JPH066984B2 - Titanium alloy pressure vessel manufacturing method - Google Patents

Titanium alloy pressure vessel manufacturing method

Info

Publication number
JPH066984B2
JPH066984B2 JP62180485A JP18048587A JPH066984B2 JP H066984 B2 JPH066984 B2 JP H066984B2 JP 62180485 A JP62180485 A JP 62180485A JP 18048587 A JP18048587 A JP 18048587A JP H066984 B2 JPH066984 B2 JP H066984B2
Authority
JP
Japan
Prior art keywords
titanium alloy
pressure vessel
pressure
base material
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62180485A
Other languages
Japanese (ja)
Other versions
JPS6426065A (en
Inventor
徹 秦野
義昭 大桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Mitsui Zosen KK
Original Assignee
Nippon Steel Corp
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Mitsui Zosen KK filed Critical Nippon Steel Corp
Priority to JP62180485A priority Critical patent/JPH066984B2/en
Publication of JPS6426065A publication Critical patent/JPS6426065A/en
Publication of JPH066984B2 publication Critical patent/JPH066984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はチタン合金製耐圧容器の製造方法に係り、特に
高強度で信頼性の高いチタン合金製耐圧容器を製造する
ことができる方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a titanium alloy pressure vessel, and more particularly to a method capable of manufacturing a titanium alloy pressure vessel having high strength and high reliability.

[従来の技術] 数千ないし1万メートルという大深度の海域で観測・調
査活動を行なうためには、探査機として電気通信装置や
テレビカメラ、その他の観測機器を格納するための耐圧
容器が必要である。
[Prior Art] In order to carry out observation and research activities in the deep sea area of several thousand to 10,000 meters, a pressure vessel for storing a telecommunication device, a television camera, and other observation equipment is required as a spacecraft. Is.

このような深海で用いる探査機の耐圧容器では、著しく
高い耐圧性が要求される上に、如何にその重量を軽く作
るかが、その探査機の性能上、極めて重要な因子とな
る。即ち、探査機の重量が軽ければ、浮力材の所要量も
少なくなり、浮力材の容積が小さくなれば探査機全体の
流体力学上の抵抗も小さくなるため、スラスターが小さ
いものですむ。しかして、これらのことから、探査機は
更に軽量になるため、使用上極めて有利である。
In the pressure vessel of the spacecraft used in such a deep sea, extremely high pressure resistance is required, and how to make the weight light is an extremely important factor in the performance of the spacecraft. That is, if the probe is light in weight, the required amount of the buoyant material is also small, and if the volume of the buoyant material is small, the hydrodynamic resistance of the entire probe is also small, so that the thruster is small. As a result, the probe becomes even lighter, which is extremely advantageous in use.

[発明が解決しようとする問題点] このようなことを考慮した場合、一般に耐圧容器の材質
として用いられる鉄鋼では、比重が7.85程度と重い
ため、深海用探査機の耐圧容器には適当ではない。
[Problems to be Solved by the Invention] In consideration of the above, steel generally used as a material for a pressure vessel has a large specific gravity of about 7.85, which is suitable for a pressure vessel of a deep sea probe. is not.

一方、比重が軽く、また耐食性にも優れ、耐圧容器の材
質として好適なものとして、チタン合金が考えられる。
しかしながら、チタン合金は酸化され易いことから、溶
接施工が難しく、現在開発されているMIG溶接あるい
はTIG溶接若しくは電子ビーム溶接では、溶接するに
あたって周囲を不活性ガス(ヘリウム、アルゴンなど)
雰囲気とするか、真空とすることが必要であるため、溶
接設備や施工作業の面でコスト高となるという欠点を有
する。しかも、溶接した箇所は、溶接欠陥そのものが存
在する可能性があるとともに、溶接金属母材も熱影響に
より脆化するなどの劣化を起す可能性があり、信頼性の
高い耐圧容器を容易に製造することができないという問
題があった。
On the other hand, titanium alloy is considered to be suitable as a material for the pressure-resistant container because of its low specific gravity and excellent corrosion resistance.
However, since titanium alloys are easily oxidized, it is difficult to perform welding work. In the currently developed MIG welding, TIG welding, or electron beam welding, the surroundings are inert gas (helium, argon, etc.) when welding.
Since it is necessary to create an atmosphere or a vacuum, there is a drawback that the cost becomes high in terms of welding equipment and construction work. In addition, the welded part itself may have welding defects, and the weld metal base material may also deteriorate due to thermal effects such as embrittlement, making it easy to manufacture highly reliable pressure-resistant containers. There was a problem that I could not do it.

[問題点を解決するための手段] 本発明のチタン合金製耐圧容器の製造方法は、チタン合
金を鍛造して得た柱状母材を、該母材の軸芯に直交する
方向に3分割し、各分割体を切削加工することにより、
両端部にフランジを有する1個の胴部と、開口縁部にフ
ランジを有する2個の鏡板部とを製造する工程を含むこ
とを特徴とする。
[Means for Solving Problems] A method for manufacturing a titanium alloy pressure-resistant container according to the present invention is a method in which a columnar base material obtained by forging a titanium alloy is divided into three in a direction orthogonal to the axis of the base material. By cutting each divided body,
The method is characterized by including a step of manufacturing one barrel having flanges at both ends and two end plate portions having flanges at the opening edges.

以下、図面を参照して、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a)〜(e)は本発明の一実施方法を説明する
図である。
FIGS. 1 (a) to 1 (e) are views for explaining one embodiment of the present invention.

本発明においては、まず、チタン合金を常法に従って鍛
造することにより、例えば第1図(a)に示すような円
柱状母材1を製造する。この円柱状母材1を、第1図の
破線に沿って2個所で円柱の軸芯に直交する方向に切断
し、第1図(b)に示すように分割された円柱体2、
3、4を得る。
In the present invention, first, a titanium base material 1 is manufactured by forging a titanium alloy according to a conventional method, for example, to produce a cylindrical base material 1 as shown in FIG. The cylindrical base material 1 is cut in two directions along the broken line in FIG. 1 in a direction orthogonal to the axis of the cylinder, and the cylindrical body 2 is divided as shown in FIG. 1 (b).
Get 3, 4.

次いで、第1図(c)の破線で示すように円柱体2、
3、4をそれぞれ機械的切削方法により削り出し、第1
図(d)に示す如く、両端にフランジ5a、5bを有す
る胴部5と、開口縁部にフランジ6a、7aを有する鏡
板部6、7を製造する。なお、5cは胴部の補強用の凸
条である。
Then, as shown by the broken line in FIG. 1 (c), the cylindrical body 2,
Machined 3 and 4 respectively by mechanical cutting method,
As shown in FIG. 3D, the body portion 5 having the flanges 5a and 5b at both ends and the end plate portions 6 and 7 having the flanges 6a and 7a at the opening edge portions are manufactured. In addition, 5c is a convex ridge for reinforcing the body.

次いで、第1図(e)に示す如く、得られた胴部5の両
端に鏡板部6、7をそれぞれのフランジを当接し、ボル
ト、ナット締めにより結合して耐圧容器8を組み立て
る。
Next, as shown in FIG. 1 (e), end plates 6 and 7 are brought into contact with both ends of the obtained body 5 with their respective flanges, and are joined by tightening bolts and nuts to assemble a pressure-resistant container 8.

このような方法によれば、溶接個所が全くないので、信
頼性の高い容器が得られる。また、母材は鍛造により製
造するため、均質性が高く、高強度の容器が得られる。
According to such a method, since there are no welding points, a highly reliable container can be obtained. Further, since the base material is manufactured by forging, a container having high homogeneity and high strength can be obtained.

本発明において、チタン合金としては特に制限はない
が、例えばTiにAl、V、Fe、O等を合金化させた
ものが挙げられる。これらのチタン合金中のTi含有率
は90重量%前後である。
In the present invention, the titanium alloy is not particularly limited, but examples thereof include those obtained by alloying Ti with Al, V, Fe, O and the like. The Ti content in these titanium alloys is around 90% by weight.

切削加工により製造する胴部や鏡板部の形状、肉厚等に
は特に制限はなく、製造する耐圧容器の使用目的等に応
じて適宜決定される。
There are no particular restrictions on the shape, wall thickness, etc. of the body portion and the end plate portion manufactured by cutting, and they are appropriately determined according to the intended use of the pressure resistant container to be manufactured.

なお、第1図(a)〜(e)で説明する方法は、本発明
の一実施例であって、本発明は何ら図示の方法に限定さ
れるものではない。
The method illustrated in FIGS. 1A to 1E is an example of the present invention, and the present invention is not limited to the illustrated method.

[作用] チタン合金は比重4.5と軽量で、耐食性に優れるた
め、極めて軽量で耐久性に優れた容器が得られる。
[Operation] Titanium alloy has a low specific gravity of 4.5 and is excellent in corrosion resistance, so that a container which is extremely lightweight and has excellent durability can be obtained.

しかして、本発明の方法においては、切削加工用の母材
を鍛造により製造するため、材料の組成がどの方向に対
しても均質となり、方向性がないため、得られる容器の
強度が向上する。因みに、材料を圧延し、板状としたも
のをプレス加工などで成形する方法の場合には、材料の
強度が圧延方向には強いがそれに垂直な方向では弱くな
る、即ち、板の長手方向は強いが、板厚方向にかかる荷
重には弱いという現象が生じる。本発明の方法では、こ
のような材料の方向性による欠点が解消される。
Then, in the method of the present invention, since the base material for cutting is manufactured by forging, the composition of the material is uniform in any direction and there is no directionality, so the strength of the obtained container is improved. . By the way, in the case of a method in which a material is rolled and a plate-shaped material is formed by pressing, the strength of the material is strong in the rolling direction but weak in the direction perpendicular to it, that is, the longitudinal direction of the plate is The phenomenon occurs that it is strong but weak against the load applied in the plate thickness direction. The method of the present invention eliminates the disadvantages of such material orientation.

また、製造工程に溶接がないため、溶接施工に伴う信頼
性の低下、即ち、溶接の熱影響による材料の脆化、溶接
施工個所の欠陥の存在等を回避することができる。
Further, since there is no welding in the manufacturing process, it is possible to avoid a decrease in reliability associated with welding work, that is, embrittlement of the material due to the heat effect of welding, and the presence of defects in the welding work site.

従って、本発明の方法によれば、軽量で耐久性に優れ、
かつ高強度で安全性、信頼性の高い耐圧容器が製造され
る。
Therefore, according to the method of the present invention, lightweight and excellent in durability,
In addition, a pressure resistant container with high strength, safety and reliability is manufactured.

[実施例] 以下、実施例について説明する。[Examples] Examples will be described below.

実施例1 第1図(a)〜(e)に示す本発明の方法に従って、第
2図に示すような形状及び寸法のチタン合金(Ti−6
Al−4V)製耐圧容器10を製造した。なお、第2図
において、11はシール部材である。また、図中の数値
の単位はmmである。
Example 1 According to the method of the present invention shown in FIGS. 1 (a) to 1 (e), a titanium alloy (Ti-6) having a shape and dimensions as shown in FIG.
A pressure vessel 10 made of Al-4V) was manufactured. In FIG. 2, 11 is a seal member. The unit of numerical values in the figure is mm.

この耐圧容器を高圧実験水槽に入れ、1万メートル級深
海無人探査機用チタン合金製耐圧容器の設計及び製造品
質精度確認のための圧壊試験を行なった。
The pressure vessel was placed in a high-pressure experimental water tank, and a crushing test was performed to confirm the design and production quality accuracy of a titanium alloy pressure vessel for a 10,000-meter class deep-sea unmanned spacecraft.

結果を下記に示す。The results are shown below.

I 耐圧試験結果 水密性:試験中は電気的にモニターしたが異常はなかっ
た。試験後、鏡板部を開放 して調べたが漏水は
なかった。
I Pressure resistance test results Watertightness: No electrical abnormality was observed during the test. After the test, the end plate was opened and examined, but no water leaked.

歪み:傾向はもちろんその値も計算値と良い一致を示し
た。
Distortion: Not only the tendency but also its value showed good agreement with the calculated value.

II 圧壊試験結果 圧壊圧力:計算予想値の±3%以内で圧壊 圧壊状況:下部鏡板部で圧壊(計算通り。) 上記の如く、本発明の方法で製造される耐圧容器は、計
算予想値と殆ど変わらない高い圧壊値を示し、設計及び
製造手法が正しいことが立証された。なお、実機用耐圧
容器の設計圧力は、安全性を考慮した場合においても、
上記値より高くすることもできる。
II Crushing test results Crushing pressure: Crushing within ± 3% of the predicted value Crushing condition: Crushing at the lower end plate (as calculated) As described above, the pressure vessel manufactured by the method of the present invention has the calculated predicted value. It showed a high crush value that was almost unchanged, demonstrating correct design and manufacturing techniques. Even if safety is taken into consideration, the design pressure of the pressure vessel for an actual machine is
It can be higher than the above value.

[発明の効果] 以上詳述した通り、本発明の方法によれば、軽量で耐久
性に優れ、かつ高強度で安全性、信頼性の高い耐圧容器
を高い設計精度のもとに製造することができる。
[Effects of the Invention] As described in detail above, according to the method of the present invention, it is possible to manufacture a pressure resistant container that is lightweight, excellent in durability, high in strength, safe, and highly reliable under high design accuracy. You can

このような本発明の方法は、深海探査機用耐圧容器の製
造に極めて好適である。
Such a method of the present invention is extremely suitable for manufacturing a pressure vessel for a deep sea probe.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す説明図、第2図は実施
例1にて製造した耐圧容器を示す部分断面側面図であ
る。 1…母材、2、3、4…円柱耐、 5…胴部、6、7…鏡板部 8…耐圧容器。
FIG. 1 is an explanatory view showing an embodiment of the present invention, and FIG. 2 is a partial cross-sectional side view showing a pressure resistant container manufactured in Embodiment 1. DESCRIPTION OF SYMBOLS 1 ... Base material, 2, 3, 4 ... Cylindrical resistance, 5 ... Body part, 6, 7 ... End plate part 8 ... Pressure resistant container.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チタン合金を鍛造して得た柱状母材を、該
母材の軸芯に直交する方向に3分割し、各分割体を切削
加工することにより、両端部にフランジを有する1個の
胴部と、開口縁部にフランジを有する2個の鏡板部とを
製造する工程を含むことを特徴とするチタン合金製耐圧
容器の製造方法。
1. A columnar base material obtained by forging a titanium alloy is divided into three in a direction orthogonal to the axis of the base material, and each divided body is cut to have flanges at both ends. A method for manufacturing a pressure resistant container made of titanium alloy, comprising the step of manufacturing individual body parts and two end plate parts having flanges at the opening edge parts.
JP62180485A 1987-07-20 1987-07-20 Titanium alloy pressure vessel manufacturing method Expired - Lifetime JPH066984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62180485A JPH066984B2 (en) 1987-07-20 1987-07-20 Titanium alloy pressure vessel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62180485A JPH066984B2 (en) 1987-07-20 1987-07-20 Titanium alloy pressure vessel manufacturing method

Publications (2)

Publication Number Publication Date
JPS6426065A JPS6426065A (en) 1989-01-27
JPH066984B2 true JPH066984B2 (en) 1994-01-26

Family

ID=16084050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62180485A Expired - Lifetime JPH066984B2 (en) 1987-07-20 1987-07-20 Titanium alloy pressure vessel manufacturing method

Country Status (1)

Country Link
JP (1) JPH066984B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249674A (en) * 1990-12-28 1992-09-04 Kurein:Kk Vacuum container
JP4632304B2 (en) * 2005-05-31 2011-02-16 財団法人電力中央研究所 High resolution imaging device
JP4820804B2 (en) * 2007-11-16 2011-11-24 国立大学法人九州大学 Deep sea exploration vehicle pressure vessel
EP2306050A4 (en) * 2008-03-28 2014-07-23 Japan Agency Marine Earth Sci Pressure container, and buoyant body and exploring device which are provided with the same
JP5313400B2 (en) * 2010-03-29 2013-10-09 独立行政法人海洋研究開発機構 Outer shell of pressure vessel, pressure vessel and exploration device
CN102556307A (en) * 2012-03-23 2012-07-11 哈尔滨东南海上设备制造有限公司 Underwater pressure cabin for monitoring marine environment
EP2924321A4 (en) 2012-11-21 2016-10-05 Kyocera Corp Pressure resistant container and probe provided with same
CN104787271B (en) * 2015-04-13 2017-03-22 湖北三江航天万峰科技发展有限公司 Underwater pressure-bearing sealed cylinder and preparation method thereof
CN104976345A (en) * 2015-06-24 2015-10-14 张家港市顺佳隔热技术有限公司 High-pressure container
JP7012932B2 (en) * 2018-03-15 2022-01-31 三菱重工マリタイムシステムズ株式会社 Hydrostatic shells, underwater equipment, and submersibles
CN112959004B (en) * 2021-02-02 2022-09-13 湖南湘投金天科技集团有限责任公司 High-strength titanium alloy end socket and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976747A (en) * 1972-11-28 1974-07-24
JPS6272964A (en) * 1985-09-25 1987-04-03 Kobe Steel Ltd Pressure container provided with liner on inner wall thereof

Also Published As

Publication number Publication date
JPS6426065A (en) 1989-01-27

Similar Documents

Publication Publication Date Title
Slobodyan Resistance, electron-and laser-beam welding of zirconium alloys for nuclear applications: a review
JPH066984B2 (en) Titanium alloy pressure vessel manufacturing method
BR112017007186B1 (en) PRESSURE CONTAINER ASSEMBLY, AND METHOD FOR FORMING A PRESSURE CONTAINER ASSEMBLY
Srivatsan et al. Welding of lightweight aluminum-lithium alloys
Huang et al. Design and analysis of a novel ship pipeline welding auxiliary device
Rice et al. Tensile Behavior of Parent-Metal and Welded 5000-Series Aluminum Alloy Plate at Room and Cryogenic Temperatures
US6052424A (en) Method of welding for fabricating double-wall structures
Bezawada Mechanical and microstructural characteristics of gas tungsten arc welded similar and dissimilar joints of SS-316 L and Hastelloy C276
Witherell Welding stainless steels for structures operating at liquid helium temperature
Vadolia et al. Electron Beam Welding: study of process capability and limitations towards development of nuclear components
Zope et al. Aluminum alloy and galvanized steel CMT weld joints for lightweight automobile applications
CN108127276A (en) A kind of welding method of zircaloy pressure vessel
Ibarra et al. Underwater Wet-Welding Techniques for Repair of Higher-Carbon-Equivalent Steels
WO2023058614A1 (en) Accumulator for high-pressure hydrogen gas
JPH0633256Y2 (en) Stays for jackets of hard-to-weld metal containers
Houck et al. The roll-diffusion bonding of structural shapes and panels
Mizuno et al. Application of AI—Mg alloys to large welded structures in Japan
JPH069740Y2 (en) Difficult-to-weld metal container
Wyma Aluminum Alloys. Materials of Construction Review
Yingsamphancharoen et al. CHARACTERIZATION OF CU-NI ASME SB467 PIPE VIA ASSISTED GTAW: HARDNESS AND TENSILE PROPERTIES.
DE3505954A1 (en) Process for welding workpieces of ductile cast iron
Russell et al. Yucca Mountain project container fabrication, closure and non-destructive evaluation development activities
Kemper et al. Pressure vessels of high proof strength warm worked stainless steel
Russell et al. Yucca Mountain project container fabrication, closure and non-destructive evaluation development activities; Summary and viewgraphs
JPS6234677A (en) Lining method for pressure container