JPH0669662U - Damage prevention mechanism of compressor in refrigeration system - Google Patents

Damage prevention mechanism of compressor in refrigeration system

Info

Publication number
JPH0669662U
JPH0669662U JP1694593U JP1694593U JPH0669662U JP H0669662 U JPH0669662 U JP H0669662U JP 1694593 U JP1694593 U JP 1694593U JP 1694593 U JP1694593 U JP 1694593U JP H0669662 U JPH0669662 U JP H0669662U
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
liquid receiver
receiver
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1694593U
Other languages
Japanese (ja)
Inventor
雅秀 矢取
宏泰 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP1694593U priority Critical patent/JPH0669662U/en
Publication of JPH0669662U publication Critical patent/JPH0669662U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 冷凍系での冷媒バイパス量の増大を抑制し、
圧縮機の損傷を防止する。 【構成】 圧縮機14、凝縮器16、受液器18、膨張
手段10、蒸発器12、常には凝縮器と受液器とを連通
し、凝縮圧力が低下すると圧縮機と受液器との連通側に
切換わる凝縮圧力調整器22、受液器を圧縮機の吸入側
にバイパスさせるキャピラリー管30を備え、凝縮圧力
調整器の切換状態に応じ受液器の貯留レベルに高低差を
生ずる冷凍系で、キャピラリー管を受液器にバイパスさ
せる接続部位を、該受液器の冷媒貯留レベルの高位限界
Hmと低位限界Lmとの略中間位置に選定し、受液器中
のレベルが高位限界にあるときは、受液器から圧縮機へ
のバイパス量を増大させて該圧縮機の過熱を防止し、ま
た受液器中のレベルが低位限界にあるときは、該受液器
から圧縮機へのバイパス量を減少させて該圧縮機の冷却
を停止する。
(57) [Summary] [Purpose] To suppress the increase of refrigerant bypass amount in the refrigeration system,
Prevent damage to the compressor. [Composition] The compressor 14, the condenser 16, the liquid receiver 18, the expansion means 10, the evaporator 12, and the condenser and the liquid receiver are always communicated with each other, and when the condensation pressure decreases, the compressor and the liquid receiver are connected. Condensing pressure regulator 22 that switches to the communication side, and capillary tube 30 that bypasses the liquid receiver to the suction side of the compressor are provided. In the system, the connection part for bypassing the capillary tube to the receiver is selected at an approximately intermediate position between the high limit Hm and the low limit Lm of the refrigerant storage level of the receiver, and the level in the receiver is high. When it is, the amount of bypass from the receiver to the compressor is increased to prevent overheating of the compressor, and when the level in the receiver is at the lower limit, the receiver is connected to the compressor. The cooling amount of the compressor is stopped by reducing the bypass amount to the compressor.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、冷凍系における圧縮機の損傷防止機構に関し、更に詳細には、 空冷凝縮器の凝縮圧力が低下した際に、圧縮機からの気化冷媒を凝縮圧力調整器 により受液器の側に切換えて凝縮圧力を上昇させ、また前記受液器からの液化冷 媒をキャピラリー管により前記圧縮機の吸入側にバイパスさせて該圧縮機の過熱 を防止するようにした冷凍系または凝縮器からの液化冷媒をキャピラリー管に より圧縮機の吸入側にバイパスさせて該圧縮機の過熱を防止するようにした冷凍 系において、外気温の低い冬場等における液化冷媒のバイパス量の増大を抑制し 、これにより圧縮機の損傷を好適に防止させ得るようにした機構に関するもので ある。 The present invention relates to a mechanism for preventing damage to a compressor in a refrigeration system, and more specifically, when the condensing pressure of an air-cooled condenser is reduced, the vaporized refrigerant from the compressor is fed to a receiver side by a condensing pressure regulator. Switching from the refrigeration system or condenser to raise the condensing pressure, and to prevent the compressor from overheating by bypassing the liquefied cooling medium from the receiver to the suction side of the compressor by means of a capillary tube. In a refrigeration system in which the liquefied refrigerant is bypassed by a capillary tube to the suction side of the compressor to prevent overheating of the compressor, the bypass amount of the liquefied refrigerant is suppressed from increasing in the winter when the outside temperature is low. The present invention relates to a mechanism capable of suitably preventing damage to the compressor.

【0002】[0002]

【従来技術】[Prior art]

図4および図5は、従来技術に係る製氷機や冷蔵庫の冷凍系を示す概略図であ る。製氷機の冷凍系を例にとると、この冷凍系には、高圧の液化冷媒を膨張さ せて気化冷媒とする膨張弁の如き膨張手段10、この液化冷媒が気化する際に 奪取する気化熱により冷却作用を営む蒸発器12、この蒸発器12で冷却作用 を営んだ後の気化冷媒を、凝縮器に向け圧縮状態で送り込む圧縮機14、この 圧縮機14で圧縮された気化冷媒を凝縮させて液化冷媒とする凝縮器16および 凝縮後の液化冷媒を一部貯留すると共に、該液化冷媒を管体32を介して前記 膨張手段10に供給する受液器18が組み込まれている。なお凝縮器16にはフ ァン20が併設され、このファン20の回転により強制空冷がなされるようにな っている。このように前記凝縮器16が空冷式の場合、冬場の如く外気温が著し く低下する環境の下で製氷機を使用したり、またセパレート式の如く分離配置し た凝縮器16に強風が当る条件の下で使用したりすると、該凝縮器16での凝縮 能力は向上することになる。しかしその反面、この凝縮器16における凝縮圧力 が低下し、従って前記蒸発器12で充分な冷凍能力が発揮されないことがある。 4 and 5 are schematic views showing a refrigeration system of an ice making machine or a refrigerator according to the related art. Taking the refrigeration system of an ice maker as an example, this refrigeration system includes an expansion means 10 such as an expansion valve that expands a high-pressure liquefied refrigerant into a vaporized refrigerant, and heat of vaporization taken when the liquefied refrigerant vaporizes. The evaporator 12 that performs the cooling action by the compressor 12, the compressor 14 that sends the vaporized refrigerant that has performed the cooling action in the evaporator 12 to the condenser in a compressed state, and the vaporized refrigerant that is compressed by the compressor 14 is condensed. A condenser 16 that serves as a liquefied refrigerant and a liquid receiver 18 that partially stores the condensed liquefied refrigerant and that supplies the liquefied refrigerant to the expansion means 10 via the pipe 32 are incorporated. A fan 20 is attached to the condenser 16 so that the fan 20 rotates to perform forced air cooling. In this way, when the condenser 16 is of the air-cooled type, it is possible to use an ice maker in an environment where the outside air temperature significantly decreases, such as in the winter, or to separate the condenser 16 such as the separate type so that strong winds are generated. When used under the appropriate conditions, the condensation capacity of the condenser 16 will be improved. However, on the other hand, the condensing pressure in the condenser 16 decreases, so that the evaporator 12 may not exhibit a sufficient refrigerating capacity.

【0003】 このような凝縮圧力の低下に備えて、前記冷凍系には一種の切換弁からなる凝 縮圧力調整器22が介挿されている。この凝縮圧力調整器22は、図4および図 5に示す如く3つのポートB、ポートC、ポートRを有し、その内のポートBは 圧縮機14の吐出側に管体24を介してバイパス接続している。更にポートCは 、凝縮器16の出口側に管体26を介して接続し、またポートRから導出した管 体28は受液器18に上方から開口している。そして常には、凝縮圧力調整器2 2のポートCとポートRとが連通し、凝縮器16で凝縮された高圧の液化冷媒を 前記受液器18に向け供給している。しかるに先に述べた如く、例えば冬場の如 く外気温が低下した環境の下で製氷機を使用すると、凝縮器16での凝縮圧力が 低下して、充分な冷凍能力が発揮されなくなる。このように凝縮圧力が低下する と、凝縮圧力調整器22に内蔵したダイヤフラム(図示せず)が応動し、ポートC とポートRとの間を閉成すると共に、ポートBとポートRとの間を連通させる。 このため圧縮機14で圧縮された高温・高圧の気化冷媒は、凝縮器16を介する ことなく管路24をバイパスして受液器18に供給される。これにより凝縮器1 6の内部に液化冷媒が滞留し(送り出されない)、低下していた凝縮圧力が上昇し 始める。この凝縮圧力が凝縮器16の設定圧力以上になると、前記ダイヤフラム (図示せず)が逆作動してポートCとポートRとの間を再度連通するので、凝縮圧 力は最適値に調整されて蒸発器12での冷凍能力が回復する。In preparation for such a decrease in the condensation pressure, the refrigeration system is provided with a compression pressure regulator 22 which is a kind of switching valve. The condensing pressure regulator 22 has three ports B, C, and R as shown in FIGS. 4 and 5, and the port B among them is bypassed to the discharge side of the compressor 14 via a pipe 24. Connected. Further, the port C is connected to the outlet side of the condenser 16 via the pipe 26, and the pipe 28 led out from the port R is opened to the liquid receiver 18 from above. Then, the port C and the port R of the condensing pressure regulator 22 communicate with each other, and the high-pressure liquefied refrigerant condensed in the condenser 16 is supplied to the liquid receiver 18. However, as described above, when the ice making machine is used in an environment where the outside air temperature is lowered, such as in winter, the condensation pressure in the condenser 16 is lowered, and the sufficient refrigerating capacity cannot be exerted. When the condensing pressure decreases in this way, a diaphragm (not shown) built in the condensing pressure adjuster 22 responds to close the port C and the port R and to close the port B and the port R. To communicate. Therefore, the high-temperature, high-pressure vaporized refrigerant compressed by the compressor 14 is supplied to the liquid receiver 18 bypassing the conduit 24 without passing through the condenser 16. As a result, the liquefied refrigerant stays inside the condenser 16 (is not sent out), and the condensing pressure, which has dropped, starts to rise. When this condensing pressure becomes equal to or higher than the set pressure of the condenser 16, the diaphragm (not shown) reversely operates to re-establish communication between the port C and the port R, so that the condensing pressure is adjusted to an optimum value. The refrigerating capacity of the evaporator 12 is restored.

【0004】 更に前述の冷凍系では、例えば夏場の如く外気温が高くなると、圧縮機14で の放熱条件が悪くなり過熱してしまうことがある。また凝縮器16での凝縮圧力 が高くなると、圧縮機14における圧縮比が大きくなり、この場合も圧縮機14 が過熱してしまうことになる。そこで圧縮機の過熱を防止するために、前記受液 器18と圧縮機14の吸入側とをバイパス接続するキャピラリー管30が冷凍系 中に組込まれている。すなわち受液器18中の液化冷媒は、キャピラリー管30 を介して圧縮機14の吸入側に流入し、ここで気化することによって蒸発器の場 合と同じく気化熱の奪取が行なわれ、該圧縮機14を冷却して過熱防止が図られ る。Further, in the above-mentioned refrigeration system, when the outside air temperature rises, for example, in the summer, the heat radiation condition in the compressor 14 may deteriorate and the compressor 14 may overheat. Further, when the condensation pressure in the condenser 16 becomes high, the compression ratio in the compressor 14 becomes large, and in this case also, the compressor 14 overheats. Therefore, in order to prevent overheating of the compressor, a capillary tube 30 that bypass-connects the liquid receiver 18 and the suction side of the compressor 14 is incorporated in the refrigeration system. That is, the liquefied refrigerant in the liquid receiver 18 flows into the suction side of the compressor 14 through the capillary tube 30 and is vaporized there, so that the heat of vaporization is taken away as in the case of the evaporator, and The machine 14 is cooled to prevent overheating.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

前述の如く冷凍系に凝縮圧力調整器22を設けることにより、冬場のように外 気温が低い時期にも、凝縮器16における凝縮圧力の低下を防止することができ る。また該冷凍系に、受液器18と圧縮機14とをバイパスするキャピラリー管 30を設けることによって、圧縮機14の過熱を防止することができる。しかし 、これら凝縮圧力調整器22およびキャピラリー管30を配設した冷凍系では、 殊に冬期において以下の如き不都合を生じている。すなわち、外気温が大きく下 がる冬場は、凝縮器16での凝縮圧力が低下すると凝縮圧力調整器22が作動し 、図4に関して先に述べた如く、ポートBとポートRとを連通して凝縮圧力を上 昇させる。これにより蒸発器12での冷却能力の低下は回避されるが、その反面 として圧縮機14からの高圧の気化冷媒はダイレクトに受液器18に供給されて いるため、この受液器18に貯留した液化冷媒は前記管体32を介して強制的に 送り出される。従ってキャピラリー管30から圧縮機14にバイパスされる液化 冷媒の量が増大し、必要以上に該圧縮機14を冷却させてしまう欠点がある。ま たキャピラリー管30からバイパスした液化冷媒と、蒸発器12から到来する気 化冷媒とが多量に混合された状態(気液混相状態)で圧縮機14に流入すると、該 圧縮機14に過大な負荷を加えて損傷させるに至る欠点も指摘される。 As described above, by providing the condensing pressure regulator 22 in the refrigeration system, it is possible to prevent the condensing pressure in the condenser 16 from decreasing even when the outside air temperature is low, such as in winter. Further, by providing the refrigeration system with the capillary tube 30 that bypasses the liquid receiver 18 and the compressor 14, overheating of the compressor 14 can be prevented. However, in the refrigeration system in which the condensing pressure regulator 22 and the capillary tube 30 are arranged, the following disadvantages occur particularly in winter. That is, in the winter when the outside air temperature greatly decreases, when the condensation pressure in the condenser 16 decreases, the condensation pressure regulator 22 operates, and as described above with reference to FIG. 4, the ports B and R are connected to each other. Increase condensing pressure. This prevents the cooling capacity of the evaporator 12 from decreasing, but on the other hand, since the high-pressure vaporized refrigerant from the compressor 14 is directly supplied to the receiver 18, the receiver 18 stores it. The liquefied refrigerant thus produced is forcibly sent out through the pipe 32. Therefore, there is a drawback that the amount of the liquefied refrigerant bypassed from the capillary tube 30 to the compressor 14 increases and the compressor 14 is cooled more than necessary. Further, when the liquefied refrigerant bypassed from the capillary tube 30 and the vaporized refrigerant coming from the evaporator 12 are mixed in a large amount (gas-liquid mixed phase state) and flow into the compressor 14, the compressor 14 is excessively large. It also points out the drawbacks that lead to damage under load.

【0006】 また前記キャピラリー管30により液化冷媒を圧縮機14の吸入側にバイパス させる過熱防止機構を冷凍系に設ける場合は、凝縮圧力調整器22を配設するこ とは必ずしも要件ではない。しかし図6に示す冷凍系のように、キャピラリー管 30に冷媒流入のオン・オフを行なう弁体を全く付けない構成では、常に液化冷 媒が圧縮機14の流入側にバイパスされているので、外気温が低くなると液バッ クを生じ圧縮機使用範囲から逸脱してしまう。そこで図7に示す冷凍系の如く、 キャピラリー管30に冷媒流入のオン・オフを行なう電磁弁40を設け、この電 磁弁40を例えば圧縮機14に配設した温度センサ42により開閉制御する提案 もなされている。例えば図7において、圧縮機14の温度が設定値より越えたこ とを温度センサ42が検出すると、電磁弁40が開放して液化冷媒がキャピラリ ー管30を介して圧縮機14の流入側にバイパスされ、該圧縮機14の過熱防止 がなされる。逆に圧縮機14の温度が設定値より低下したことを温度センサ42 が検出すると、電磁弁40が閉成して液化冷媒のバイパスを停止させるので圧縮 機14の温度低下が防止される。しかし温度センサ42には、電磁弁40の発停 回数を減らすために復帰幅が設定してある。このため外気温度が変化する液化冷 媒のバイパス切換えポイント付近では、電磁弁40の発停回数が増加して冷凍能 力に変動を生じ、温度的にも不安定となる欠点がある。しかも電磁弁40は高価 な冷凍機部品であって製造コストを上昇させる一因となっており、故障により交 換を要するときは、冷凍系中の冷媒を全て大気中に放出しなければならず、不経 済であると共に環境保護の見地からも好ましくない、という欠点も指摘される。Further, when the refrigeration system is provided with an overheat prevention mechanism for bypassing the liquefied refrigerant to the suction side of the compressor 14 by the capillary tube 30, it is not always a requirement to provide the condensation pressure regulator 22. However, as in the refrigeration system shown in FIG. 6, in the configuration in which the valve body for turning on / off the refrigerant inflow is not attached to the capillary tube 30, since the liquefied cooling medium is always bypassed to the inflow side of the compressor 14, When the outside air temperature becomes low, liquid backing occurs and the compressor deviates from the usable range. Therefore, as in the refrigeration system shown in FIG. 7, the capillary tube 30 is provided with an electromagnetic valve 40 for turning on / off the refrigerant flow, and the electromagnetic valve 40 is proposed to be opened / closed by a temperature sensor 42 provided in the compressor 14, for example. Has also been done. For example, in FIG. 7, when the temperature sensor 42 detects that the temperature of the compressor 14 exceeds the set value, the solenoid valve 40 is opened and the liquefied refrigerant is bypassed to the inflow side of the compressor 14 via the capillary tube 30. Thus, the compressor 14 is prevented from overheating. Conversely, when the temperature sensor 42 detects that the temperature of the compressor 14 has dropped below the set value, the electromagnetic valve 40 is closed to stop the bypass of the liquefied refrigerant, so that the temperature of the compressor 14 is prevented from dropping. However, the temperature sensor 42 has a reset width in order to reduce the number of times the solenoid valve 40 is started and stopped. Therefore, in the vicinity of the bypass switching point of the liquefied cooling medium where the outside air temperature changes, the number of times the solenoid valve 40 is started and stopped increases and the refrigerating capacity fluctuates. Moreover, the solenoid valve 40 is an expensive refrigerating machine component, which is one of the factors that increase the manufacturing cost. When the replacement is required due to a failure, all the refrigerant in the refrigerating system must be released to the atmosphere. However, it is pointed out that it is economically disadvantageous and is not preferable from the viewpoint of environmental protection.

【0007】[0007]

【考案の目的】[The purpose of the device]

この考案は、従来技術に係る冷凍系に内在している前記欠点に鑑み、これを好 適に解決するべく提案されたものであって、空冷凝縮器の凝縮圧力が低下した際 に、圧縮機からの気化冷媒を凝縮圧力調整器により受液器の側に切換えて凝縮圧 力を上昇させ、また前記受液器からの液化冷媒をキャピラリー管により前記圧縮 機の吸入側にバイパスさせて該圧縮機の過熱を防止するようにした冷凍系におい て、外気温の低い冬場等における液化冷媒のバイパス量の増大を抑制し、これに より圧縮機の損傷を好適に防止させ得る手段を提供することを目的とする。更に 本願の別の目的は、キャピラリー管により液化冷媒を圧縮機の吸入側にバイパス させる圧縮機過熱防止機構を設けた冷凍系において、高価な冷凍機部品である電 磁弁を使用することなく液化冷媒のバイパス制御を可能とし、併せて故障修理に 際しても冷凍系中の冷媒を放出する必要のない手段を提供することにある。 In view of the above-mentioned drawbacks inherent in the refrigeration system according to the prior art, the present invention has been proposed in order to solve the above-mentioned disadvantages. When the condensing pressure of the air-cooled condenser is reduced, the compressor is The condensed refrigerant from the receiver is switched to the receiver side by the condensing pressure regulator to increase the condensing pressure, and the liquefied refrigerant from the receiver is bypassed by the capillary tube to the suction side of the compressor to compress the compressed refrigerant. In a refrigeration system designed to prevent overheating of a compressor, to provide a means for suppressing an increase in the amount of bypass of the liquefied refrigerant in winter when the outside air temperature is low, thereby appropriately preventing damage to the compressor. With the goal. Another object of the present application is to liquefy a liquefied refrigerant in a refrigeration system equipped with a compressor overheat prevention mechanism that bypasses the liquefied refrigerant to the suction side of the compressor without using an electromagnetic valve that is an expensive refrigerator part. Another object of the present invention is to provide a means that enables refrigerant bypass control and that does not need to discharge the refrigerant in the refrigeration system even when repairing a failure.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

前述した問題点を解決し、最初の目的を好適に達成するため本考案は、気化冷 媒を圧縮する圧縮機と、この圧縮された気化冷媒を凝縮して液化冷媒にする凝縮 器と、この液化冷媒の一部を貯留する受液器と、この受液器から到来する液化冷 媒を膨張させて気化冷媒とする膨張手段と、この気化冷媒により冷却作用を営ん だ後に、該気化冷媒を前記圧縮機の吸入側に戻す蒸発器と、常には前記凝縮器と 受液器とを連通し、凝縮圧力が低下すると前記圧縮機と受液器との連通側に切換 わる凝縮圧力調整器と、前記受液器を前記圧縮機の吸入側にバイパスさせるキャ ピラリー管とを備え、前記凝縮圧力調整器の切換状態に応じて、前記受液器にお ける液化冷媒の貯留レベルに高低差が生ずるようにした冷凍系において、 前記キャピラリー管を前記受液器にバイパスさせる接続部位を、該受液器にお ける冷媒貯留レベルの高位限界と低位限界との略中間位置に選定し、 前記凝縮圧力調整器が前記凝縮器と受液器とを連通していて、前記受液器中の 冷媒貯留レベルが高位限界にあるときは、該受液器から前記圧縮機への気化冷媒 のバイパス量を増大させて該圧縮機の過熱を防止し、 また前記凝縮圧力調整器が前記圧縮機と受液器との連通側に切換わり、前記受 液器中の冷媒貯留レベルが低位限界にあるときは、該受液器から前記圧縮機への 気化冷媒のバイパス量を減少させて該圧縮機の冷却を停止するよう構成したこと を特徴とする。 In order to solve the above-mentioned problems and preferably achieve the first object, the present invention provides a compressor for compressing a vaporized cooling medium, a condenser for condensing the compressed vaporized refrigerant into a liquefied refrigerant, and A receiver that stores a part of the liquefied refrigerant, an expansion means that expands the liquefied cooling medium that comes from this receiver to become a vaporized refrigerant, and a cooling action performed by this vaporized refrigerant before An evaporator that returns to the suction side of the compressor, a condenser pressure regulator that always connects the condenser and the liquid receiver, and switches to the communication side between the compressor and the liquid receiver when the condensation pressure decreases. And a capillary tube that bypasses the liquid receiver to the suction side of the compressor, and there is a level difference in the storage level of the liquefied refrigerant in the liquid receiver depending on the switching state of the condensation pressure regulator. In the refrigeration system that is set to generate, the capillary tube is The connection part bypassed to the liquid receiver is selected at an approximately intermediate position between the high limit and the low limit of the refrigerant storage level in the liquid receiver, and the condensing pressure regulator is connected to the condenser and the liquid receiver. When the refrigerant storage level in the receiver is at the high limit, the bypass amount of vaporized refrigerant from the receiver to the compressor is increased to prevent overheating of the compressor. When the condensing pressure regulator is switched to the communication side between the compressor and the liquid receiver and the refrigerant storage level in the liquid receiver is at the lower limit, the liquid from the liquid receiver to the compressor is It is characterized in that the bypass amount of the vaporized refrigerant is reduced to stop the cooling of the compressor.

【0009】 同じく前述した問題点を解決し、2番目の目的を達成するため本願の別の考案 は、気化冷媒を圧縮する圧縮機と、この圧縮された気化冷媒を凝縮して液化冷媒 にする凝縮器と、この凝縮器からの液化冷媒を膨張させて気化冷媒とする膨張手 段と、この気化冷媒により冷却作用を営んだ後に、該気化冷媒を前記圧縮機の吸 入側に戻す蒸発器と、前記凝縮器を前記圧縮機の吸入側にバイパスさせるキャピ ラリー管とを備える冷凍系において、 前記キャピラリー管に電気ヒータを付設し、この電気ヒータへの通電を制御す ることにより、該キャピラリー管における液化冷媒のバイパス量を変化させ得る ようにしたことを特徴とする。Also, in order to solve the above-mentioned problems and achieve the second object, another invention of the present application is a compressor for compressing a vaporized refrigerant, and condensing the compressed vaporized refrigerant into a liquefied refrigerant. A condenser, an expansion means for expanding the liquefied refrigerant from the condenser into a vaporized refrigerant, and an evaporator for returning the vaporized refrigerant to the suction side of the compressor after performing a cooling action by the vaporized refrigerant. And a capillary tube for bypassing the condenser to the suction side of the compressor, in a refrigeration system, an electric heater is attached to the capillary tube, and the energization of the electric heater is controlled to control the capillary tube. The feature is that the amount of bypass of the liquefied refrigerant in the pipe can be changed.

【0010】[0010]

【実施例】【Example】

次に本考案に係る冷凍系における圧縮機の損傷防止機構を、好適な一実施例を 挙げて、添付図面を参照しながら以下説明する。図1は、実施例に係る圧縮機の 損傷防止機構を備える冷凍系の回路図であって、基本回路は図4および図5に関 して述べたところと同一である。従って同一の部材については、同じ符号で指示 することとする。この実施例では、キャピラリー管30を前記受液器18にバイ パスさせる接続部位を、該受液器18における冷媒貯留レベルの高位限界と低位 限界との略中間位置に選定し、これにより圧縮機14の損傷を好適に防止させ得 るようになっている。このような構成とした理由は、考案者による以下の知見に よっている。前述した冷凍系における受液器18では、夏場のように外気温が高 い時期と冬場のように外気温が低い時期とでは、この受液器18に貯留される液 化冷媒のレベルに相当の差がある。すなわち図4の冬場の例で示すように、凝縮 圧力調整器22が切換作動してポートBとポートRとが連通すると、圧縮機14 からの気化冷媒は受液器18に直接向かうので、該凝縮器14中には液化冷媒が 滞留することになる。従って受液器18における液化冷媒の貯留レベルは、凝縮 器14に滞留している液化冷媒の分だけ低下している(受液器18での低い冷媒 貯留レベルを符号Lmで指示する)。また図5の夏場の例で示すように、凝縮圧 力調整器22が作動せず、ポートCとポートRとが連通しているときは、受液器 18における液化冷媒の貯留レベルは高い位置に保持されている(受液器18で の高い冷媒貯留レベルを符号Hmで指示する)。 Next, a compressor damage prevention mechanism in a refrigeration system according to the present invention will be described below with reference to the accompanying drawings by way of a preferred embodiment. FIG. 1 is a circuit diagram of a refrigeration system including a damage prevention mechanism for a compressor according to an embodiment, and the basic circuit is the same as that described with reference to FIGS. 4 and 5. Therefore, the same components will be designated by the same reference numerals. In this embodiment, a connecting portion for bypassing the capillary tube 30 to the liquid receiver 18 is selected at a substantially intermediate position between the high limit and the low limit of the refrigerant storage level in the liquid receiver 18, whereby the compressor is The damage of 14 can be prevented appropriately. The reason for having such a configuration depends on the following findings by the inventor. The liquid receiver 18 in the refrigeration system described above corresponds to the level of the liquefied refrigerant stored in the liquid receiver 18 when the outside air temperature is high, such as in the summer, and when the outside air temperature is low, such as the winter. There is a difference. That is, as shown in the example of winter in FIG. 4, when the condensing pressure regulator 22 is switched and the ports B and R communicate with each other, the vaporized refrigerant from the compressor 14 goes directly to the receiver 18, The liquefied refrigerant will remain in the condenser 14. Therefore, the storage level of the liquefied refrigerant in the liquid receiver 18 is reduced by the amount of the liquefied refrigerant accumulated in the condenser 14 (the low refrigerant storage level in the liquid receiver 18 is indicated by the symbol Lm). Further, as shown in the example of summer in FIG. 5, when the condensation pressure regulator 22 does not operate and the port C and the port R communicate with each other, the storage level of the liquefied refrigerant in the receiver 18 is high. Is held (the high refrigerant storage level in the liquid receiver 18 is indicated by the symbol Hm).

【0011】 このように凝縮圧力調整器22を使用すると、受液器18での冷媒レベルは、 図1に示すように夏場は高位限界Hmにあり、また冬場は低位限界Lmにあるこ とになる。そこでキャピラリー管30の受液器18に対する接続部位を、高位限 界Hmと低位限界Lmとの略中間位置に選定すれば、夏場には受液器18中の液 化冷媒はキャピラリー管30に問題なく流入するが、冬場には液化冷媒はキャピ ラリー管30への流入が不可能になる。例えば圧縮機14が過熱し易く、その冷 却を必要とする夏場には、受液器18に接続するキャピラリー管30の開口部は 高位限界Hmの下方にあって液化冷媒の層と連通している。従って液化冷媒がキ ャピラリー管30にバイパスする量は増大し、該圧縮機14に対する冷却が好適 になされる。また圧縮機14の冷却を必要としない冬場には、受液器18に接続 するキャピラリー管30の開口部は低位限界Lmの上方に位置し、気化冷媒の層 と連通している。従って液化冷媒がキャピラリー管30にバイパスする量は極端 に減少し、該圧縮機14を冷却することがない。殊に図4で述べた従来の冷凍系 では、冬場に液化冷媒がキャピラリー管30にバイパスする量が多く、気化冷媒 と液化冷媒とが混合状態で圧縮機14に供給されて、該圧縮機14に過大な負荷 を与えて損傷をもたらす欠点があったが、本実施例によればこの欠点が解決され る。When the condensing pressure regulator 22 is used as described above, the refrigerant level in the receiver 18 is at the high limit Hm in the summer and at the low limit Lm in the winter as shown in FIG. . Therefore, if the connecting portion of the capillary tube 30 to the receiver 18 is selected at a position approximately midway between the high limit Hm and the low limit Lm, the liquefied refrigerant in the receiver 18 causes a problem in the capillary tube 30 in the summer. However, the liquefied refrigerant cannot flow into the capillary tube 30 in winter. For example, in the summer when the compressor 14 easily overheats and needs to be cooled, the opening of the capillary tube 30 connected to the receiver 18 is below the high limit Hm and communicates with the liquefied refrigerant layer. There is. Therefore, the amount by which the liquefied refrigerant bypasses the capillary tube 30 increases, and the compressor 14 is cooled appropriately. Further, in the winter when the compressor 14 does not need to be cooled, the opening of the capillary tube 30 connected to the liquid receiver 18 is located above the lower limit Lm and communicates with the vaporized refrigerant layer. Therefore, the amount of the liquefied refrigerant bypassing the capillary tube 30 is extremely reduced, and the compressor 14 is not cooled. Particularly, in the conventional refrigeration system described in FIG. 4, a large amount of the liquefied refrigerant bypasses the capillary tube 30 in winter, and the vaporized refrigerant and the liquefied refrigerant are supplied to the compressor 14 in a mixed state, and the compressor 14 However, the present embodiment solves this drawback.

【0012】 次に図2は、図1に係る実施例の変形を示すもので、前記キャピラリー管30 に電気ヒータ34を付設し、これによっても冷媒のバイパス量を補助的に制御し 得るようにしたものである。例えば電気ヒータ34は、キャピラリー管30に巻 回されると共にバイパス制御回路38に接続されている。また圧縮機14に設け た温度センサ36が前記制御回路38に接続してある。そしてバイパス制御回路 38は、該温度センサ36が検出した圧縮機14の温度情報に応じて、前記電気 ヒータ34での発熱量を制御する。一例として、圧縮機14の温度を監視してい る温度センサ36は、その温度情報をバイパス制御回路38に入力する。該制御 回路38は、温度センサ36での検出温度が高くなるほど電気ヒータ34への出 力電圧を低くし、また検出温度が低くなるほど電気ヒータ34への出力電圧を高 くする制御を行なう。従って、夏場のように外気温が高く圧縮機14が過熱し易 くなると、温度センサ36の検出温度が高くなる。このため電気ヒータ34への 出力電圧は低くなり、該ヒータ34での発熱量は抑制される。するとキャピラリ ー管30を通過する液化冷媒の気化(ガス化)が減少して冷媒のバイパス量が増大 し、圧縮機14を冷却するので過熱が防止される。逆に冬場は、温度センサ36 の検出温度が低くなるため電気ヒータ34への出力電圧は高くなり、該ヒータ3 4での発熱が促進される。すると液化冷媒はフラッシュガス化して管路通過抵抗 が増加すると共に、キャピラリー管30中の冷媒の比体積が著しく上昇するので バイパス量が減少し、圧縮機14を不必要に冷却する事態が回避される。Next, FIG. 2 shows a modification of the embodiment according to FIG. 1, in which an electric heater 34 is attached to the capillary tube 30 so that the bypass amount of the refrigerant can be supplementarily controlled. It was done. For example, the electric heater 34 is wound around the capillary tube 30 and connected to the bypass control circuit 38. A temperature sensor 36 provided in the compressor 14 is connected to the control circuit 38. Then, the bypass control circuit 38 controls the amount of heat generated by the electric heater 34 according to the temperature information of the compressor 14 detected by the temperature sensor 36. As an example, the temperature sensor 36 monitoring the temperature of the compressor 14 inputs the temperature information to the bypass control circuit 38. The control circuit 38 performs control such that the output voltage to the electric heater 34 decreases as the temperature detected by the temperature sensor 36 increases, and the output voltage to the electric heater 34 increases as the detected temperature decreases. Therefore, when the outside air temperature is high and the compressor 14 is easily overheated like in summer, the temperature detected by the temperature sensor 36 becomes high. Therefore, the output voltage to the electric heater 34 becomes low, and the amount of heat generated by the heater 34 is suppressed. Then, vaporization (gasification) of the liquefied refrigerant passing through the capillary tube 30 is reduced, the bypass amount of the refrigerant is increased, and the compressor 14 is cooled, so that overheating is prevented. On the contrary, in winter, the temperature detected by the temperature sensor 36 becomes low, so that the output voltage to the electric heater 34 becomes high, and heat generation in the heater 34 is accelerated. Then, the liquefied refrigerant is turned into flash gas to increase the passage resistance, and the specific volume of the refrigerant in the capillary tube 30 is significantly increased, so that the bypass amount is decreased and the situation of unnecessary cooling of the compressor 14 is avoided. It

【0013】 図3は本願における別考案の実施例を示すもので、キャピラリー管30に電気 ヒータ34を付設することにより冷媒のバイパス量を制御し得るようになってい る。すなわち、バイパス制御回路38に接続した電気ヒータ34がキャピラリー 管30に巻回され、また圧縮機14のケーシングに直付けした温度センサ36が 前記制御回路38に入力接続されている。そしてバイパス制御回路38は、この 温度センサ36が検出した圧縮機14の温度情報に応じて、前記電気ヒータ34 での発熱量を制御する。その制御の内容としては、温度センサ36の検出温度 に応じて電気ヒータ34への出力電圧を反比例的に増減させる方法と、温度セ ンサ36の検出温度を設定値と比較し、その設定値を閾値として電気ヒータ34 への通電をオン・オフする方法とがある。FIG. 3 shows another embodiment of the present invention, in which an electric heater 34 is attached to the capillary tube 30 so that the bypass amount of the refrigerant can be controlled. That is, the electric heater 34 connected to the bypass control circuit 38 is wound around the capillary tube 30, and the temperature sensor 36 directly attached to the casing of the compressor 14 is input-connected to the control circuit 38. Then, the bypass control circuit 38 controls the amount of heat generated by the electric heater 34 according to the temperature information of the compressor 14 detected by the temperature sensor 36. The contents of the control include a method of increasing / decreasing the output voltage to the electric heater 34 in inverse proportion to the detected temperature of the temperature sensor 36, and a comparison of the detected temperature of the temperature sensor 36 with a set value, There is a method of turning on / off the power supply to the electric heater 34 as the threshold value.

【0014】 先ず前記制御内容のを説明すると、温度センサ36は圧縮機14のケーシン グ温度を監視しており、その温度情報をバイパス制御回路38に入力する。この 制御回路38は、温度センサ36での検出温度が高くなるほど電気ヒータ34へ の出力電圧を低くし、また検出温度が低くなるほど電気ヒータ34への出力電圧 を高くする制御を行なう。例えば、夏場のように外気温が高くて圧縮機14が過 熱し易くなると、温度センサ36の検出温度が高くなる。このため電気ヒータ3 4への出力電圧は低くなり、該ヒータ34での発熱量は抑制される。するとキャ ピラリー管30を通過する液化冷媒の気化(ガス化)が減少して冷媒のバイパス量 が増大し、従って圧縮機14を冷却して過熱を防止することができる。逆に冬場 のように圧縮機14を冷却する必要に乏しいときは、温度センサ36の検出温度 が低くなるため電気ヒータ34への出力電圧は高くなり、該ヒータ34での発熱 が促進される。すると液化冷媒はフラッシュガス化して管路通過抵抗が増加する と共に、キャピラリー管30中の冷媒の比体積が著しく上昇する結果としてバイ パス量が減少し、圧縮機14を不必要に冷却する事態が回避される。First, the control contents will be described. The temperature sensor 36 monitors the casing temperature of the compressor 14, and inputs the temperature information to the bypass control circuit 38. The control circuit 38 performs control such that the higher the temperature detected by the temperature sensor 36, the lower the output voltage to the electric heater 34, and the lower the detected temperature, the higher the output voltage to the electric heater 34. For example, when the outside air temperature is high and the compressor 14 easily overheats, such as in summer, the temperature detected by the temperature sensor 36 increases. Therefore, the output voltage to the electric heater 34 becomes low, and the amount of heat generated by the heater 34 is suppressed. Then, the vaporization (gasification) of the liquefied refrigerant passing through the capillary tube 30 is reduced and the bypass amount of the refrigerant is increased. Therefore, the compressor 14 can be cooled to prevent overheating. On the contrary, when it is not necessary to cool the compressor 14 as in the winter, the temperature detected by the temperature sensor 36 becomes low, so that the output voltage to the electric heater 34 becomes high and heat generation in the heater 34 is accelerated. Then, the liquefied refrigerant is turned into flash gas to increase the passage resistance, and the specific volume of the refrigerant in the capillary tube 30 is significantly increased. As a result, the bypass amount is decreased, and the compressor 14 is unnecessarily cooled. Avoided.

【0015】 次に前記制御内容のを説明すると、温度センサ36による検出温度は、バイ パス制御回路38において予め設定した温度値と常に比較されるようになってい る。そして夏場のように圧縮機14が過熱し易くなって、温度センサ36の検出 温度が前記設定値より高くなる場合は、電気ヒータ34への通電は行なわないで おく。すると液化冷媒はキャピラリー管30を通過して圧縮機14に流入し、こ こで気化することにより該圧縮機14の冷却がなされる。また冬場のように圧縮 機14を冷却する必要のないときは、温度センサ36の検出温度が前記設定値よ り低くなって電気ヒータ34への通電が行なわれる。すなわち液化冷媒はフラッ シュガス化して管路通過抵抗が増加すると共に、キャピラリー管30中の冷媒の 比体積が著しく上昇する。その結果としてバイパス量が減少し、圧縮機14を不 必要に冷却する事態が回避される。なおおよびの何れの場合も、温度センサ 36を圧縮機14に設けて圧縮機温度を直接検知しているが、圧縮機14の吐出 側に温度センサ36を設けることにより、該圧縮機14から吐出される気化冷媒 の温度を検出するようにしてもよい。また電気ヒータ34をキャピラリー管30 に付帯させる位置としては、該キャピラリー管30の出口付近に設定する場合と 、該キャピラリー管30の入口付近に設定する場合とが考えられる。このときは 、後者の管入口付近に電気ヒータ34を設ける方が、液化冷媒はフラッシュガス 化して管路通過抵抗が増加し、バイパス量が減少することになる。このように図 3に示す実施例によれば、キャピラリー管により液化冷媒を圧縮機の吸入側にバ イパスさせる圧縮機過熱防止機構を設けた冷凍系において、高価な冷凍機部品で ある電磁弁を使用することなく液化冷媒のバイパス制御を可能とし、併せて故障 修理に際しても冷凍系中の冷媒を放出する必要がないので、経済的である。Next, the control contents will be described. The temperature detected by the temperature sensor 36 is always compared with a temperature value preset in the bypass control circuit 38. When the compressor 14 is likely to overheat and the temperature detected by the temperature sensor 36 becomes higher than the set value as in the summer, the electric heater 34 is not energized. Then, the liquefied refrigerant passes through the capillary tube 30 and flows into the compressor 14, where it is vaporized to cool the compressor 14. When it is not necessary to cool the compressor 14 as in the winter, the temperature detected by the temperature sensor 36 becomes lower than the set value and the electric heater 34 is energized. That is, the liquefied refrigerant is turned into flash gas to increase the passage resistance, and the specific volume of the refrigerant in the capillary tube 30 is significantly increased. As a result, the amount of bypass is reduced, and unnecessary cooling of the compressor 14 is avoided. In each of the cases 1 and 2, the temperature sensor 36 is provided in the compressor 14 to directly detect the compressor temperature. However, by providing the temperature sensor 36 on the discharge side of the compressor 14, discharge from the compressor 14 is performed. You may make it detect the temperature of the vaporized refrigerant. The position where the electric heater 34 is attached to the capillary tube 30 may be set near the outlet of the capillary tube 30 or may be set near the inlet of the capillary tube 30. At this time, if the electric heater 34 is provided near the latter pipe inlet, the liquefied refrigerant becomes flash gas and the passage resistance increases, and the bypass amount decreases. As described above, according to the embodiment shown in FIG. 3, in the refrigeration system provided with the compressor overheat prevention mechanism for bypassing the liquefied refrigerant to the suction side of the compressor by the capillary tube, the solenoid valve which is an expensive refrigerating machine component is used. It is possible to bypass the liquefied refrigerant without using it, and at the same time, it is not necessary to discharge the refrigerant in the refrigeration system even when repairing a failure, which is economical.

【0016】[0016]

【考案の効果】[Effect of device]

本考案に係る冷凍系における圧縮機の損傷防止機構によれば、空冷凝縮器の 凝縮圧力が低下した際に、圧縮機からの気化冷媒を凝縮圧力調整器により受液器 の側に切換えて凝縮圧力を上昇させ、また前記受液器からの液化冷媒をキャピラ リー管により前記圧縮機の吸入側にバイパスさせて該圧縮機の過熱を防止するよ うにした冷凍系または凝縮器からの液化冷媒をキャピラリー管により圧縮機の 吸入側にバイパスさせて該圧縮機の過熱を防止するようにした冷凍系において、 外気温の低い冬場等における液化冷媒のバイパス量の増大を抑制することができ 、従って圧縮機の損傷を好適に防止させることができる。 According to the compressor damage prevention mechanism in the refrigeration system of the present invention, when the condensation pressure of the air-cooled condenser decreases, the vaporized refrigerant from the compressor is switched to the receiver side by the condensation pressure regulator and condensed. The liquefied refrigerant from the refrigeration system or the condenser, which raises the pressure and prevents the compressor from overheating by bypassing the liquefied refrigerant from the receiver to the suction side of the compressor by the capillary tube, In a refrigeration system that prevents overheating of the compressor by bypassing it on the suction side of the compressor with a capillary tube, it is possible to suppress an increase in the bypass amount of the liquefied refrigerant in the winter when the outside temperature is low, and thus the compression It is possible to preferably prevent damage to the machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例に係る圧縮機の損傷防止機構を備える
冷凍系の回路図である。
FIG. 1 is a circuit diagram of a refrigeration system including a compressor damage prevention mechanism according to an embodiment.

【図2】 図1に示す実施例の変形に係る冷凍系の回路
図である。
FIG. 2 is a circuit diagram of a refrigeration system according to a modification of the embodiment shown in FIG.

【図3】 本願における別考案の実施例に係る圧縮機の
損傷防止機構を備える冷凍系の回路図である。
FIG. 3 is a circuit diagram of a refrigeration system including a compressor damage prevention mechanism according to another embodiment of the present invention.

【図4】 従来技術に係る製氷機の冷凍系を示す回路図
である。
FIG. 4 is a circuit diagram showing a refrigeration system of an ice making machine according to a conventional technique.

【図5】 従来技術に係る製氷機の冷凍系を示す回路図
である。
FIG. 5 is a circuit diagram showing a refrigeration system of an ice making machine according to a conventional technique.

【図6】 キャピラリー管に冷媒流入のオン・オフを行
なう弁体を全く付けない構成とした冷凍系の回路図であ
る。
FIG. 6 is a circuit diagram of a refrigeration system in which a valve body for turning on / off a refrigerant inflow is not attached to the capillary tube.

【図7】 キャピラリー管に冷媒流入のオン・オフを行
なう弁体を付けた構成とした冷凍系の回路図である。
FIG. 7 is a circuit diagram of a refrigeration system in which a capillary tube is provided with a valve element for turning on / off a refrigerant inflow.

【符号の説明】[Explanation of symbols]

10 膨張手段, 12 蒸発器, 14 圧縮機,
16 凝縮器,18 受液器, 22 凝縮圧力調整
器,30 キャピラリー管, 34 電気ヒータ, H
m 高位限界,Lm 低位限界
10 expansion means, 12 evaporator, 14 compressor,
16 condenser, 18 liquid receiver, 22 condensation pressure regulator, 30 capillary tube, 34 electric heater, H
m high limit, Lm low limit

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 気化冷媒を圧縮する圧縮機(14)と、この
圧縮された気化冷媒を凝縮して液化冷媒にする凝縮器(1
6)と、この液化冷媒の一部を貯留する受液器(18)と、こ
の受液器(18)から到来する液化冷媒を膨張させて気化冷
媒とする膨張手段(10)と、この気化冷媒により冷却作用
を営んだ後に、該気化冷媒を前記圧縮機(14)の吸入側に
戻す蒸発器(12)と、常には前記凝縮器(16)と受液器(18)
とを連通し、凝縮圧力が低下すると前記圧縮機(14)と受
液器(18)との連通側に切換わる凝縮圧力調整器(22)と、
前記受液器(18)を前記圧縮機(14)の吸入側にバイパスさ
せるキャピラリー管(30)とを備え、前記凝縮圧力調整器
(22)の切換状態に応じて、前記受液器(18)における液化
冷媒の貯留レベルに高低差が生ずるようにした冷凍系に
おいて、 前記キャピラリー管(30)を前記受液器(18)にバイパスさ
せる接続部位を、該受液器(18)における冷媒貯留レベル
の高位限界(Hm)と低位限界(Lm)との略中間位置に選定
し、 前記凝縮圧力調整器(22)が前記凝縮器(16)と受液器(18)
とを連通していて、前記受液器(18)中の冷媒貯留レベル
が高位限界(Hm)にあるときは、該受液器(18)から前記圧
縮機(14)への気化冷媒のバイパス量を増大させて該圧縮
機(14)の過熱を防止し、 また前記凝縮圧力調整器(22)が前記圧縮機(14)と受液器
(18)との連通側に切換わり、前記受液器(18)中の冷媒貯
留レベルが低位限界(Lm)にあるときは、該受液器(18)か
ら前記圧縮機(14)への気化冷媒のバイパス量を減少させ
て該圧縮機(14)の冷却を停止するよう構成したことを特
徴とする冷凍系における圧縮機の損傷防止機構。
1. A compressor (14) for compressing a vaporized refrigerant and a condenser (1) for condensing the compressed vaporized refrigerant into a liquefied refrigerant.
6), a liquid receiver (18) that stores a part of this liquefied refrigerant, an expansion means (10) that expands the liquefied refrigerant coming from this liquid receiver (18) into a vaporized refrigerant, and this vaporization After performing a cooling action by the refrigerant, an evaporator (12) that returns the vaporized refrigerant to the suction side of the compressor (14), and always the condenser (16) and the liquid receiver (18).
And a condensing pressure regulator (22) that switches to the communicating side of the compressor (14) and the liquid receiver (18) when the condensing pressure decreases,
A condenser pipe (30) for bypassing the liquid receiver (18) to the suction side of the compressor (14), and the condensing pressure regulator
According to the switching state of (22), in a refrigeration system in which a difference in height occurs in the storage level of the liquefied refrigerant in the liquid receiver (18), the capillary tube (30) to the liquid receiver (18). The connection part to be bypassed is selected at a substantially intermediate position between the high limit (Hm) and the low limit (Lm) of the refrigerant storage level in the liquid receiver (18), and the condensation pressure regulator (22) is the condenser. (16) and receiver (18)
When the refrigerant storage level in the liquid receiver (18) is in a high limit (Hm), the vaporized refrigerant bypasses from the liquid receiver (18) to the compressor (14). To prevent the compressor (14) from overheating, and the condensing pressure regulator (22) includes the compressor (14) and a liquid receiver.
(18) is switched to the communication side, when the refrigerant storage level in the liquid receiver (18) is at the lower limit (Lm), from the liquid receiver (18) to the compressor (14) A mechanism for preventing damage to a compressor in a refrigeration system, characterized in that cooling of the compressor (14) is stopped by reducing a bypass amount of vaporized refrigerant.
【請求項2】 気化冷媒を圧縮する圧縮機(14)と、この
圧縮された気化冷媒を凝縮して液化冷媒にする凝縮器(1
6)と、この凝縮器(16)からの液化冷媒を膨張させて気化
冷媒とする膨張手段(10)と、この気化冷媒により冷却作
用を営んだ後に、該気化冷媒を前記圧縮機(14)の吸入側
に戻す蒸発器(12)と、前記凝縮器(16)を前記圧縮機(14)
の吸入側にバイパスさせるキャピラリー管(30)とを備え
る冷凍系において、 前記キャピラリー管(30)に電気ヒータ(34)を付設し、こ
の電気ヒータ(34)への通電を制御することにより、該キ
ャピラリー管(30)における液化冷媒のバイパス量を変化
させ得るようにしたことを特徴とする冷凍系における圧
縮機の損傷防止機構。
2. A compressor (14) for compressing a vaporized refrigerant and a condenser (1) for condensing the compressed vaporized refrigerant into a liquefied refrigerant.
6), expansion means (10) for expanding the liquefied refrigerant from this condenser (16) into a vaporized refrigerant, and after performing a cooling action by this vaporized refrigerant, the vaporized refrigerant is compressed by the compressor (14). The evaporator (12) for returning to the suction side of the compressor and the condenser (16) for the compressor (14)
In a refrigeration system including a capillary tube (30) to be bypassed to the suction side of the, by attaching an electric heater (34) to the capillary tube (30), by controlling the energization of the electric heater (34), A mechanism for preventing damage to a compressor in a refrigeration system, wherein a bypass amount of a liquefied refrigerant in a capillary tube (30) can be changed.
JP1694593U 1993-03-11 1993-03-11 Damage prevention mechanism of compressor in refrigeration system Pending JPH0669662U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1694593U JPH0669662U (en) 1993-03-11 1993-03-11 Damage prevention mechanism of compressor in refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1694593U JPH0669662U (en) 1993-03-11 1993-03-11 Damage prevention mechanism of compressor in refrigeration system

Publications (1)

Publication Number Publication Date
JPH0669662U true JPH0669662U (en) 1994-09-30

Family

ID=11930279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1694593U Pending JPH0669662U (en) 1993-03-11 1993-03-11 Damage prevention mechanism of compressor in refrigeration system

Country Status (1)

Country Link
JP (1) JPH0669662U (en)

Similar Documents

Publication Publication Date Title
KR100757592B1 (en) air-condition heat pump
EP1146299B1 (en) Integrated electronic refrigerant management system
KR930002429B1 (en) Refrigerating cycle apparatus
US4286438A (en) Condition responsive liquid line valve for refrigeration appliance
EP2381180B1 (en) Heat pump type hot water supply apparatus
US7210303B2 (en) Transcritical heat pump water heating system using auxiliary electric heater
US7028494B2 (en) Defrosting methodology for heat pump water heating system
US5711161A (en) Bypass refrigerant temperature control system and method
JP2010532462A (en) High temperature gas defrosting method and apparatus
WO2005047782A1 (en) Refrigerant system with controlled refrigerant charge amount
CN110234944B (en) Refrigeration system
JP2002228258A (en) Heat pump water heater
US6301911B1 (en) Compressor operating envelope management
US6857280B1 (en) Air conditioner
JP2000205670A (en) Vapor compression type refrigeration cycle
JPH11287524A (en) Natural circulation combination type air-conditioner
JPH11182946A (en) Refrigerating device
JPH0669662U (en) Damage prevention mechanism of compressor in refrigeration system
JPH05157372A (en) Electric part box cooler for air conditioner
US5241832A (en) Automobile air conditioning system
JPH06185836A (en) Freezer
JP2000274840A (en) Refrigerator
JP2000179952A (en) Refrigeration cycle controller
JP3291886B2 (en) Air conditioner and control method thereof
JP2000074513A (en) Supercritical refrigerating cycle