JPH0669461A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0669461A
JPH0669461A JP4124806A JP12480692A JPH0669461A JP H0669461 A JPH0669461 A JP H0669461A JP 4124806 A JP4124806 A JP 4124806A JP 12480692 A JP12480692 A JP 12480692A JP H0669461 A JPH0669461 A JP H0669461A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
polycrystalline silicon
high resistance
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4124806A
Other languages
Japanese (ja)
Inventor
Michio Komatsu
理夫 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4124806A priority Critical patent/JPH0669461A/en
Publication of JPH0669461A publication Critical patent/JPH0669461A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To assure the operation of a RAM cell and facilitate manufacture of a more highly integrated S-RAM by a method wherein a barrier layer which prevents impurities from being diffused from the gate electrode part of a MOS transistor into a load resistor part is provided between the gate electrode and the load resistor as their connection part. CONSTITUTION:Field oxide films 102, gate oxide films 103, N<+>-type gate polycrystalline silicon layers 104 which are to be the gate electrodes of a transistor and N<+>-type diffused layers 105 which are to be the source and drain of the transistor are formed on a P-type silicon substrate 101. Then a contact hole is drilled in an insulating film 106 and a high resistance polycrystalline silicon layer 108 which is to be the load resistor is formed and connected to the N<+>-type gate polycrystalline silicon layer 104. A titanium nitride layer 107 is provided between the gate electrode 104 and the high resistance polycrystalline silicon layer 108 as their connection part. The titanium nitride film 107 functions as a barrier which prevents impurities from being diffused from the gate electrode 104 into the high resistance polycrystalline silicon layer 108 and avoids the decline of a resistance value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路装置に関
し、特に高抵抗負荷型のスタティックRAMに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a high resistance load type static RAM.

【0002】[0002]

【従来の技術】近年、CMOSあるいはBiCMOSに
ロジックとスタティックRAM(以後SRAMと記す)
を混載したLSIの開発が盛んであり、搭載されるSR
AMの集積度としてもますます高集積なものが必要とさ
れるようになってきている。このような用途に用いられ
るRAMセル構成として従来、図4に示すような高抵抗
負荷型のセルがある。同図においてQ1,Q2はドライ
バトランジスタでありR1,R2の高抵抗を負荷として
ドライブし、インバータ2段の正帰還で論理をラッチす
る構成である。また、Q3,Q4はトランスファーゲー
トとしてラッチされたデータの読出し、書込みをコント
ロールする。
2. Description of the Related Art In recent years, CMOS and BiCMOS are provided with logic and static RAM (hereinafter referred to as SRAM).
The development of LSIs with mixed
As for the degree of integration of AM, more highly integrated ones are required. Conventionally, as a RAM cell configuration used for such an application, there is a high resistance load type cell as shown in FIG. In the figure, Q1 and Q2 are driver transistors, which are driven by using the high resistance of R1 and R2 as a load, and the logic is latched by positive feedback of two stages of inverters. Further, Q3 and Q4 control the reading and writing of the latched data as transfer gates.

【0003】このような高抵抗負荷型のセルでは、高集
積性を達成するためにトランジスタQ1,Q2と負荷抵
抗R1,R2の接続部Aは図3に示すような素子構造で
実現している。同図はQ1,R1,Q3の接続部近傍の
みの素子断面を示したもので、P型シリコン基板301
の上にフィールド酸化膜302,ゲート酸化膜303を
形成し、Q1,Q3のゲート電極となるゲートポリシリ
コン304を形成し、ソース、ドレインとなるN+ 型拡
散層305を形成し、その上の絶縁膜306に接続孔を
開孔して高抵抗ポリシリコン307を100〜200n
m(ナノメータ)程度の膜厚に堆積し、パターン形成し
て負荷抵抗としている。
In such a high resistance load type cell, the connection portion A between the transistors Q1 and Q2 and the load resistors R1 and R2 is realized by an element structure as shown in FIG. 3 in order to achieve high integration. . The figure shows a cross section of the element only in the vicinity of the connection portion of Q1, R1, and Q3.
A field oxide film 302 and a gate oxide film 303 are formed on top of this, gate polysilicon 304 to be the gate electrodes of Q1 and Q3 is formed, and an N + -type diffusion layer 305 to be the source and drain is formed. A connection hole is opened in the insulating film 306 and a high resistance polysilicon 307 is formed in a thickness of 100 to 200 n.
It is deposited to a film thickness of about m (nanometer) and patterned to form a load resistance.

【0004】負荷抵抗とゲート電極の接続をこのように
することにより、各々を配線材で接続する場合に比べて
高集積化が図られる。
By connecting the load resistor and the gate electrode in this way, higher integration can be achieved as compared with the case where each is connected by a wiring material.

【0005】[0005]

【発明が解決しようとする課題】この従来のセル構造で
は静消費電流を少なくするために負荷抵抗として1011
オーム程度のものを使う必要があるが、図5の実線に示
すように抵抗長を小さくしていくと2μm程度から急激
に抵抗値が減少しRAMセルとしての動作が保障できな
くなる。
In this conventional cell structure, the load resistance is 10 11 in order to reduce the static current consumption.
Although it is necessary to use an ohmic material, if the resistance length is reduced as shown by the solid line in FIG. 5, the resistance value suddenly decreases from about 2 μm and the operation as a RAM cell cannot be guaranteed.

【0006】この原因は図3で示したゲート電極と高抵
抗ポリシリコンの接続部において、ゲートポリシリコン
を低抵抗化するために多量にドープした不純物(例えば
リン)が、後工程の熱処理で高抵抗ポリシリコン側へ拡
散し、抵抗が下がるためである。この現象はゲート電極
としてタングステンポリサイド(=N+ 型ポリシリコン
+タングステンシリサイドの2層構造)等を使った場合
でも同様で、シリサイド中の不純物拡散が速いため高不
純物濃度側(ゲート電極)から低不純物濃度側(高抵抗
ポリシリコン)に拡散するのを防ぐことはできない。す
なわち、セル動作を保障するためには抵抗長をある程度
以上小さくできないという問題点があった。
The cause of this is that impurities (eg, phosphorus) heavily doped to reduce the resistance of the gate polysilicon at the connection portion between the gate electrode and the high resistance polysilicon shown in FIG. This is because the resistance diffuses to the polysilicon side and the resistance decreases. This phenomenon is the same when tungsten polycide (= two-layer structure of N + type polysilicon + tungsten silicide) or the like is used as the gate electrode. Since the impurity diffusion in the silicide is fast, the high impurity concentration side (gate electrode) It cannot prevent diffusion to the low impurity concentration side (high resistance polysilicon). That is, there is a problem that the resistance length cannot be reduced to a certain extent or more to guarantee the cell operation.

【0007】[0007]

【課題を解決するための手段】本発明の高抵抗負荷型ス
タティックRAMセルは、MOSトランジスタのゲート
電極と負荷抵抗の接続部にゲート電極部から負荷抵抗部
への不純物拡散を抑えるためのバリア層を備えている。
A high resistance load type static RAM cell of the present invention is a barrier layer for suppressing impurity diffusion from a gate electrode portion to a load resistance portion at a connection portion between a gate electrode of a MOS transistor and the load resistance. Is equipped with.

【0008】[0008]

【実施例】図1は本発明の第1の実施例のスタティック
RAMセルの、図4のドライバトランジスタと負荷抵抗
の接続部Aおよびその近傍を示す断面図である。P型シ
リコン基板101上にフィールド酸化膜102、ゲート
酸化膜103を形成し、トランジスタQ1,Q3(また
はQ2,Q4)のゲート電極となるN+ 型のゲートポリ
シリコン104およびソース、ドレインとなるN+ 型の
拡散層105を形成し、その上の絶縁膜106接続孔を
開孔して負荷抵抗R1(またはR2)となる高抵抗ポリ
シリコン108を形成接続したものであるが、図3の従
来セルと異なる点はゲート電極104と高抵抗ポリシリ
コン108の接続部に窒化チタン層107をはさんだこ
とである。この層の形成方法としては例えば300nm
程度の膜厚の絶縁膜106を堆積後、ゲート電極104
上に接続孔を開孔し、全面に50nm程度の膜厚を窒化
チタンを形成した後、レジストを塗布して接続孔を埋
め、全面エッチバックして後に接続孔内に残ったレジス
トを除去するといった方法を用いれば良い。
1 is a sectional view showing a static RAM cell according to a first embodiment of the present invention, showing a connection portion A between a driver transistor and a load resistance shown in FIG. 4 and its vicinity. A field oxide film 102 and a gate oxide film 103 are formed on a P-type silicon substrate 101, and N + -type gate polysilicon 104 serving as a gate electrode of the transistors Q1 and Q3 (or Q2 and Q4) and N serving as a source and a drain are formed. The + -type diffusion layer 105 is formed, the insulating film 106 connection hole is formed on the diffusion layer 105, and the high-resistance polysilicon 108 serving as the load resistance R1 (or R2) is formed and connected. The difference from the cell is that a titanium nitride layer 107 is sandwiched between the connection portion of the gate electrode 104 and the high resistance polysilicon 108. The method for forming this layer is, for example, 300 nm
After depositing the insulating film 106 having a thickness of about 100 nm, the gate electrode 104
After forming a connection hole on the upper surface and forming titanium nitride with a film thickness of about 50 nm on the entire surface, a resist is applied to fill the connection hole, and the entire surface is etched back to remove the resist remaining in the connection hole. Such a method may be used.

【0009】この窒化チタン層107はゲート電極10
4から高抵抗ポリシリコン108への不純物拡散に対す
るバリアとして働き、図5の点線で示すように抵抗長2
μm以下で急激に抵抗値が低下することを防止する。
This titanium nitride layer 107 is formed on the gate electrode 10.
4 acts as a barrier against impurity diffusion from the high resistance polysilicon 108 to the resistance length 2 as shown by the dotted line in FIG.
It is possible to prevent the resistance value from drastically decreasing when the thickness is less than μm.

【0010】図2は本発明の第2の実施例のセル断面図
である。図2において図1と同じ機能の箇所は同一の符
号で示している。この第2の実施例は図1の第1の実施
例と異なり、バリア層となる窒化チタン207をゲート
電極104の上全体に形成している。この構造の形成方
法としては300nm程度の膜厚のゲート電極材を全面
堆積した後に全面に窒化チタンを50nm程度の膜厚に
形成し、ゲート電極104のパターン時に同時にエッチ
ングして形成する方法で良いため、図1の場合のような
エッチバック等の余分な工程がいらずに済むという利点
がある。
FIG. 2 is a cell sectional view of the second embodiment of the present invention. 2, parts having the same functions as those in FIG. 1 are denoted by the same reference numerals. The second embodiment is different from the first embodiment shown in FIG. 1 in that titanium nitride 207 serving as a barrier layer is formed on the entire gate electrode 104. As a method of forming this structure, a method may be used in which a gate electrode material having a film thickness of about 300 nm is entirely deposited, titanium nitride is formed to a film thickness of about 50 nm on the entire surface, and the gate electrode 104 is simultaneously etched when the gate electrode 104 is patterned. Therefore, there is an advantage that an extra step such as etch back as in the case of FIG. 1 is not required.

【発明の効果】以上説明したように本発明は、ゲート電
極と高抵抗ポリシリコンの接続部に不純物拡散を抑える
バリア層を設けたため、抵抗長を小さくしても抵抗値が
急激に低下せずRAMセルの動作を保障でき、その結果
として、より高集積なSRAMを製造することを可能と
する。
As described above, according to the present invention, since the barrier layer for suppressing the impurity diffusion is provided at the connecting portion between the gate electrode and the high resistance polysilicon, the resistance value does not decrease sharply even if the resistance length is reduced. The operation of the RAM cell can be guaranteed, and as a result, it is possible to manufacture a highly integrated SRAM.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のメモリセルを示す断面
図。
FIG. 1 is a sectional view showing a memory cell according to a first embodiment of the present invention.

【図2】本発明の第2の実施例のメモリセルを示す断面
図。
FIG. 2 is a sectional view showing a memory cell according to a second embodiment of the present invention.

【図3】従来のメモリセルを示す断面図。FIG. 3 is a sectional view showing a conventional memory cell.

【図4】高抵抗負荷型RAM型メモリセルの回路図。FIG. 4 is a circuit diagram of a high resistance load type RAM memory cell.

【図5】高抵抗ポリシリコンの抵抗値の抵抗長依存性を
示す図。
FIG. 5 is a diagram showing the resistance length dependency of the resistance value of high-resistance polysilicon.

【符号の説明】[Explanation of symbols]

101,301 P型シリコン基板 102,302 フィールド酸化膜 103,303 ゲート酸化膜 104,304 ゲートポリシリコン 105,305 N+ 型拡散層 106,306 絶縁膜 107,207 窒化チタン 108,308 高抵抗ポリシリコン101, 301 P-type silicon substrate 102, 302 Field oxide film 103, 303 Gate oxide film 104, 304 Gate polysilicon 105, 305 N + type diffusion layer 106, 306 Insulating film 107, 207 Titanium nitride 108, 308 High resistance polysilicon

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/90 C 7514−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/90 C 7514-4M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高抵抗負荷型のスタティックRAMのセ
ル部において、MOSトランジスタのゲート電極と負荷
抵抗接続部にバリア層を備えることを特徴とする半導体
集積回路装置。
1. A semiconductor integrated circuit device comprising: a cell portion of a high resistance load type static RAM, wherein a barrier layer is provided at a gate electrode of a MOS transistor and a load resistance connection portion.
【請求項2】 バリア層として窒化チタンを用いること
を特徴とする請求項1に記載の半導体集積回路装置。
2. The semiconductor integrated circuit device according to claim 1, wherein titanium nitride is used as the barrier layer.
JP4124806A 1992-05-18 1992-05-18 Semiconductor integrated circuit device Withdrawn JPH0669461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4124806A JPH0669461A (en) 1992-05-18 1992-05-18 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4124806A JPH0669461A (en) 1992-05-18 1992-05-18 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0669461A true JPH0669461A (en) 1994-03-11

Family

ID=14894588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4124806A Withdrawn JPH0669461A (en) 1992-05-18 1992-05-18 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0669461A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19542240A1 (en) * 1994-11-11 1996-05-15 Nec Corp Semiconductor device for static random access memory
KR100312144B1 (en) * 1998-05-01 2001-11-03 가네꼬 히사시 Semiconductor device and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19542240A1 (en) * 1994-11-11 1996-05-15 Nec Corp Semiconductor device for static random access memory
DE19542240C2 (en) * 1994-11-11 2002-04-25 Nec Corp Semiconductor device and method for its manufacture
KR100312144B1 (en) * 1998-05-01 2001-11-03 가네꼬 히사시 Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5536674A (en) Process for forming a static-random-access memory cell
US5336916A (en) SRAM cell and structure with polycrystalline p-channel load devices
EP0523830A1 (en) A stacked CMOS SRAM cell with polysilicon transistor load
JP3167366B2 (en) Integrated circuit device and method of manufacturing the same
JP3686144B2 (en) Semiconductor memory device and manufacturing method thereof
KR940001122B1 (en) Semiconductor device and method of manufacturing the same
US5462894A (en) Method for fabricating a polycrystalline silicon resistive load element in an integrated circuit
JPH07183399A (en) Semiconductor integrated circuit device and fabrication thereof
JPH06275724A (en) Semiconductor device and manufacture thereof
US5068201A (en) Method for forming a high valued resistive load element and low resistance interconnect for integrated circuits
JP3064472B2 (en) Contact structure of integrated circuit device
JP2000003966A (en) Semiconductor storage device and its manufacture
JPS62174968A (en) Semiconductor device
JPH01264257A (en) Semiconductor device
JPH05102432A (en) Static semiconductor memory device and manufacture thereof
US5323045A (en) Semiconductor SRAM with low resistance power line
JPH0669461A (en) Semiconductor integrated circuit device
JPH0799254A (en) Semiconductor device and manufacture thereof
JPH0727980B2 (en) Semiconductor device having high resistance layer
JP3089657B2 (en) Stack type SRAM
JPH10242301A (en) Semiconductor memory and manufacture thereof
JP3089638B2 (en) Semiconductor memory device
EP0517408B1 (en) Sram cell and structure with polycrystalline p-channel load devices
JPH06103741B2 (en) Semiconductor memory device
WO1997005652A1 (en) Sram device and production method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803