JPH0669718A - Stack type microstrip antenna - Google Patents

Stack type microstrip antenna

Info

Publication number
JPH0669718A
JPH0669718A JP24570192A JP24570192A JPH0669718A JP H0669718 A JPH0669718 A JP H0669718A JP 24570192 A JP24570192 A JP 24570192A JP 24570192 A JP24570192 A JP 24570192A JP H0669718 A JPH0669718 A JP H0669718A
Authority
JP
Japan
Prior art keywords
patch
feeding
antenna
excitation
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24570192A
Other languages
Japanese (ja)
Inventor
Yuujirou Taguchi
裕二朗 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP24570192A priority Critical patent/JPH0669718A/en
Publication of JPH0669718A publication Critical patent/JPH0669718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To obtain a high gain even if a main beam is formed in the direction of a small elevation angle by laminating a non-feeding patch, a two-points feeding excitation patch and a ground surface and exciting a two-points feeding patch at a secondary mode. CONSTITUTION:A dielectric substrate 22 where the non-feeding patch 21 is formed and a dielectric substrate 24 where the two-points feeding excitation patch 23 is formed on the upper surface and the ground surface 25 is formed on a lower surface are stack-supported by a spacer 26 with a prescribed space, and a hybrid circuit 28 is connected to the two-points feeding excitation patch 23 through a coaxial cable 27. An angle that the two feeding points of the two-points feeding excitation patch 23 and the center of an antenna patch makes is set to be 130 deg. or 45 deg.. Thus, the two-points feeding excitation patch 23 is excited at the secondary mode. Thus, the high gain can be obtained without deteriorating the gain in the antenna forming the main beam in the small elevation angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロストリップアン
テナ、詳しくは低仰角方向に放射パターンを指向させた
スタック型マイクロストリップアンテナに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microstrip antenna, and more particularly to a stack type microstrip antenna having a radiation pattern oriented in a low elevation angle direction.

【0002】[0002]

【従来の技術】近年、地上の固定局と自動車或は航空機
等の移動体との間の通信回線を確保するために人工衛星
を中継局としたシステムが実用化されつつあるが、この
うち、地上移動局間の通信を考えるとその行動範囲は航
空機に比べれば、ある限られた範囲に限られるので、使
用すべきアンテナの垂直方向の指向性は、中継用人工衛
星の仰角に一致させればよく、しかもその可変範囲は小
さくてよい。
2. Description of the Related Art In recent years, a system using an artificial satellite as a relay station has been put into practical use in order to secure a communication line between a fixed station on the ground and a moving body such as an automobile or an aircraft. Considering the communication between terrestrial mobile stations, its operating range is limited to a certain range compared to aircraft, so the vertical directivity of the antenna to be used should match the elevation angle of the relay satellite. The variable range may be small.

【0003】例えばの海事通信衛星システムのインマル
サットを使用する場合、日本国内を考えると、地上から
インマルサットを見上げる仰角は35度〜55度である
から、少なくとも日本国内ではこの範囲の仰角をもった
アンテナで充分であって、アンテナ面と垂直方向の利得
は必要ない。
In the case of using Inmarsat of the maritime communication satellite system, for example, considering Japan, the elevation angle for looking up Inmarsat from the ground is 35 to 55 degrees. Therefore, at least in Japan, the antenna has an elevation angle within this range. Is sufficient and no gain in the direction perpendicular to the antenna plane is required.

【0004】一般に、移動体側に用いるアンテナとして
は、薄形、軽量、低姿勢等の特徴を有するマイクロスト
リップアンテナが最も適し、更には偏波面の追尾が不要
な円偏波が有効である。又、マイクロストリップアンテ
ナの励振モードには基本波モード励振と2次モード励振
とがあるが、図3(a)に示す如く基本波モード励振で
は実線1にて示すようにアンテナ面に対し垂直方向1、
即ち正面方向に主ビーム2が形成されるのに対し、2次
モード励振は点線3のように垂直断面がハート形に2つ
に分離し仰角が低いものとなる。従って、上述のような
地上移動局間通信を衛星によって中継する場合は2次モ
ード励振が有利である。
Generally, a microstrip antenna having characteristics such as thin shape, light weight, low profile, etc. is most suitable as an antenna used on the side of a moving body, and circular polarization which does not require tracking of polarization plane is effective. Further, the excitation modes of the microstrip antenna include fundamental mode excitation and secondary mode excitation. In the fundamental mode excitation, as shown in FIG. 1,
That is, the main beam 2 is formed in the front direction, whereas in the secondary mode excitation, the vertical section is divided into two in a heart shape as shown by the dotted line 3 and the elevation angle is low. Therefore, when relaying the above-mentioned ground-based mobile station communication by satellite, the secondary mode excitation is advantageous.

【0005】マイクロストリップアンテナを用いて上記
システムの移動局用アンテナとして円偏波2次モード励
振マイクロストリップアンテナを構成するためには従来
図3(a)及び(b)に示すものが知られている。この
図に示すマイクロストリップアンテナは、誘電体基板4
の裏面にグランド導体5が、又表面には所要径の円形導
体パッチ6が配設され、このパッチ6にはグランド導体
5と誘電体基板4を貫通する2本の同軸線路7,8によ
って送信信号が供給され、又は該アンテナパッチに誘起
する高周波信号が導出される。更に、該2本の同軸線路
7,8はハイブリッド回路9を経て図示を省略した無線
送受信機に接続されており、ハイブリッド回路9のアイ
ソレーション端子10は規定値の抵抗にて終端されたも
のである。
In order to construct a circularly polarized wave secondary mode excitation microstrip antenna as a mobile station antenna of the above system using the microstrip antenna, the conventional ones shown in FIGS. 3A and 3B are known. There is. The microstrip antenna shown in this figure has a dielectric substrate 4
Is provided with a ground conductor 5 on the back surface and a circular conductor patch 6 with a required diameter on the front surface. The patch 6 is transmitted by two coaxial lines 7 and 8 penetrating the ground conductor 5 and the dielectric substrate 4. A high-frequency signal that is supplied with or induces in the antenna patch is derived. Further, the two coaxial lines 7 and 8 are connected via a hybrid circuit 9 to a wireless transceiver (not shown), and the isolation terminal 10 of the hybrid circuit 9 is terminated by a resistor having a specified value. is there.

【0006】また、上記2本の同軸線路7,8のアンテ
ナパッチ6への接続点12,13は、この2点とアンテ
ナパッチ6の中心点14とのなす角が135度又は45
度となるように設定し、この構成によって当該アンテナ
の指向性が同図(a)点線3にて示すような2次モード
励振特性となるように構成したものである。この構成に
於いて送信の場合を例にして動作を説明すると、送信機
から高周波信号はハイブリッド回路9によって90度の
位相差をもった2つの信号に分割され、アンテナパッチ
6の2つの給電点12,13に印加される。この2つの
給電点12,13とアンテナパッチ6の中心点14との
なす角は約135度であることは既に説明したが、も
し、基本モードにて励振する場合は通常この角度は90
度に設定され、給電点位置の違いによって基本モード励
振か2次モード励振かの区別制御を行うのが一般的であ
る。尚、このときパッチ径は基本モードと異なり径が大
きくなる。
The connection points 12 and 13 of the two coaxial lines 7 and 8 to the antenna patch 6 form an angle of 135 degrees or 45 degrees between the two points and the center point 14 of the antenna patch 6.
In this configuration, the directivity of the antenna has a secondary mode excitation characteristic as shown by a dotted line 3 in FIG. In this configuration, the operation will be described by taking the case of transmission as an example. The high frequency signal from the transmitter is divided by the hybrid circuit 9 into two signals having a phase difference of 90 degrees, and two feeding points of the antenna patch 6 are provided. 12 and 13 are applied. It has already been explained that the angle between the two feeding points 12 and 13 and the center point 14 of the antenna patch 6 is about 135 degrees, but if the excitation is performed in the basic mode, this angle is usually 90 degrees.
Is generally set, and it is common to perform control for distinguishing between fundamental mode excitation and secondary mode excitation depending on the position of the feeding point. At this time, the patch diameter is larger than that in the basic mode.

【0007】しかしながら、基本モード励振マイクロス
トリップアンテナでは、前述した通りアンテナの正面方
向が最大レベルとなり、利得は7dB程度となるが、前
述のシステムにこれを使用しようとすれば、仰角35〜
55°付近ではアンテナ利得は0dB以下となり、前述
のシステムには適用できない。
However, in the basic mode excitation microstrip antenna, the frontal direction of the antenna has the maximum level and the gain is about 7 dB as described above.
In the vicinity of 55 °, the antenna gain becomes 0 dB or less, which is not applicable to the above system.

【0008】また、2次モード励振マイクロストリップ
アンテナでは、仰角45°付近にピーク値をもつが、元
々の基本モード励振のものでも利得は十分な高さを有し
ておらず、2次モード励振ではこの基本モード励振パタ
ーン2分割したパターンになるので、利得は益々低下
し、システムからの要求値を満足できなくなり、従来か
らこの方式におけるアンテナ利得増大策の開発が望まれ
ていた。
In addition, the microstrip antenna for secondary mode excitation has a peak value in the vicinity of an angle of elevation of 45 °, but even the original fundamental mode excitation does not have a sufficient gain, and the secondary mode excitation is performed. However, since the basic mode excitation pattern is divided into two patterns, the gain is further reduced, and it becomes impossible to satisfy the required value from the system. Therefore, it has been conventionally desired to develop an antenna gain increasing measure in this method.

【0009】[0009]

【目的】本発明は上記事情に鑑みてなされたものであっ
て、小さい仰角方向に主ビームを形成した場合であって
も利得の低下をまねくことなく高利得のアンテナとして
使用可能なスタック型マイクロストリップアンテナを提
供することを目的とする。
The present invention has been made in view of the above circumstances, and even when a main beam is formed in a small elevation angle direction, a stack-type micro that can be used as a high-gain antenna without lowering the gain. It is intended to provide a strip antenna.

【0010】[0010]

【概要】上記目的を達成するため、本願第1の発明は、
無給電パッチと、2点給電励振パッチと、グランド面と
が所定間隔で順次積層されたスタック型マイクロストリ
ップアンテナにおいて、前記2点給電パッチを2次モー
ドで励振したことを特徴とする。本願第2の発明は、前
記2点給電励振パッチの給電点アイソレーションが所定
値以上となる点に各給電点を配置したことを特徴とす
る。
[Outline] In order to achieve the above object, the first invention of the present application is
In a stack type microstrip antenna in which a parasitic patch, a two-point feeding excitation patch, and a ground plane are sequentially laminated at a predetermined interval, the two-point feeding patch is excited in a secondary mode. The second invention of the present application is characterized in that each feeding point is arranged at a point where the feeding point isolation of the two-point feeding excitation patch is equal to or more than a predetermined value.

【0011】[0011]

【実施例】以下、図示した実施例に基づいて本発明を詳
細に説明する。図1は本発明の実施例を示す側面断面構
成図である。同図においては21は無給電パッチであっ
て、これは誘電体基板22の上面に形成されている。2
3は2点給電励振パッチであり、誘電体基板24の上面
に形成され、また、その基板24の下面にはグランド面
25が形成されており、前記2つの誘電体基板22と2
4はスペーサ26により所定間隔をもってスタック支持
されている。更に2点給電励振パッチ23には同軸ケー
ブルを介してハイブリッド回路(HYB)28が接続さ
れている。
The present invention will be described in detail below with reference to the illustrated embodiments. FIG. 1 is a side sectional view showing an embodiment of the present invention. In the figure, 21 is a parasitic patch, which is formed on the upper surface of the dielectric substrate 22. Two
Reference numeral 3 denotes a two-point feeding excitation patch, which is formed on the upper surface of the dielectric substrate 24, and the ground surface 25 is formed on the lower surface of the substrate 24.
The stack 4 is supported by the spacer 26 at a predetermined interval. Further, a hybrid circuit (HYB) 28 is connected to the two-point feed excitation patch 23 via a coaxial cable.

【0012】このアンテナの動作を説明すれば、HYB
28から2点給電励振パッチ23までは、従来技術で説
明した如く動作するが更に2点給電励振パッチ23の上
方に設置された無給電パッチ21が八木アンテナの導波
器のように作用し、基本モード励振すれば、放射パター
ンのビーム幅は図3に示したアンテナパッチ単体の従来
の同じモードよりも狭くなり、その結果利得は8〜9d
Bとなり、従来の7dBよりも1〜2dB増加すること
が知られている。尚、このことは参考文献、堀、中
嶋、”広帯域同一面給電円偏波マイクロストリップアン
テナ”、電子通信学会論文誌 ’85/4Vol.J6
8−BNo.4に詳しいので説明を略す。
Explaining the operation of this antenna, the HYB
From 28 to the two-point feed excitation patch 23, it operates as described in the prior art, but the parasitic patch 21 installed above the two-point feed excitation patch 23 acts like the director of the Yagi antenna, When the fundamental mode is excited, the beam width of the radiation pattern becomes narrower than the conventional mode of the antenna patch alone shown in FIG. 3, resulting in a gain of 8-9d.
It is known that B becomes 1 to 2 dB higher than the conventional value of 7 dB. This is referred to in References, Hori, Nakajima, "Broadband Coplanar Fed Circularly Polarized Microstrip Antenna," IEICE Transactions '85 / 4 Vol. J6
Since it is detailed in 8-BNo. 4, its explanation is omitted.

【0013】そこで本発明ではこの構造にて2次モード
励振を行うことを特徴とし、その結果、本発明の放射パ
ターンは図1に示すように、基本モードの利得が従来の
ものより高いので、この基本モードのパターンを2つに
割っても、利得は従来より改善され、システム要求を満
足することができる。
Therefore, the present invention is characterized in that the second mode is excited by this structure. As a result, the radiation pattern of the present invention has a higher gain of the fundamental mode than that of the conventional one as shown in FIG. Even if this basic mode pattern is divided into two, the gain is improved as compared with the conventional one, and the system requirement can be satisfied.

【0014】ここで、該アンテナを2次モードで励振す
るには、上記励振パッチ23に対する給電位置を次の如
く設定する。即ち、従来のように基本モードにて励振す
るには上述した如く2つの給電点とアンテナパッチ中心
点とのなす角を90度に設定するが、2次モード励振の
ためにはこの角度を135度又は45度にする。この構
成によって上述した如く従来のマイクロストリップアン
テナより小さい仰角方向にて高利得を得ることが可能と
なる。
Here, in order to excite the antenna in the secondary mode, the feeding position for the excitation patch 23 is set as follows. That is, as in the conventional case, the angle formed by the two feeding points and the center point of the antenna patch is set to 90 degrees for excitation in the fundamental mode, but this angle is set to 135 degrees for the secondary mode excitation. Or 45 degrees. With this configuration, it is possible to obtain a high gain in the elevation angle direction, which is smaller than that of the conventional microstrip antenna, as described above.

【0015】本発明は次の如く変形することによって、
更に利得とアイソレーシュンの向上を図ることができ
る。図2は本発明の変形実施例を説明するための平面図
であって、この実施例の特徴は給電パッチに於ける2つ
の給電点とパッチ中心点とのなす角を変更し、該アンテ
ナの給電点アイソレーションが最良のものに設定する。
即ち、従来は基本モード励振の場合は上記給電角度は9
0度、2次励振モードは135度又は45度であったが
本願出願人は、この角度を種々変更したところ、給電点
アイソレーションが最適となる角度があることを見い出
した。従ってこの考え方を適用すれば、より一層ストリ
ップアンテナの性能を向上せしめることが可能となる。
The present invention has the following modifications.
Further, gain and isolation can be improved. FIG. 2 is a plan view for explaining a modified embodiment of the present invention. The feature of this embodiment is that the angle formed between two feeding points and a patch center point in a feeding patch is changed, Set the feed point isolation to the best one.
That is, in the conventional case, in the case of the fundamental mode excitation, the feeding angle is 9
The 0 degree, secondary excitation mode was 135 degrees or 45 degrees, but the applicant of the present application found that there is an angle at which the feeding point isolation is optimum by changing this angle variously. Therefore, if this idea is applied, the performance of the strip antenna can be further improved.

【0016】例えば、図2に示した実施例は使用周波数
を1600MHZ 、無給電アンテナパッチ21と励振ア
ンテナパッチ23の直径を約110mm、両者の間隔を
4mmとしたとき、上記給電点角度を約150度にした
ところ最良のアイソレーションが得られた。尚、このと
きの誘電体基板22、24は誘電率が約2.6のテフロ
ン基板を用いた。更に、この手段を用いれば、励振パッ
チと無給電パッチとの間隔を狭くしても利得及び指向特
性を良好に保ちつつアイソレーション向上させることが
できるからアンテナの小型化をはかる上で大いに効果で
ある。尚、給電点角度はアンテナの各部パラメータが異
なれば、それに応じて最適な角度があるので、適宜最良
ポイントをみつけて実施すればよい。
[0016] For example, the embodiment shown in FIG. 2 1600MH the use frequency Z, diameter about 110mm parasitic antenna patch 21 and the excitation antenna patch 23, when the distance between them and 4 mm, about the feeding point angle The best isolation was obtained at 150 degrees. At this time, the dielectric substrates 22 and 24 were Teflon substrates having a dielectric constant of about 2.6. Furthermore, by using this means, it is possible to improve the isolation while maintaining the good gain and directional characteristics even if the distance between the excitation patch and the parasitic patch is narrowed, so that it is very effective in downsizing the antenna. is there. It should be noted that if the parameters of the antenna are different, the feeding point angle has an optimum angle according to the parameter, so the best point may be appropriately found.

【0017】また、上述したアンテナを複数並べ夫々の
給電移相を制御することによってビーム方向をコントロ
ールするアレーアンテナに適用してもよいことは自明で
あろう。
Further, it is obvious that the above-mentioned antennas may be arranged and applied to an array antenna for controlling the beam direction by controlling the feeding phase shift of each of them.

【0018】[0018]

【効果】本発明は以上説明したように構成するので、仰
角の小さい方向に主ビームを形成するアンテナに於いて
利得の低下及び給電点アイソレーションの低下を抑え、
優れた特性を実現する上で効果を奏する。
Since the present invention is configured as described above, it is possible to suppress a decrease in gain and a decrease in feeding point isolation in an antenna that forms a main beam in a direction with a small elevation angle.
It is effective in achieving excellent characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例を示す断面構成図であ
る。
FIG. 1 is a sectional configuration diagram showing an embodiment of the present invention.

【図2】図2は本発明の変形実施例を示す平面図であ
る。
FIG. 2 is a plan view showing a modified embodiment of the present invention.

【図3】図3は従来のマイクロストリップアンテナを示
す図で、(a)は側面断面図、(b)は平面図である。
3A and 3B are views showing a conventional microstrip antenna, in which FIG. 3A is a side sectional view and FIG. 3B is a plan view.

【符号の説明】[Explanation of symbols]

1・・・・・垂線、 2・・・・・アンテナ面に垂
直方向の主ビーム 3・・・・・仰角45度方向のビーム、 4,22,2
4・・・・・誘電体基板、 5、25・・・・・アース
板、 6・・・・・アンテナパッチ、21・・・
・・無線電アンテナパッチ、 7,8,27・・・・・
給電用同軸ケーブル、 9,28・・・・・HYB(ハ
イブリッド回路)
1 ... Perpendicular line, 2 ... Main beam perpendicular to the antenna plane, 3 ... Beam with an elevation angle of 45 degrees, 4, 22, 2
4 ... Dielectric substrate, 5, 25 ... Ground plate, 6 ... Antenna patch, 21 ...
..Wireless antenna patches, 7, 8, 27 ...
Coaxial cable for power supply, 9, 28 ... HYB (hybrid circuit)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 無給電パッチと、2点給電励振パッチ
と、グランド面とが所定間隔で順次積層されたスタック
型マイクロストリップアンテナにおいて、前記2点給電
パッチを2次モードで励振したことを特徴とするスタッ
ク型マイクロストリップアンテナ。
1. A stack type microstrip antenna in which a parasitic patch, a two-point feeding excitation patch, and a ground plane are sequentially stacked at a predetermined interval, wherein the two-point feeding patch is excited in a secondary mode. Stacked microstrip antenna.
【請求項2】 前記2点給電励振パッチの給電点アイソ
レーションが所定値以上となる点に各給電点を配置した
ことを特徴とする請求項1記載のスタック型マイクロス
トリップアンテナ。
2. The stack type microstrip antenna according to claim 1, wherein each feeding point is arranged at a point where the feeding point isolation of the two-point feeding excitation patch is equal to or more than a predetermined value.
JP24570192A 1992-08-21 1992-08-21 Stack type microstrip antenna Pending JPH0669718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24570192A JPH0669718A (en) 1992-08-21 1992-08-21 Stack type microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24570192A JPH0669718A (en) 1992-08-21 1992-08-21 Stack type microstrip antenna

Publications (1)

Publication Number Publication Date
JPH0669718A true JPH0669718A (en) 1994-03-11

Family

ID=17137524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24570192A Pending JPH0669718A (en) 1992-08-21 1992-08-21 Stack type microstrip antenna

Country Status (1)

Country Link
JP (1) JPH0669718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379025B2 (en) 2003-02-27 2008-05-27 Lenovo (Singapore) Pte Ltd. Mobile antenna unit and accompanying communication apparatus
JP2008141765A (en) * 2006-12-04 2008-06-19 Agc Automotive Americas R & D Inc Beam tilting patch antenna using high order resonance mode
WO2016203921A1 (en) * 2015-06-16 2016-12-22 株式会社村田製作所 Antenna device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379025B2 (en) 2003-02-27 2008-05-27 Lenovo (Singapore) Pte Ltd. Mobile antenna unit and accompanying communication apparatus
US7719473B2 (en) 2003-02-27 2010-05-18 Lenovo (Singapore) Pte Ltd. Mobile antenna unit and accompanying communication apparatus
JP2008141765A (en) * 2006-12-04 2008-06-19 Agc Automotive Americas R & D Inc Beam tilting patch antenna using high order resonance mode
WO2016203921A1 (en) * 2015-06-16 2016-12-22 株式会社村田製作所 Antenna device

Similar Documents

Publication Publication Date Title
JP2868197B2 (en) An improved microstrip antenna device especially for satellite telephony.
US5043738A (en) Plural frequency patch antenna assembly
US6252553B1 (en) Multi-mode patch antenna system and method of forming and steering a spatial null
US7385555B2 (en) System for co-planar dual-band micro-strip patch antenna
US6731920B1 (en) Portable telephone apparatus and control method thereof
EP0449492B1 (en) Patch antenna with polarization uniformity control
JP4698121B2 (en) Mechanically steerable array antenna
EP2201646B1 (en) Dual polarized low profile antenna
US20040155820A1 (en) Dual band coplanar microstrip interlaced array
US4233607A (en) Apparatus and method for improving r.f. isolation between adjacent antennas
US10978812B2 (en) Single layer shared aperture dual band antenna
US6859181B2 (en) Integrated spiral and top-loaded monopole antenna
JPH088638A (en) Circularly polarized wave ring patch antenna
US5657032A (en) Aircraft cellular communications antenna
CN114188716A (en) Microstrip planar antenna and antenna array
WO1998018177A1 (en) Stacked microstrip antenna for wireless communication
US11881611B2 (en) Differential fed dual polarized tightly coupled dielectric cavity radiator for electronically scanned array applications
JPH0669718A (en) Stack type microstrip antenna
JP3782278B2 (en) Beam width control method of dual-polarized antenna
US11769944B2 (en) Reconfigurable antenna array of individual reconfigurable antennas
JP3002252B2 (en) Planar antenna
JPH02113706A (en) Antenna system
JPH06237119A (en) Shared plane antenna for polarized waves
US11682842B1 (en) Log periodic array application of minature active differential/quadrature radiating elements
CN219144479U (en) Antenna assembly and mobile terminal