JPH0669261U - Immersion pipe structure of vacuum degassing tank - Google Patents

Immersion pipe structure of vacuum degassing tank

Info

Publication number
JPH0669261U
JPH0669261U JP1187893U JP1187893U JPH0669261U JP H0669261 U JPH0669261 U JP H0669261U JP 1187893 U JP1187893 U JP 1187893U JP 1187893 U JP1187893 U JP 1187893U JP H0669261 U JPH0669261 U JP H0669261U
Authority
JP
Japan
Prior art keywords
refractory
molten steel
vacuum degassing
inert gas
gas injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1187893U
Other languages
Japanese (ja)
Other versions
JP2601407Y2 (en
Inventor
満司 堀
武美 堂原
三木  隆
清衛 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1993011878U priority Critical patent/JP2601407Y2/en
Publication of JPH0669261U publication Critical patent/JPH0669261U/en
Application granted granted Critical
Publication of JP2601407Y2 publication Critical patent/JP2601407Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

(57)【要約】 【目的】 浸漬管に供給される不活性ガスが、耐火物表
面に集中することなく溶鋼中に効率良く小気泡化され、
また、不活性ガス吹込み位置より上部の耐火物侵食損傷
を抑えることによって、浸漬管の取換え頻度を減らし、
さらに、溶融環流速度を速めることで脱ガス精錬処理時
間を短縮させる。 【構成】 内張り耐火物の壁面に、ガス供給孔の形成位
置から上方に向かって内径を増大させた傾斜面を形成す
るか、ガス供給孔の噴出口を、この噴出口上部の内張り
耐火物の壁面よりも内側に突設させた突出部を形成す
る。
(57) [Summary] [Purpose] The inert gas supplied to the immersion pipe is efficiently made into small bubbles in the molten steel without concentrating on the refractory surface,
Also, by suppressing the refractory erosion damage above the inert gas injection position, the dip pipe replacement frequency is reduced,
Furthermore, the degassing refining process time is shortened by increasing the melt reflux rate. [Composition] An inclined surface with an increased inner diameter is formed upward from the position where the gas supply hole is formed on the wall surface of the refractory lining, or the jet outlet of the gas supply hole is provided with the lining refractory above the spout. A protruding portion is formed so as to protrude inward from the wall surface.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、環流式真空脱ガス法に使用される真空脱ガス槽の浸漬管構造に関す る。 The present invention relates to a submerged pipe structure of a vacuum degassing tank used in a reflux type vacuum degassing method.

【0002】[0002]

【従来の技術】[Prior art]

環流式真空脱ガス法は、RH法とも呼ばれ、鋼中の不純ガス、非金属介在物等 を低減させることができるため、純度の高い鋼材の生産に適用されている。 The reflux vacuum degassing method, which is also called the RH method, is applicable to the production of high-purity steel materials because it can reduce impure gas, nonmetallic inclusions, etc. in the steel.

【0003】 使用する真空脱ガス槽には、上昇管と下降管からなる2本の浸漬管が設けられ 、これら上昇管および下降管を取鍋等の溶鋼中に浸して使用される。真空脱ガス 槽内を減圧することにより、前記上昇管から溶鋼を吸い上げ、環流用のガス吹込 口より不活性ガスを吹き込んでそのガス浮上力を利用して、溶鋼を真空脱ガス槽 内に導き、下降管より下降させて溶鋼を循環、脱ガス精錬処理が行われる。The vacuum degassing tank to be used is provided with two dipping pipes composed of an ascending pipe and a descending pipe, and the ascending pipe and the descending pipe are immersed in molten steel such as a ladle for use. By depressurizing the inside of the vacuum degassing tank, the molten steel is sucked up from the riser pipe, an inert gas is blown from the gas inlet for recirculation, and the molten steel is guided into the vacuum degassing tank by utilizing the gas levitation force. Then, the molten steel is circulated by being lowered from the downcomer pipe, and degassing refining processing is performed.

【0004】 環流式真空脱ガス法において、従来より、溶鋼処理能力増大のため種々の対策 が取られており、その一つとして、環流量を増やすことを目的とし、浸漬管全体 の内径を拡大することが行われている。In the reflux type vacuum degassing method, various measures have been taken so far to increase the molten steel processing capacity. As one of them, the inner diameter of the entire immersion pipe is increased with the aim of increasing the reflux flow rate. Is being done.

【0005】 しかしながら、このような手段では、他の関連設備との問題で種々の制約を受 け、設備の改造も必要となるうえ、浸漬管のライニング層が薄くなり、寿命が短 くなって取換え作業が煩雑になる。However, such a method suffers from various restrictions due to problems with other related equipment, requires remodeling of the equipment, and the lining layer of the immersion pipe is thin, resulting in a short life. The replacement work becomes complicated.

【0006】 また、環流速度を早め脱ガス処理時間の短縮を図るため、複数のガス吹込み孔 を備えた真空脱ガス槽の浸漬管が、実開平1−164752号公報において開示 されている。Further, in order to increase the reflux speed and shorten the degassing treatment time, an immersion pipe of a vacuum degassing tank having a plurality of gas blowing holes is disclosed in Japanese Utility Model Laid-Open No. 1-164752.

【0007】 図5は同公報に開示された浸漬管20の構造を示す縦断面図で、図中、21は 分割成形された焼成耐火物、22は外張りキャスタブル、23は芯金、24は取 付け用のフランジである。供給された不活性ガスは、焼成耐火物21のガス吹込 孔25から、脱ガス槽(図示せず)に吸い上げられる溶鋼流通路26内の溶鋼中 へと吹込まれる。FIG. 5 is a vertical cross-sectional view showing the structure of the immersion pipe 20 disclosed in the publication, in which 21 is a split fired refractory material, 22 is an outer castable metal, 23 is a core metal, and 24 is It is a mounting flange. The supplied inert gas is blown into the molten steel in the molten steel flow passage 26 sucked up by a degassing tank (not shown) from the gas blowing hole 25 of the fired refractory 21.

【0008】 このようなガス吹込みに際し、溶鋼の環流促進による脱ガス及び非金属介在物 の除去等を効率的に行うためには、吹き込まれる不活性ガスの溶鋼中の気泡径を 小さくさせることが必要となる。In order to efficiently perform degassing and removal of non-metallic inclusions by promoting recirculation of molten steel during such gas blowing, it is necessary to reduce the bubble diameter of the inert gas to be blown in the molten steel. Is required.

【0009】 しかしながら、この浸漬管20は、不活性ガス吹込孔25が、内張り耐火物2 1の壁面と同一面上にあるため、壁面に沿って上昇するガスの集合による大気泡 となり、この吹き込まれた不活性ガスと共に上昇する溶鋼の乱流からくる、いわ ゆるバックアタックにより、ガス吹込み位置より上部へ約200mmにわたって 、耐火物侵食損傷が大きくなる等の問題がある。However, since the inert gas blowing hole 25 is on the same plane as the wall surface of the refractory lining 21 in the dipping pipe 20, the dipping pipe 20 becomes large bubbles due to the collection of gas rising along the wall surface and blows into this. Due to the so-called back attack caused by the turbulent flow of molten steel rising together with the generated inert gas, there is a problem that the refractory erosion damage becomes large over about 200 mm above the gas injection position.

【0010】[0010]

【考案が解決しようとする課題】[Problems to be solved by the device]

本考案において解決すべき課題は、浸漬管に供給される不活性ガスが、耐火物 表面近傍に集合することなく溶鋼中に効率良く小気泡化され、不活性ガス吹込み 位置より上部の耐火物侵食損傷を抑えることによって、浸漬管の取換え頻度を減 らし、さらに、溶鋼環流速度を速めることで脱ガス精錬処理時間の短縮を図るこ とにある。 The problem to be solved in the present invention is that the inert gas supplied to the immersion pipe is efficiently made into small bubbles in the molten steel without gathering in the vicinity of the refractory surface, and the refractory above the inert gas injection position is By suppressing erosion damage, it is possible to reduce the frequency of replacement of the immersion pipe, and to accelerate the molten steel circulation speed to shorten the degassing refining process time.

【0011】[0011]

【課題を解決しようとする手段】[Means for Solving Problems]

本考案は、溶鋼流通路を形成する内張り耐火物壁面に、不活性ガス吹込み用の ガス吹込孔を設けた真空脱ガス槽の浸漬管において、前記ガス吹込孔のガス吹込 口配設位置から上方に向かって、溶鋼流通路の内径を拡大させた傾斜面を形成し たことによって、上記課題を解決した。 The present invention relates to a submerged pipe of a vacuum degassing tank in which a gas injection hole for injecting an inert gas is provided on a wall surface of a refractory lining which forms a molten steel flow passage, from a position where the gas injection port of the gas injection hole is arranged. The above problem was solved by forming an inclined surface in which the inner diameter of the molten steel flow passage was enlarged upward.

【0012】 この傾斜面の傾斜角としては、上昇管の溶鋼流通路内垂直線若しくはガス吹込 口下部壁面延長線に対して、約18度以内、特に3〜12度の範囲とするのが好 ましい。The angle of inclination of the inclined surface is preferably within about 18 degrees, particularly 3 to 12 degrees, with respect to the vertical line in the molten steel flow passage of the rising pipe or the extension line of the lower wall surface of the gas injection port. Good

【0013】 また、溶鋼流通路を形成する内張り耐火物壁面に不活性ガス吹込用のガス吹込 孔を設けた真空脱ガス槽の浸漬管において、前記ガス吹込孔の吹込口を同吹込口 上部の内張り耐火物壁面よりも内側に30〜50mm突設させた突出部を形成し たものとすることもできる。Further, in a submersion pipe of a vacuum degassing tank in which a gas injection hole for injecting an inert gas is provided on a wall surface of a refractory lining which forms a molten steel flow passage, the injection port of the gas injection hole is located above the injection port. It is also possible to form a projecting portion projecting 30 to 50 mm inside the wall surface of the refractory lining.

【0014】 なお、内張り耐火物としては、焼成れんが、不焼成れんが、不定形材料をブロ ック化したもの等が使用される。As the lining refractory material, there are used fired bricks, unfired bricks, blocks of an amorphous material, and the like.

【0015】[0015]

【作用】[Action]

溶鋼へ吹込まれた不活性ガスは、一般に、図3に示すように、上方向に約24 度(中心線からみて12度)の角度の範囲内で上昇,拡散することが知られてい る。本考案はこの性状を利用したもので、不活性ガス拡散角に沿うよう内張り円 周側に向けて入り込ませることによって、ガスの集合がなくなり、また溶鋼上昇 速度も加速され、吹き込まれた不活性ガスによる効率的な溶鋼の環流が可能とな る。 It is known that the inert gas blown into the molten steel generally rises and diffuses within an angle range of about 24 degrees (12 degrees from the center line) upward as shown in FIG. The present invention utilizes this property.By letting gas flow toward the circumferential side of the lining along the diffusion angle of the inert gas, gas aggregation is eliminated, and the rising rate of molten steel is accelerated, and the inert gas blown in is also accelerated. It is possible to efficiently recirculate molten steel with gas.

【0016】 図4は、傾斜角度と鋼中カーボンの減少量との関係を示す図で、同図に示すよ うに、特に、傾斜角度が3〜12度の範囲内で、優れた効果が見られた。また傾 斜角の上限は18度程度が望ましい。これ以上になると、構造的な問題として、 上昇管のガス吹込口より上部のライニング層が薄くなり、寿命を縮めることにな る。FIG. 4 is a diagram showing the relationship between the inclination angle and the reduction amount of carbon in steel. As shown in FIG. 4, particularly when the inclination angle is in the range of 3 to 12 degrees, an excellent effect can be seen. Was given. The upper limit of the tilt angle is preferably about 18 degrees. Above this, as a structural problem, the lining layer above the gas inlet of the riser becomes thinner, resulting in a shorter life.

【0017】 また、このような効果は、上記した傾斜面を形成することなく、ガス吹込孔の 吹込口を同吹込口上部の内張り耐火物壁面よりも内側に30〜50mm突設させ ることによっても、同様に奏することができる。In addition, such an effect can be obtained by forming the gas inlet of the gas injection hole 30 to 50 mm inward from the wall surface of the lining refractory at the upper portion of the injection opening without forming the above-mentioned inclined surface. Can be played similarly.

【0018】 つまり、傾斜面または突出部を形成することで、上昇管ガス吹込口上部の内径 が、ガス拡散角と一致した大きさとなることで、不活性ガス気泡の集合を減らし て上昇する溶鋼の乱流を減少させて、侵食作用を抑え、さらに環流速度を早めさ せる。In other words, by forming the inclined surface or the protruding portion, the inner diameter of the upper portion of the gas inlet of the rising pipe becomes a size that matches the gas diffusion angle, so that the molten steel that rises by reducing the collection of inert gas bubbles It reduces turbulent flow, reduces erosion, and accelerates perfusion velocity.

【0019】[0019]

【実施例】【Example】

図1は本考案の第1の実施例を示す真空脱ガス槽の浸漬管構造の縦断面図であ る。 FIG. 1 is a vertical sectional view of a dip tube structure of a vacuum degassing tank showing a first embodiment of the present invention.

【0020】 同図において、1a,1b,1cは3段からなる内張り耐火物、2は外張りキ ャスタブル、3は外張りキャスタブル2内に形成された耐火物保持用及びガスシ ール用の芯金、4は取付け用のフランジである。In the figure, 1a, 1b and 1c are three-tiered refractory linings, 2 is an outer castable, and 3 is a core for holding a refractory and a gas seal formed in the outer castables 2. Gold and 4 are mounting flanges.

【0021】 内張り耐火物1a,1b,1cは、内部に水平断面が円形の溶鋼流通路5を形 成する。中段の内張り耐火物1bには、不活性ガス吹込管(図示せず)と連通し たガス吹込孔6が形成されている。さらに内張り耐火物1bのガス吹込口7の形 成位置から上方に向かって、内径をD1 からD2 に増大させ、ここを傾斜面8と している。本実施例では、傾斜面8が、ガス吹込口7の配設位置より下部壁面の 延長線に対して、12度となるように形成した。The refractory linings 1 a, 1 b, 1 c form a molten steel flow passage 5 having a horizontal horizontal section inside. A gas injection hole 6 communicating with an inert gas injection pipe (not shown) is formed in the middle lining refractory 1b. Further, the inner diameter is increased from D 1 to D 2 from the position where the gas inlet 7 of the refractory lining 1b is formed to the upper side, and this is the inclined surface 8. In this embodiment, the inclined surface 8 is formed so as to form an angle of 12 degrees with respect to the extension line of the lower wall surface from the position where the gas injection port 7 is provided.

【0022】 上記構成において、不活性ガス供給管から供給された不活性ガスは、内張り耐 火物1bの不活性ガス吹込孔6から、溶鋼流通路5内を真空脱ガス槽(図示せず )に吸い上げられる溶鋼中に吹込まれる。その際、不活性ガス吹込口7上部の壁 面に12度の傾斜面8が形成されているため、吹込まれた不活性ガスが、この傾 斜面8に片寄ることなく拡散しながら上昇する。これによって、気泡の集合もな くなり、環流速度を速めることができる。また、ガス吹込口7上部の傾斜面8の 角度と合うように不活性ガスが拡散上昇し、ガス吹込口7上部の内張り耐火物壁 面と不活性ガスによる溶鋼乱流が減少するため、侵食作用が減り、浸漬管の取り 換え頻度が減少する。In the above-mentioned configuration, the inert gas supplied from the inert gas supply pipe is supplied from the inert gas injection hole 6 of the lining refractory 1b to the inside of the molten steel flow passage 5 in a vacuum degassing tank (not shown). It is blown into the molten steel that is sucked up by. At that time, since a 12-degree inclined surface 8 is formed on the wall surface above the inert gas inlet 7, the injected inert gas rises while diffusing without being biased to the inclined surface 8. As a result, the collection of bubbles is eliminated and the recirculation velocity can be increased. In addition, the inert gas diffuses and rises to match the angle of the inclined surface 8 above the gas inlet 7, and the turbulent flow of molten steel due to the inert gas and the lining refractory wall surface above the gas inlet 7 is reduced, resulting in erosion. The effect is reduced and the dip tube replacement frequency is reduced.

【0023】 図1に示す浸漬管を実際のRH炉槽において使用したところ、鋼中カーボン量 を10-3 ×15%まで下げる処理時間(分/チャージ)が、従来構造では20 分を要していたところを15分で可能となった。更に、浸漬管の耐火物寿命は、 従来の45〜50回処理が、110回へと向上して浸漬管交換頻度も減り、簡単 な構造で真空脱ガス処理能力を大巾に向上させることができた。When the dip pipe shown in FIG. 1 was used in an actual RH furnace tank, it took 20 minutes for the conventional structure to reduce the carbon content in steel to 10 −3 × 15% (minute / charge). It was possible in 15 minutes. Further, the refractory life of the immersion pipe is improved to 110 times from the conventional treatment of 45 to 50 times, the frequency of immersion pipe replacement is reduced, and the vacuum degassing treatment capacity can be greatly improved with a simple structure. did it.

【0024】 更に図2は、本考案の第2の実施例を示す縦断面図である。なお図2に示す実 施例において、図1の真空脱ガス槽の浸漬管構造に対応するものは、同じ符号を 付けて説明を省略する。Further, FIG. 2 is a vertical sectional view showing a second embodiment of the present invention. In the embodiment shown in FIG. 2, the parts corresponding to the immersion pipe structure of the vacuum degassing tank of FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0025】 本実施例の浸漬管は、4段からなる第1,第2,第3,第4の内張り耐火物1 0a,10b,10c,10dで構成し、第3の内張り耐火物10cに不活性ガ ス吹込孔6を設け、さらに、第1,第2,第4の内張り耐火物10a,10b, 10dの壁面よりも、内側へ30mm突設させて突出部11を形成しガス吹込口 7を設けている。The dip tube of this embodiment is composed of four stages of first, second, third and fourth refractory linings 10a, 10b, 10c and 10d, and is used as a third refractory lining 10c. An inert gas blow-in hole 6 is provided, and further, a protrusion 11 is formed by projecting 30 mm inward from the wall surfaces of the first, second, and fourth refractory linings 10a, 10b, 10d to form a gas blow-in port. 7 is provided.

【0026】 なお、このガス吹込孔6は上向きに穿孔され、上昇する溶鋼流に吹込み易くし 、突出部11も角を落として溶鋼流の抵抗を少なくした。It should be noted that the gas injection hole 6 is bored upward so that the rising molten steel flow can be easily injected, and the projection 11 is also angled to reduce the resistance of the molten steel flow.

【0027】 このような構造によっても、第3の耐火物10cの突出部11と、第2の耐火 物10bとの間の段差によって、上部へ約200mm前後にわたって耐火物と不 活性ガスの気泡を含んだ溶鋼の乱流発生を減少させることができ、12度の傾斜 角を持たせた図1の実施例と同様の効果を得られる。特に図1のものに比べ、内 張り耐火物の形状が簡単ですむ。Even with such a structure, due to the step between the protruding portion 11 of the third refractory 10c and the second refractory 10b, the refractory and the inert gas bubbles are blown to the upper part for about 200 mm. It is possible to reduce the generation of turbulent flow of the contained molten steel, and it is possible to obtain the same effect as that of the embodiment of FIG. 1 having a tilt angle of 12 degrees. In particular, the shape of the refractory lining is simpler than that of Fig. 1.

【0028】[0028]

【考案の効果】[Effect of device]

本考案によって以下の効果を奏することができる。 The present invention has the following effects.

【0029】 (1)傾斜面あるいは突起の形成により、不活性ガスの拡散が効果的に行われ、 上昇管内の溶鋼比重も均一に下げることができ、環流速度が向上し溶鋼脱ガス反 応の促進が達成され、脱ガス精錬処理効率の向上が可能になった。(1) Due to the formation of the inclined surface or the protrusion, the inert gas is effectively diffused, the specific gravity of the molten steel in the rising pipe can be uniformly reduced, the reflux velocity is improved, and the molten steel degassing reaction is improved. Acceleration has been achieved and it has become possible to improve the efficiency of degassing and refining.

【0030】 (2)吹込みガスのバックアタックが軽減されることから、耐火物の侵食も小さ くなり、浸漬管の寿命が向上した。(2) Since the back attack of the blown gas is reduced, the erosion of the refractory is reduced, and the life of the immersion pipe is improved.

【0031】 (3)浸漬管交換頻度の減少により、真空脱ガス処理能力が大巾に向上した。(3) The vacuum degassing treatment capacity was greatly improved by reducing the frequency of immersion tube replacement.

【0032】 (4)従来の浸漬管の金物構造を変更する必要もなく施工できる。(4) Construction can be performed without changing the conventional metal structure of the immersion pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の第1実施例である真空脱ガス槽の浸漬
管構造の縦断面図である。
FIG. 1 is a vertical sectional view of a dip tube structure of a vacuum degassing tank according to a first embodiment of the present invention.

【図2】本考案の第2実施例である真空脱ガス槽の浸漬
管構造の縦断面図である。
FIG. 2 is a vertical sectional view of a dip tube structure of a vacuum degassing tank according to a second embodiment of the present invention.

【図3】溶鋼中におけるガス拡散状態を示す図である。FIG. 3 is a diagram showing a gas diffusion state in molten steel.

【図4】傾斜角度と鋼中カーボンの減少量との関係を示
す図である。
FIG. 4 is a diagram showing a relationship between an inclination angle and a reduction amount of carbon in steel.

【図5】従来の浸漬管構造を示す縦断面図である。FIG. 5 is a vertical sectional view showing a conventional immersion pipe structure.

【符号の説明】[Explanation of symbols]

1a〜1c,10a〜10d 内張り耐火物 2 外張りキャスタブル 3 芯金 4 フランジ 5 溶鋼流通路 6 ガス吹込孔 7 ガス吹込口 8 傾斜面 11 突出部 1a-1c, 10a-10d Inner refractory 2 Outer castable 3 Core metal 4 Flange 5 Molten steel flow passage 6 Gas injection hole 7 Gas injection port 8 Inclined surface 11 Projection part

───────────────────────────────────────────────────── フロントページの続き (72)考案者 三木 隆 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鐵所内 (72)考案者 平山 清衛 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Takashi Miki Inventor Takashi Miki, Kashima-cho, Kashima-cho, 3 Oita, Kashima Steel Works, Sumitomo Metal Industries, Ltd. Address: Sumitomo Metal Industries Co., Ltd. Kashima Works

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 溶鋼流通路を形成する内張り耐火物壁面
に、不活性ガス吹込み用のガス吹込孔を設けた真空脱ガ
ス槽の浸漬管において、前記ガス吹込孔のガス吹込口配
設位置から上方に向かって、溶鋼流通路の内径を拡大さ
せた傾斜面を形成したことを特徴とする真空脱ガス槽の
浸漬管構造。
1. A submerged pipe of a vacuum degassing tank having a gas injection hole for injecting an inert gas in a wall surface of a refractory lining which forms a molten steel flow passage, in which a gas injection port of the gas injection hole is provided. From the above, an immersion pipe structure of a vacuum degassing tank, characterized in that an inclined surface in which the inner diameter of the molten steel flow passage is enlarged is formed.
【請求項2】 溶鋼流通路を形成する内張り耐火物壁面
に、不活性ガス吹込み用のガス吹込孔を設けた真空脱ガ
ス槽の浸漬管において、前記ガス吹込孔のガス吹込口
を、同吹込口上部の溶鋼流通路壁面よりも内側に突設さ
せた突出部を形成したことを特徴とする真空脱ガス槽の
浸漬管構造。
2. In a dip tube of a vacuum degassing tank having a gas injection hole for injecting an inert gas on a wall surface of a refractory lining which forms a molten steel flow passage, the gas injection port of the gas injection hole is the same. A submerged pipe structure for a vacuum degassing tank, characterized in that a projecting portion is formed so as to project inward from a wall surface of the molten steel flow passage at an upper portion of the injection port.
JP1993011878U 1993-03-17 1993-03-17 Immersion tube structure of vacuum degassing tank Expired - Lifetime JP2601407Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993011878U JP2601407Y2 (en) 1993-03-17 1993-03-17 Immersion tube structure of vacuum degassing tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993011878U JP2601407Y2 (en) 1993-03-17 1993-03-17 Immersion tube structure of vacuum degassing tank

Publications (2)

Publication Number Publication Date
JPH0669261U true JPH0669261U (en) 1994-09-27
JP2601407Y2 JP2601407Y2 (en) 1999-11-22

Family

ID=11789994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993011878U Expired - Lifetime JP2601407Y2 (en) 1993-03-17 1993-03-17 Immersion tube structure of vacuum degassing tank

Country Status (1)

Country Link
JP (1) JP2601407Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168860A (en) * 2014-03-07 2015-09-28 黒崎播磨株式会社 vacuum degasser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168860A (en) * 2014-03-07 2015-09-28 黒崎播磨株式会社 vacuum degasser

Also Published As

Publication number Publication date
JP2601407Y2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
JPH0669261U (en) Immersion pipe structure of vacuum degassing tank
JPH0225513A (en) Lower part construction of circulating flow type vacuum degassing apparatus
JPH101712A (en) Brick structure of degassing equipment
JPS5919717Y2 (en) Vacuum degassing equipment
JPS5844912Y2 (en) Molten steel injection equipment
JP2020139180A (en) Slag discharging method and molten metal producing method in an arc-type electric furnace
JPH0696738B2 (en) Vacuum degassing apparatus for ultra-low carbon steel production and operating method
JPH06114510A (en) Method and apparatus for continuously pouring molten metal restraining mixture of non-metallic inclusion
JPH1030118A (en) Method for preventing float-up of bedded brick in vacuum degassing vessel and device therefor
JPS62142715A (en) Immersion pipe for rh vacuum degassing apparatus
JPH09122853A (en) Tundish for continuous casting of high cleanness steel
JPH02247325A (en) Degasification bath
JP3070416B2 (en) Vacuum degassing method for molten steel
JP2001321926A (en) Method for discharging slag and its device
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JP2988737B2 (en) Manufacturing method of ultra-low carbon steel
JPH09122852A (en) Continuous casting method for high cleanness steel with using tundish arranged with gate capable of opening/ closing
JPS5928834B2 (en) Gas pump for stirring molten metal
JP2020139661A (en) Arc type electric furnace, slag-off method for the same and molten metal manufacturing method
JPH02247326A (en) Method for degasification refining and immersed pipe therefor
JPH07238312A (en) Production of ultra low carbon steel and vacuum degassing equipment
JPH051319A (en) Vacuum treatment apparatus for steel
JPS6214118Y2 (en)
JPH02247318A (en) Immersed pipe for degasification refining
JPH0361317A (en) Method for refining dead-soft carbon steel