this primary reformed gas was supplied to the high temperature steam reforming reactor 4 and brought into contact with a nickel catalyst under the conditions of a pressure of 15 kg / cm 2 G and an outlet temperature of 830 ° C., and the composition shown in column B of Table 1 was obtained. Secondary reformed gas of 28740 Nm 3 / hr (dry gas) was obtained. The heat load of the heating furnace 5 (the amount of heat absorbed in the reactor 4) in this example is 13.6 × 10.
It was 6 Kcal / hr.

実施例 次に本発明を実施した場合を述べると、脱硫LPG5800kg/
hrに対して過熱スチーム21624kg/hrを混入し、450℃に
て中温水蒸気改質器3(高温水蒸気改質反応器出口改質
ガスを熱源として使用)に導入し、出口温度を外熱熱交
換により600℃まで上げた。圧力は16kg/cm2Gである。こ
の反応ガス組成は表2のA欄に示す。このガスをさらに
煙道で700℃迄加熱し、高温水蒸気改質反応器5に供給
し、出口温度を830℃、圧力を15kg/cm2Gにしたところ表
2のB欄に示す組成のガス28740Nm3/hr(乾きガス)を
得た。この時の加熱炉の熱負荷(反応器4での吸熱量)
は11.9×106Kcal/hrであつた。
Example Next, the case of carrying out the present invention will be described. Desulfurization LPG 5800 kg /
21624 kg / hr of superheated steam was mixed into hr, and it was introduced into the medium temperature steam reformer 3 (using the reformed gas at the outlet of the high temperature steam reforming reactor as a heat source) at 450 ° C, and the outlet temperature was external heat exchange. Up to 600 ℃. The pressure is 16 kg / cm 2 G. The composition of this reaction gas is shown in column A of Table 2. This gas was further heated to 700 ° C by a flue and supplied to the high temperature steam reforming reactor 5, and when the outlet temperature was 830 ° C and the pressure was 15 kg / cm 2 G, the gas having the composition shown in column B of Table 2 was used. 28740 Nm 3 / hr (dry gas) was obtained. Heat load of heating furnace at this time (amount of heat absorption in reactor 4)
Was 11.9 × 10 6 Kcal / hr.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明方法のフローシーの一例を示
す。 1;原料炭化水素導入ライン 2;スチーム導入ライン 3;外熱型中温水蒸気改質反応器 4;高温水蒸気改質反応器 5;加熱炉 6;煙道
1 and 2 show an example of the flow sheet of the method of the present invention. 1; Raw hydrocarbon introduction line 2; Steam introduction line 3; External heat type medium temperature steam reforming reactor 4; High temperature steam reforming reactor 5; Heating furnace 6; Flue

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−91096(JP,A) 特開 昭59−100190(JP,A) 特開 昭53−64202(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-49-91096 (JP, A) JP-A-59-100190 (JP, A) JP-A-53-64202 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(a) 原料炭化水素とスチームとを、高
温水蒸気改質反応器が収められた加熱炉の煙道ガス又は
該高温水蒸気改質反応器からの流出ガスで加熱される中
温水蒸気改質反応器に供給し、第1の改質条件下に第1
の改質触媒と接触させて水素及びメタンを主成分とする
一次改質ガスを生成させ、 (b) この一次改質ガスを、前記加熱炉の煙道ガスと
熱交換させることにより昇温させ、 (c) 昇温した一次改質ガスを、前記の高温水蒸気改
質反応器に供給し、第2の改質条件下に第2の改質触媒
と接触させて水素を主成分とする二次改質ガスを生成さ
せる、 ことを特徴とする炭化水素の水蒸気改質法。
1. A medium temperature steam in which (a) a raw material hydrocarbon and steam are heated by a flue gas of a heating furnace containing a high temperature steam reforming reactor or an outflow gas from the high temperature steam reforming reactor. The reforming reactor is supplied with a first reforming condition under the first reforming condition.
To produce a primary reformed gas containing hydrogen and methane as main components, and (b) heat-exchange the primary reformed gas with the flue gas of the heating furnace to raise the temperature. (C) The heated primary reformed gas is supplied to the high temperature steam reforming reactor, and is brought into contact with the second reforming catalyst under the second reforming condition so as to contain hydrogen as a main component. A steam reforming method for hydrocarbons, characterized in that a reformed gas is produced.
JP59249259A 1984-11-26 1984-11-26 Hydrocarbon steam reforming method Expired - Lifetime JPH0669881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249259A JPH0669881B2 (en) 1984-11-26 1984-11-26 Hydrocarbon steam reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249259A JPH0669881B2 (en) 1984-11-26 1984-11-26 Hydrocarbon steam reforming method

Publications (2)

Publication Number Publication Date
JPS61127602A JPS61127602A (en) 1986-06-14
JPH0669881B2 true JPH0669881B2 (en) 1994-09-07

Family

ID=17190298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249259A Expired - Lifetime JPH0669881B2 (en) 1984-11-26 1984-11-26 Hydrocarbon steam reforming method

Country Status (1)

Country Link
JP (1) JPH0669881B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK165946C (en) * 1985-03-21 1993-07-05 Haldor Topsoe As REFORMING PROCESS DURING HEAT EXCHANGE AND REACTOR THEREOF
JP2001342004A (en) * 2000-03-29 2001-12-11 Idemitsu Kosan Co Ltd Hydrocarbon steam reformimg process
JP3863774B2 (en) * 2001-12-19 2006-12-27 三洋電機株式会社 Fuel cell system
RU2007112790A (en) * 2004-09-09 2008-10-27 Хальдор Топсеэ А/С (DK) METHOD FOR PRODUCING HYDROGEN AND / OR CARBON OXIDE
WO2011018233A1 (en) * 2009-08-14 2011-02-17 Saudi Basic Industries Corporation (Sabic) Combined reforming process for methanol production
JP2011116595A (en) * 2009-12-04 2011-06-16 Mitsubishi Chemicals Corp Method and apparatus for producing reformed gas
CN108467014B (en) * 2018-05-16 2024-02-09 张家港氢云新能源研究院有限公司 Reforming reactor in steam reforming hydrogen production device
EP3974378A1 (en) 2020-09-25 2022-03-30 Yara International ASA Method for heating a feed of natural gas to a steam reformer and system and use thereof
CN116059932A (en) * 2021-11-01 2023-05-05 中国石油化工股份有限公司 Technological method for reducing carbon deposition hazard of refining device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2263343C2 (en) * 1972-12-23 1983-05-05 Metallgesellschaft Ag, 6000 Frankfurt Process for generating a reducing gas
US4079017A (en) * 1976-11-19 1978-03-14 Pullman Incorporated Parallel steam reformers to provide low energy process
JPS59100190A (en) * 1982-11-30 1984-06-09 Ishii Tekkosho:Kk Combustible gas producing equipment

Also Published As

Publication number Publication date
JPS61127602A (en) 1986-06-14

Similar Documents

Publication Publication Date Title
EP1560788B1 (en) Production of hydrocarbons
EP0437059B2 (en) Steam reforming
US4999133A (en) Process for the production of synthesis gas
US3915670A (en) Production of gases
US4162290A (en) Parallel steam reformers to provide low energy process
JP4362013B2 (en) Synthesis of methanol
US7150866B2 (en) Catalyst for autothermal reforming of hydrocarbons with increased water gas shift activity
JPH0798642B2 (en) Heat exchange reforming method and reactor
JP2002097479A (en) Process for producing synthetic gas containing hydrogen and carbon monoxide by partial oxidation
JPS6261521B2 (en)
AU6858694A (en) Process for the production of hydrogen/carbon monoxide mixtures or hydrogen from methane
RU2404117C2 (en) Method of preparing mixture of carbon monoxide and hydrogen
US20020165417A1 (en) Process for producing synthesis gas
JPH06184559A (en) Improved method of gas conversion
JPH0669881B2 (en) Hydrocarbon steam reforming method
US7914933B2 (en) Process and apparatus for producing hydrogen
JP3771357B2 (en) Hydrogen production method
JPH0657601B2 (en) Hydrocarbon steam reforming method
JP2885153B2 (en) Catalyst material for producing SNG and method for producing SNG
JPH0665601B2 (en) Hydrocarbon steam reforming method
JPH08295503A (en) Method for removing co in gaseous hydrogen
JP2911061B2 (en) Method for hydrocarbon desulfurization and steam reforming
JPH0345003B2 (en)
JPH07275711A (en) Nickel-supported catalyst for modifying hydrocarbon and production thereof
JP2640208B2 (en) Manufacturing method of SNG