JPH0669001A - Positive temperature coefficient characteristic thermistor - Google Patents

Positive temperature coefficient characteristic thermistor

Info

Publication number
JPH0669001A
JPH0669001A JP24581292A JP24581292A JPH0669001A JP H0669001 A JPH0669001 A JP H0669001A JP 24581292 A JP24581292 A JP 24581292A JP 24581292 A JP24581292 A JP 24581292A JP H0669001 A JPH0669001 A JP H0669001A
Authority
JP
Japan
Prior art keywords
particles
sodium chloride
carbon
carbon particles
ptc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24581292A
Other languages
Japanese (ja)
Other versions
JP3179879B2 (en
Inventor
Hiroaki Yanagida
博明 柳田
Masaru Miyayama
勝 宮山
Keishin Ohara
佳信 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP24581292A priority Critical patent/JP3179879B2/en
Publication of JPH0669001A publication Critical patent/JPH0669001A/en
Application granted granted Critical
Publication of JP3179879B2 publication Critical patent/JP3179879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the control of positive temperature coefficient(PTC) characteristics furthermore enhancing the thermal resistance by a method wherein electric insulating particles comprising ion crystals and conductive particles previously mixed with one another are compression-molded. CONSTITUTION:Sodium chloride as electric insulating particles put in a resin- made vessel is crushed up using a ball mill and then sieved out to produce specific sodium chloride particles 2. Besides, as for conductive particles, carbon particles 3 are prepared. Next, the sodium chloride particles 2 are wet-mixed with the carbon particles 3 and then a catalyst is removed to produce the mixed powder. The mixed powder filled up in a molding mold is compression-molded to produce a molded product 1. At this time, the conductive particles 3 for controlling the temperature characteristics are blended at higher ratio than conventional one. Besides, the thermal resistance of the electric insulating particles comprising ion crystals is higher than that of conventional organic high molecules. Through these procedures, the control of PTC characteristics can be facilitated furthermore enabling the thermal resistance to be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性を有する正特性
サーミスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor having heat resistance.

【0002】[0002]

【従来の技術】正特性サーミスタ〔以下、PTC(Posi
tive Teperature Coefficient)サーミスタという〕と
は、正の抵抗−温度係数、つまり温度の上昇に伴って抵
抗値が上昇する素子である。
2. Description of the Related Art Positive temperature coefficient thermistors [hereinafter referred to as PTC (Posi
A positive resistance-temperature coefficient is a positive resistance-temperature coefficient, that is, an element whose resistance value increases with increasing temperature.

【0003】そのような正の温度特性、すなわちPTC
特性には、例えば図5に示すように、緩やかに抵抗値が
増加するA特性と、所定の温度を越えると急峻に抵抗値
が上昇するB特性とがある。A特性は主に温度補償用と
して、一方、B特性は主にスイッチング素子として広く
用いられている。
Such a positive temperature characteristic, PTC
As the characteristics, for example, as shown in FIG. 5, there are A characteristics in which the resistance value gradually increases and B characteristics in which the resistance value sharply increases when the temperature exceeds a predetermined temperature. The A characteristic is widely used mainly for temperature compensation, while the B characteristic is widely used mainly as a switching element.

【0004】従来より、上記のPTCサーミスタとして
は、チタン酸バリウム(BaTiO3)を主成分とするセラミ
ックスが知られている。上記のセラミックスは、絶縁体
であるチタン酸バリウム粒子に、少量( 0.5モル%以
下)の半導体化剤粒子、例えば希土類元素の酸化物粒子
を添加して成形後、焼成して製造されている。
Conventionally, as the above PTC thermistor, ceramics containing barium titanate (BaTiO 3 ) as a main component has been known. The above ceramics are manufactured by adding a small amount (0.5 mol% or less) of semiconducting agent particles, for example, oxide particles of a rare earth element, to barium titanate particles which are an insulator, followed by molding and firing.

【0005】このように上記セラミックスは、添加する
半導体化剤粒子が微量なため、秤量誤差等によりPTC
特性が大きく変化し易いからPTC特性の制御が難し
く、また、絶縁体に微量の半導体化剤粒子を添加するか
ら室温抵抗値の低い物を作成することが困難であるとい
う問題を生じていた。
As described above, in the above-mentioned ceramics, since the amount of the semiconducting agent particles added is very small, the PTC may be caused by a weighing error or the like.
There is a problem in that it is difficult to control PTC characteristics because the characteristics are likely to change greatly, and it is difficult to produce a material having a low room temperature resistance value because a small amount of semiconducting agent particles is added to the insulator.

【0006】そこで、上記の各問題を回避するために、
カーボン等の導電性物質が分散混入されたポリエステル
樹脂等の有機高分子が、高分子PTCサーミスタとして
提案されている(特開昭62−232902号公報)。このよう
な高分子PTCサーミスタは、カーボン等の導電性粒子
を広範囲で添加できるため、室温抵抗値を低く作成で
き、また、導電性物質を多く混入できるから秤量誤差も
低減できてPTC特性を制御し易いという特性を有して
いる。
Therefore, in order to avoid the above problems,
An organic polymer such as a polyester resin in which a conductive substance such as carbon is dispersed and mixed has been proposed as a polymer PTC thermistor (JP-A-62-232902). Such a polymer PTC thermistor can add conductive particles such as carbon over a wide range, so that the room temperature resistance value can be made low. In addition, since a large amount of conductive material can be mixed in, the weighing error can be reduced and the PTC characteristics can be controlled. It has the property of being easy to do.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記従来の
高分子PTCサーミスタは、有機高分子が耐熱性に劣る
ため、高温で使用できないという問題点を有している。
However, the above-mentioned conventional polymer PTC thermistor has a problem that it cannot be used at high temperature because the organic polymer has poor heat resistance.

【0008】そこで、本発明の目的は、PTC特性の制
御が容易で、かつ、耐熱性に優れたPTCサーミスタを
提供することである。
Therefore, an object of the present invention is to provide a PTC thermistor whose PTC characteristics are easily controlled and which has excellent heat resistance.

【0009】[0009]

【課題を解決するための手段】本発明のPTCサーミス
タは、以上の課題を解決するために、種々の素材につい
て鋭意検討した結果、有機高分子と比べて耐熱性を有す
る塩化ナトリウム粒子と炭素等の導電性物質の粒子とか
らなる成形品がPTC特性を発揮することを発見して、
本発明を完成するに至った。
In order to solve the above-mentioned problems, the PTC thermistor of the present invention has been earnestly studied on various materials, and as a result, sodium chloride particles and carbon having heat resistance higher than that of organic polymers have been obtained. It was discovered that a molded product consisting of the particles of the conductive substance described above exhibits PTC characteristics,
The present invention has been completed.

【0010】すなわち、本発明の請求項1記載のPTC
サーミスタは、イオン結晶からなる電気絶縁性粒子と導
電性粒子とを混合した後、加圧成形してなることを特徴
としている。
That is, the PTC according to claim 1 of the present invention.
The thermistor is characterized in that it is formed by mixing electrically insulating particles made of ionic crystals and conductive particles and then pressure-molding the mixture.

【0011】また、本発明の請求項2記載のPTCサー
ミスタは、請求項1記載の正特性サーミスタにおいて、
上記電気絶縁性粒子は塩化ナトリウム粒子であり、上記
導電性粒子はカーボン粒子であることを特徴としてい
る。
The PTC thermistor according to claim 2 of the present invention is the positive temperature coefficient thermistor according to claim 1, wherein
The electrically insulating particles are sodium chloride particles, and the conductive particles are carbon particles.

【0012】上記の電気絶縁性粒子に用いられる素材と
しては、電気絶縁性を備え、かつ、熱膨張率(3〜5×
10-5/deg) が大きければ特に限定されないが、塩化ナト
リウム(NaCl)、塩化カリウム(KCl)、臭化カリウム
(KBr)、臭化カルシウム(CaBr2) 、ヨウ化カリウム(K
I)、臭化ナトリウム(NaBr)等のイオン結晶を用いること
ができ、特に、取り扱いの容易で入手し易い塩化ナトリ
ウムが好ましい。
The material used for the above-mentioned electrically insulating particles is electrically insulating and has a coefficient of thermal expansion (3 to 5 ×).
It is not particularly limited as long as 10 -5 / deg) is large, but sodium chloride (NaCl), potassium chloride (KCl), potassium bromide (KBr), calcium bromide (CaBr 2 ), potassium iodide (K)
Ionic crystals such as I) and sodium bromide (NaBr) can be used, and sodium chloride is particularly preferable because it is easy to handle and easily available.

【0013】上記の導電性粒子の素材としては、導電性
および耐熱性を備え、かつ、上記電気絶縁性粒子より熱
膨張率(<1×10-5/deg) が小さいものであれば特に限
定されないが、比較的容易に入手できるから無定形カー
ボンが望ましい。
The material of the above-mentioned conductive particles is not particularly limited as long as it has conductivity and heat resistance and has a coefficient of thermal expansion (<1 × 10 −5 / deg) smaller than that of the above-mentioned electrically insulating particles. However, amorphous carbon is preferable because it is relatively easily available.

【0014】[0014]

【作用】上記の請求項1記載の構成は、電気絶縁性粒子
間に導電性粒子を介在させることができ、かつ、各導電
性粒子を隣接させて導通させることが可能であるから、
導電性を備えることができ、一方、温度の上昇に伴って
電気絶縁性粒子が膨張した際、導電性粒子の熱膨張率が
電気絶縁性粒子に対して小さいから、電気絶縁性粒子間
の導電性粒子の厚さを減少、または、電気絶縁性粒子間
の一部に導電性粒子の不在区間を増加させることがで
き、よって、温度上昇に伴って抵抗値が上昇するPTC
特性を備えることが可能となる。
According to the above-mentioned structure of the present invention, the electrically conductive particles can be interposed between the electrically insulating particles, and the electrically conductive particles can be adjacent to each other for electrical conduction.
On the other hand, when the electrically insulating particles expand with increasing temperature, the coefficient of thermal expansion of the electrically conductive particles is smaller than that of the electrically insulating particles. The thickness of the conductive particles can be reduced, or the absent section of the conductive particles can be increased in a part between the electrically insulating particles, so that the resistance value increases with the temperature rise.
It becomes possible to have characteristics.

【0015】その上、イオン結晶からなる電気絶縁性粒
子の融点が、従来の有機高分子の溶融点より高いから、
耐熱性を高めることができると共に、温度特性を制御す
る導電性粒子を、従来のセラミックスPTCサーミスタ
における半導体化剤粒子より多く配合できるから、秤量
誤差等によるPTC特性の制御不良を改善できる。
Moreover, since the melting point of the electrically insulating particles made of ionic crystals is higher than the melting point of the conventional organic polymer,
The heat resistance can be increased, and more conductive particles that control the temperature characteristics can be blended than the semiconducting agent particles in the conventional ceramics PTC thermistor, so that poor control of the PTC characteristics due to weighing error or the like can be improved.

【0016】また、上記の請求項2記載の構成は、電気
絶縁性粒子に塩化ナトリウム粒子を、導電性粒子にカー
ボン粒子を用いたから、それらを容易に入手できて、迅
速に正特性サーミスタを得ることができる。
Further, according to the second aspect of the present invention, since the sodium chloride particles are used as the electrically insulating particles and the carbon particles are used as the conductive particles, they can be easily obtained and a positive temperature coefficient thermistor can be obtained quickly. be able to.

【0017】[0017]

【実施例】本発明の一実施例を実施例1として図1ない
し図3に基づいて説明すれば、以下の通りである。 〔実施例1〕本発明の正特性サーミスタ(以下、PTC
サーミスタという)について、まず、その製造方法を説
明すると、原料の作成では、電気絶縁性粒子としての塩
化ナトリウム(NaCl)(和光純薬社製、純度99.5%)
(融点、 800.4℃)を、一方の原料としてジルコニアボ
ールと共に樹脂製容器に投入し、1週間ボールミルによ
り粉砕した後、ふるいで分級して平均粒径50μm(粒径
範囲38〜75μm)の塩化ナトリウム粒子を得た。なお、
塩化ナトリウムの熱膨張率は 4.4×10-5/degである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following will describe one embodiment of the present invention as Embodiment 1 with reference to FIGS. Example 1 The positive temperature coefficient thermistor of the present invention (hereinafter referred to as PTC
(Thermistor), the manufacturing method will be explained first. In the preparation of the raw material, sodium chloride (NaCl) as electric insulating particles (manufactured by Wako Pure Chemical Industries, purity 99.5%)
(Melting point, 800.4 ° C) is put into a resin container together with zirconia balls as one raw material, crushed by a ball mill for 1 week, then classified by a sieve, and sodium chloride having an average particle size of 50 μm (particle size range 38 to 75 μm) The particles were obtained. In addition,
The coefficient of thermal expansion of sodium chloride is 4.4 × 10 -5 / deg.

【0018】他方の原料として、導電性粒子として、図
2に示すカーボン粒子(日本カーボン社製、カーボンマ
イクロビーズPC系、平均粒径5μm、粒径範囲4〜7
μm、比表面積≦2m2/g、嵩比重0.80〜0.90、真比重1.
40〜1.57、形状は略球状)を用いた。なお、上記のカー
ボン粒子は無定形カーボン(Amorphous Carbon)からな
っており、その熱膨張率は0.54×10-5/deg(40℃)であ
る。
As the other raw material, as conductive particles, carbon particles shown in FIG. 2 (made by Nippon Carbon Co., Ltd., carbon microbeads PC type, average particle size 5 μm, particle size range 4 to 7) were used.
μm, specific surface area ≦ 2 m 2 / g, bulk specific gravity 0.80-0.90, true specific gravity 1.
40 to 1.57, and the shape is substantially spherical). The carbon particles are made of amorphous carbon and have a coefficient of thermal expansion of 0.54 × 10 −5 / deg (40 ° C.).

【0019】次に、上記塩化ナトリウム粒子に対するカ
ーボン粒子の体積分率(%)を 8.5%、10%、30%とな
るようにそれぞれ秤量し、続いて、上記のように秤量さ
れた塩化ナトリウム粒子およびカーボン粒子を、湿式混
合の際の溶媒としての2−プロパノール中に投入し湿式
で均一に混合して混合物を得た後、その混合物をロータ
リーエバポレータに投入し、攪拌混合しながら上記溶媒
を留去して混合粉末を得た。
Next, the volume fractions (%) of the carbon particles to the sodium chloride particles were weighed so as to be 8.5%, 10% and 30%, respectively, and subsequently, the sodium chloride particles weighed as described above were weighed. And carbon particles are put into 2-propanol as a solvent at the time of wet mixing and uniformly mixed by a wet method to obtain a mixture, and then the mixture is put into a rotary evaporator, and the solvent is distilled while stirring and mixing. It was removed to obtain a mixed powder.

【0020】そのようにして得られた混合粉末を、直径
10mmの丸型成形器に充填した後、90秒間一軸方向に加圧
成形して、塩化ナトリウム粒子に対するカーボン粒子の
配合量の異なる円柱状の成形品をそれぞれ得た。なお、
成形圧は2トン/cm2 であり、また、得られた各成形品
の平均相対密度は95%であった。
The mixed powder thus obtained has a diameter of
After being filled in a 10 mm round-shaped molding machine, pressure molding was carried out in a uniaxial direction for 90 seconds to obtain columnar molded articles having different amounts of carbon particles mixed with sodium chloride particles. In addition,
The molding pressure was 2 ton / cm 2 , and the average relative density of each obtained molded product was 95%.

【0021】次に、上記で得られた各成形品の軸方向両
端面に、図示しないが、銀ペースト(デュポン社製)を
塗布した後、赤外線ランプにて加熱して銀ペースト中の
溶媒を除去し、両端面に電極をそれぞれ形成して各検体
とした。続いて、上記の各検体は、それらの各電極にリ
ード線として銀線(0.3mm) を接続して加電したところ、
通電し、導電性を示した。
Next, although not shown, silver paste (manufactured by DuPont), which is not shown, is applied to both axial end surfaces of each of the above-obtained molded products, and then heated by an infrared lamp to remove the solvent in the silver paste. After removal, electrodes were respectively formed on both end faces to obtain respective specimens. Then, for each of the above samples, when a silver wire (0.3 mm) was connected as a lead wire to each of these electrodes and electricity was applied,
It turned on and showed conductivity.

【0022】それは、図1(a)に示すように、上記の
成形品1が、塩化ナトリウム粒子2間にカーボン粒子3
が介在しており、その上、隣接して導通するカーボン粒
子2が存在していると想定された。
As shown in FIG. 1 (a), the molded article 1 has carbon particles 3 between sodium chloride particles 2.
It was assumed that carbon particles 2 that are adjacent to each other and that are adjacent to each other are present.

【0023】次に、上記の塩化ナトリウム粒子2に対す
るカーボン粒子3の体積分率(%)が 8.5%、10%、30
%となる各成形品1の抵抗率−温度特性を経時的にそれ
ぞれ測定し、それらの結果を図3に合わせて示した。な
お、測定は2端子法で 0.1V定電圧、昇降温速度7℃/
min にて行った。
Next, the volume fraction (%) of the carbon particles 3 with respect to the sodium chloride particles 2 is 8.5%, 10%, 30
% -Resistivity-temperature characteristics of each molded product 1 were measured over time, and the results are also shown in FIG. The two-terminal method was used for the measurement, with a constant voltage of 0.1 V and a temperature rising / falling rate of 7 ° C /
I went at min.

【0024】また、 500℃以上に検体の温度を上げる
と、カーボン粒子3のTG(熱重量)測定によりカーボ
ン粒子3の酸化が観察されたため、 400℃以上に加温す
る時は窒素(N2)ガス雰囲気中で抵抗率−温度特性を測
定した。また、使用した測定機器は下記の通りである。
When the temperature of the sample was raised to 500 ° C. or higher, oxidization of the carbon particles 3 was observed by TG (thermogravimetric) measurement of the carbon particles 3. Therefore, when heating to 400 ° C. or higher, nitrogen (N 2 ) The resistivity-temperature characteristic was measured in a gas atmosphere. The measuring instruments used are as follows.

【0025】 電流計 : ADVANTEST社製、DISITAL ELECTROMET
ER TR8652 直流定電圧電源: HIOKI社製、7005 PROGRAMMABLE DC S
TANDARD コントローラー: CHINO社製、KPシリーズ デジタルプ
ログラム調節計 電気炉 :石塚電気製作所社製、開閉式電気炉 レコーダー :日本電気三栄社製、HYBRID RECORDER
RD3218 図3から明らかなように、上記実施例1の各構成は室温
にて導電性を示し、温度上昇に伴い抵抗値が上昇するP
TC(Positive Temperature Coefficient)特性を備え
ていることが判った。特に、 8.5%のカーボン配合量で
は急峻なPTC特性を示した。
Ammeter: manufactured by ADVANTEST, DISITAL ELECTROMET
ER TR8652 DC constant voltage power supply: HIOKI, 7005 PROGRAMMABLE DC S
TANDARD Controller: CHINO, KP series digital program controller Electric furnace: Ishizuka Electric Co., openable electric furnace Recorder: NEC Saneisha, HYBRID RECORDER
RD3218 As is clear from FIG. 3, each of the constituents of the above-mentioned Example 1 exhibits conductivity at room temperature, and the resistance value increases as the temperature increases.
It was found to have TC (Positive Temperature Coefficient) characteristics. In particular, a steep PTC characteristic was exhibited at a carbon content of 8.5%.

【0026】それは、図1(b)に示すように、カーボ
ン粒子3に対する塩化ナトリウム粒子2の熱膨張率が大
きく、温度上昇に伴って、各塩化ナトリウム粒子2が膨
張して、各塩化ナトリウム粒子2の周囲にあって隣接し
ていた各カーボン粒子3を離間させるため、導通してい
た各カーボン粒子3が不通状態となるためと想定され
た。
As shown in FIG. 1B, the coefficient of thermal expansion of the sodium chloride particles 2 with respect to the carbon particles 3 is large, and each sodium chloride particle 2 expands as the temperature rises, and each sodium chloride particle 2 expands. It was assumed that the carbon particles 3 that were adjacent to each other around the circumference of 2 were separated from each other, and therefore the carbon particles 3 that were conducting were in a non-conductive state.

【0027】本発明の他の実施例を実施例2として図
1、図4および図5に基づいて説明すれば、以下の通り
である。 〔実施例2〕本発明のPTCサーミスタの製造方法につ
いてまず説明すると、一方の原料として塩化ナトリウム
(NaCl、和光純薬社製、純度99.5%)(融点、 80
0.4℃)をジルコニアボールと共に樹脂製容器に投入
し、1週間ボールミルにより粉砕した後、ふるいで分級
して平均粒径 250μm(粒径範囲 150〜350 μm)の塩
化ナトリウム粒子と得た。他方の原料として、前記実施
例1に示したカーボン粒子を用いた。
Another embodiment of the present invention will be described below as a second embodiment with reference to FIGS. 1, 4 and 5. [Example 2] A method for producing the PTC thermistor of the present invention will be described first. As one raw material, sodium chloride (NaCl, manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5%) (melting point, 80
0.4 ° C.) was put into a resin container together with zirconia balls, crushed by a ball mill for 1 week, and then classified by a sieve to obtain sodium chloride particles having an average particle size of 250 μm (particle size range 150 to 350 μm). The carbon particles shown in Example 1 were used as the other raw material.

【0028】次に、上記の塩化ナトリウム粒子およびカ
ーボン粒子を、塩化ナトリウム粒子に対するカーボン粒
子の体積分率(%)が4%、5%、10%となるようにそ
れぞれ秤量した。
Next, the sodium chloride particles and the carbon particles were weighed so that the volume fraction (%) of the carbon particles to the sodium chloride particles was 4%, 5% and 10%, respectively.

【0029】以下の操作は前記実施例1と同様に行い、
塩化ナトリウム粒子に対するカーボン粒子の異なる成形
品をそれぞれ得た。なお、上記の成形品の粒子構造を示
すために、塩化ナトリウム粒子に対するカーボン粒子の
体積分率(%)が10%とした成形品1の破断面の一例を
図4に示した。
The following operations are carried out in the same manner as in Example 1,
Molded articles having different carbon particles with respect to sodium chloride particles were obtained. In order to show the particle structure of the molded product, an example of a fracture surface of the molded product 1 in which the volume fraction (%) of carbon particles to sodium chloride particles is 10% is shown in FIG.

【0030】これにより、図1(a)に示すように、塩
化ナトリウム粒子2間に、略球状のカーボン粒子3が連
なっており、隣接しているカーボン粒子3が存在してい
ることが判る。このようにカーボン粒子の体積分率
(%)が異なる各成形品1を、上記実施例1と同様にし
て抵抗率−温度特性をそれぞれ測定し、それらの結果を
図5に合わせて示した。
From this, as shown in FIG. 1 (a), it can be seen that substantially spherical carbon particles 3 are continuous between the sodium chloride particles 2 and adjacent carbon particles 3 are present. Resistivity-temperature characteristics of the molded products 1 having different volume fractions (%) of carbon particles were measured in the same manner as in Example 1, and the results are shown in FIG.

【0031】図5から明らかなように、上記実施例2の
各構成は室温にて導電性を示し、温度上昇に伴い抵抗値
が上昇するPTC特性を備えていることが判った。特
に、5%のカーボン配合量では、温度上昇に伴い6桁の
抵抗値の上昇が観察され、急峻なPTC特性を示した。
As is apparent from FIG. 5, it was found that each structure of the above-mentioned Example 2 exhibits the conductivity at room temperature and has the PTC characteristic in which the resistance value increases as the temperature rises. In particular, when the carbon content was 5%, a 6-digit increase in resistance value was observed as the temperature increased, and a sharp PTC characteristic was exhibited.

【0032】次に、本発明のさらに他の実施例を実施例
3として、塩化ナトリウム粒子とカーボン粒子との平均
粒径比が異なり、かつ、種々なカーボン配合体積分率の
成形品を、実施例1と同様にして作成し、抵抗率−温度
特性をそれぞれ測定した結果について図1、図6、およ
び図7を参照しながら説明する。なお、特に指定しない
限り、用いた原料および製造方法は前記実施例1と同様
である。
Next, as still another embodiment of the present invention, as a third embodiment, molded articles having different average particle diameter ratios of sodium chloride particles and carbon particles and having various carbon compound volume fractions are implemented. The results of measuring the resistivity-temperature characteristics prepared in the same manner as in Example 1 will be described with reference to FIGS. 1, 6 and 7. Unless otherwise specified, the raw materials used and the manufacturing method are the same as in Example 1 above.

【0033】〔実施例3〕 イ.塩化ナトリウム粒子(平均粒径25μm、粒径範囲15
〜38μm)、カーボン粒子(PC系、平均粒径50μm、
粒径範囲45〜60μm)、カーボン粒子の体積分率(10
%、20%、25%、30%、40%)、成形圧2トン/cm2、加
圧時間90秒。
[Third Embodiment] a. Sodium chloride particles (average particle size 25 μm, particle size range 15
~ 38 μm), carbon particles (PC type, average particle size 50 μm,
Particle size range 45-60 μm), volume fraction of carbon particles (10
%, 20%, 25%, 30%, 40%), molding pressure 2 ton / cm 2 , press time 90 seconds.

【0034】ロ.塩化ナトリウム粒子(平均粒径50μ
m、粒径範囲38〜75μm)、カーボン粒子(PC系、平
均粒径50μm、粒径範囲45〜60μm)、カーボン粒子の
体積分率(5%、10%、20%、23%、25%、30%、40
%、50%)、成形圧2トン/cm2、加圧時間90秒。
B. Sodium chloride particles (average particle size 50μ
m, particle size range 38 to 75 μm), carbon particles (PC system, average particle size 50 μm, particle size range 45 to 60 μm), volume fraction of carbon particles (5%, 10%, 20%, 23%, 25% , 30%, 40
%, 50%), molding pressure 2 ton / cm 2 , press time 90 seconds.

【0035】ハ.塩化ナトリウム粒子(平均粒径50μ
m、粒径範囲範囲38〜75μm)、カーボン粒子(PC
系、平均粒径20μm、粒径範囲16〜26μm)、カーボン
粒子の体積分率(5%、10%、15%、17%、20%、25
%、40%)、成形圧2トン/cm2,加圧時間90秒。
C. Sodium chloride particles (average particle size 50μ
m, particle size range 38 to 75 μm), carbon particles (PC
System, average particle size 20μm, particle size range 16-26μm), volume fraction of carbon particles (5%, 10%, 15%, 17%, 20%, 25
%, 40%), molding pressure 2 ton / cm 2 , press time 90 seconds.

【0036】このように平均粒径が、前記実施例1およ
び2と異なる塩化ナトリウム粒子およびカーボン粒子を
用い、また、カーボン体積分率の異なる各構成をそれぞ
れ作成した。上記の各構成について、前記実施例1と同
様に抵抗率−温度特性をそれぞれ調べたところ、図示し
ないが、温度上昇に伴って抵抗値が上昇するPTC特性
を示した。しかしながら、室温での抵抗値が大きいた
め、PTCサーミスタとしての使用に限りがあることが
判った。
In this way, sodium chloride particles and carbon particles having different average particle diameters from those in Examples 1 and 2 were used, and respective constitutions having different carbon volume fractions were prepared. When the resistivity-temperature characteristics of each of the above-described structures were examined in the same manner as in Example 1, a PTC characteristic in which the resistance value increased with temperature increase was shown, although not shown. However, it has been found that its use as a PTC thermistor is limited because of its large resistance value at room temperature.

【0037】なお、上記の各構成の粒子構造を示すため
に、例として、上記の塩化ナトリウム粒子(平均粒径50
μm)、カーボン粒子(PC系、平均粒径50μm)、カ
ーボン粒子の体積分率10%の成形品の破断面を、走査型
電子顕微鏡にて観察して図6に示し、また、上記の塩化
ナトリウム粒子(平均粒径50μm)、カーボン粒子(P
C系、平均粒径50μm)、カーボン粒子の体積分率40%
の成形品の破断面を、走査型電子顕微鏡にて観察して図
7に示した。
In order to show the particle structure of each of the above-mentioned constitutions, as an example, the above-mentioned sodium chloride particles (average particle size 50
micron), carbon particles (PC system, average particle size 50 μm), and a fracture surface of a molded product having a volume fraction of carbon particles of 10% are observed with a scanning electron microscope and shown in FIG. Sodium particles (average particle size 50 μm), carbon particles (P
C type, average particle size 50 μm), volume fraction of carbon particles 40%
The fracture surface of the molded product of No. 1 was observed with a scanning electron microscope and is shown in FIG.

【0038】このことからも、図1(a)に示すよう
に、得られた成形品1は、塩化ナトリウム粒子2の周囲
に、略球状のカーボン粒子3が連なっており、隣接して
いるカーボン粒子3を備えていることが判る。
From this, as shown in FIG. 1 (a), in the obtained molded article 1, the substantially spherical carbon particles 3 are continuous around the sodium chloride particles 2, and the adjacent carbon particles are adjacent to each other. It can be seen that particles 3 are provided.

【0039】次に、本発明のさらに他の実施例を、実施
例4として図1および図8を参照しながら説明する。 〔実施例4〕実施例2におけるPC系のカーボン粒子に
代えて、図8に示すMC系のカーボン粒子(平均粒径5
μm、粒径範囲4〜7μm、比表面積≦10m2/g、嵩比重
0.60〜0.80、真比重1.37〜1.39、形状は略球状)を用
い、上記のカーボン粒子の体積分率(1%、 1.3%、
1.5%、2%、3%、5%、 7.5%、10%)とし、他の
製造方法は、前記実施例1と同様にして、図1に示すよ
うな成形品1をそれぞれ得た。
Next, still another embodiment of the present invention will be described as a fourth embodiment with reference to FIGS. [Example 4] Instead of the PC-based carbon particles in Example 2, MC-based carbon particles (average particle size 5
μm, particle size range 4 to 7 μm, specific surface area ≦ 10 m 2 / g, bulk specific gravity
0.60 to 0.80, true specific gravity 1.37 to 1.39, shape is substantially spherical, and the volume fraction of the above carbon particles (1%, 1.3%,
1.5%, 2%, 3%, 5%, 7.5%, 10%), and other manufacturing methods were the same as in Example 1 to obtain molded articles 1 as shown in FIG.

【0040】なお、上記のMC系のカーボン粒子は、カ
ーボン粒子の表面にカーボンブラック微粒子をコーティ
ングして表面に凹凸を備えており、比表面積(m2/g)
が、≦10というように前記のPC系より5〜10倍大きい
ものである。
The above MC-based carbon particles have carbon black fine particles coated on the surface of the carbon particles to provide irregularities on the surface, and have a specific surface area (m 2 / g)
Is ≦ 10, which is 5 to 10 times larger than the PC system.

【0041】上記のようにカーボン粒子の体積分率の異
なる各構成について抵抗率−温度特性を前記実施例1と
同様にそれぞれ調べたところ、図示しないが、上記各構
成では、温度上昇に伴う急峻な抵抗値上昇は見られない
が、室温から 500℃に至るまでの広い温度範囲の温度上
昇において、ほぼ一定の抵抗値上昇率をそれぞれ示し
た。これにより、上記各構成は、広い温度範囲、特に高
温度領域での温度補償用等に好適に用いることができ
る。
Resistivity-temperature characteristics of the respective structures having different volume fractions of carbon particles as described above were examined in the same manner as in the first embodiment. Although not shown, in each of the above structures, the steepness associated with the temperature rise is shown. Although no significant increase in resistance was observed, it showed a nearly constant increase in resistance over a wide temperature range from room temperature to 500 ° C. As a result, each of the above structures can be suitably used for temperature compensation in a wide temperature range, especially in a high temperature range.

【0042】次に、本発明のさらに他の実施例を、実施
例5として図1にもとづいて説明する。 〔実施例5〕前記の実施例1において用いた各カーボン
体積分率に代えて、カーボン体積分率を15%とし、成形
圧(トン/cm2)を 0.5、1、 1.5、2をそれぞれ用い、
他は上記実施例1と同様にして、図1(a)に示すよう
に、成形品1をそれぞれ作成した。
Next, still another embodiment of the present invention will be described as a fifth embodiment with reference to FIG. [Example 5] Instead of the carbon volume fractions used in Example 1, the carbon volume fraction was 15%, and the molding pressure (ton / cm 2 ) was 0.5, 1, 1.5 and 2 , respectively. ,
Others were the same as in Example 1 above, and molded articles 1 were prepared as shown in FIG.

【0043】このような各成形品1について抵抗率−温
度特性を前記実施例1と同様にそれぞれ調べたところ、
上記各成形品1はPTC特性をそれぞれ示した。その
上、2トン/cm2の成形圧で成形された成形品1では、温
度上昇に伴い緩慢な抵抗値の上昇が観察され、一方、
0.5トン/cm2の成形圧で成形された成形品1では、温度
上昇に伴い、七桁の急峻な抵抗値の上昇が観察された。
このことから、上記各構成は、成形圧を制御することに
より、PTC特性を調整できることが示された。
Resistivity-temperature characteristics of each of the above-described molded products 1 were examined in the same manner as in Example 1 above.
Each of the above-mentioned molded products 1 exhibited PTC characteristics. Moreover, in the molded product 1 molded at a molding pressure of 2 ton / cm 2, a gradual increase in the resistance value was observed as the temperature increased, while
In the molded product 1 molded at a molding pressure of 0.5 ton / cm 2 , a 7-digit steep increase in the resistance value was observed as the temperature increased.
From this, it was shown that the above-mentioned respective configurations can adjust the PTC characteristics by controlling the molding pressure.

【0044】このように前記各実施例の構成は、塩化ナ
トリウム粒子2とカーボン粒子3とを混合して加圧成形
してなるから、図1(a)に示すように、塩化ナトリウ
ム粒子2間に導電性のカーボン粒子3を介在させ、各カ
ーボン粒子3…を相互に隣接させることができて導電性
を備えることが可能である。
As described above, in the constitution of each of the above-described embodiments, the sodium chloride particles 2 and the carbon particles 3 are mixed and pressure-molded, so that as shown in FIG. It is possible to interpose the conductive carbon particles 3 with each other so that the carbon particles 3 ... Can be adjacent to each other to provide conductivity.

【0045】一方、上記各構成は、温度の上昇に伴っ
て、図1(b)に示すように、塩化ナトリウム粒子2が
膨張して塩化ナトリウム粒子2間におけるカーボン粒子
3の不在区間が増加したり、塩化ナトリウム粒子2間の
カーボン粒子3の厚さが減少したりすることにより、抵
抗率が上昇して、温度上昇に伴って抵抗率が上昇するP
TC特性を備えることが可能となる。
On the other hand, in each of the above structures, as the temperature rises, the sodium chloride particles 2 expand and the absent section of the carbon particles 3 between the sodium chloride particles 2 increases as shown in FIG. 1 (b). Or the thickness of the carbon particles 3 between the sodium chloride particles 2 decreases, the resistivity increases, and the resistivity increases as the temperature rises.
It becomes possible to provide TC characteristics.

【0046】このとき、カーボン粒子3の熱膨張率が、
前述したように、塩化ナトリウム粒子2の熱膨張率に対
して、約1/8であるので、塩化ナトリウム粒子2の膨
張を阻害することがなく、また、カーボン粒子3が柔ら
かく、容易に弾性的に変形可能であるから、上記のよう
に塩化ナトリウム粒子2間におけるカーボン粒子3の不
在区間が増加したり、塩化ナトリウム粒子2間のカーボ
ン粒子3の厚さが減少したりできるのである。
At this time, the coefficient of thermal expansion of the carbon particles 3 is
As described above, since the coefficient of thermal expansion of the sodium chloride particles 2 is about 1/8, the expansion of the sodium chloride particles 2 is not hindered, and the carbon particles 3 are soft and easily elastic. As described above, the absent section of the carbon particles 3 between the sodium chloride particles 2 can be increased, and the thickness of the carbon particles 3 between the sodium chloride particles 2 can be decreased.

【0047】その上、上記各構成は、塩化ナトリウムの
融点が、従来の有機高分子の溶融点もしくは軟化点より
高いから耐熱性を高めることができ、さらに、従来のセ
ラミックスPTCサーミスタにおける半導体化剤粒子の
ような微量( 0.5モル%以下)な配合量と異なり、PT
C特性を制御するカーボン粒子3を4〜30(V/V)%と多
く配合できるから、秤量誤差等によるPTC特性の制御
不良を改善できる。
In addition, in each of the above-mentioned constitutions, since the melting point of sodium chloride is higher than the melting point or softening point of the conventional organic polymer, heat resistance can be enhanced, and further, the semiconducting agent in the conventional ceramics PTC thermistor. Unlike the minute amount (0.5 mol% or less) of compounding amount such as particles, PT
Since the carbon particles 3 for controlling the C characteristics can be blended in a large amount of 4 to 30 (V / V)%, poor control of the PTC characteristics due to weighing error or the like can be improved.

【0048】また、上記各構成は、カーボン粒子3の配
合量の使用範囲が、セラミックスPTCサーミスタと比
べて広く、広い範囲の抵抗値を実現できて、室温抵抗値
を低く設定することもできるから、従来のセラミックス
PTCサーミスタに比べて電源電圧等の適用範囲を広げ
ることが可能である。
Further, in each of the above-mentioned constitutions, the use range of the blending amount of the carbon particles 3 is wider than that of the ceramics PTC thermistor, a wide range of resistance values can be realized, and the room temperature resistance value can be set low. As compared with the conventional ceramics PTC thermistor, it is possible to expand the applicable range of the power supply voltage and the like.

【0049】一方、上記各構成は、混合して加圧成形す
ればよいから、従来のセラミックスPTCサーミスタに
おける焼成工程を省くことができて、製造時間の短縮化
を図ることが可能である。なお、上記の構成は、吸湿に
より電気絶縁性が変化することがあるから、使用時に防
水コート等の防水処理を施す方が好ましい。
On the other hand, since each of the above-mentioned constitutions may be mixed and pressure-molded, the firing step in the conventional ceramics PTC thermistor can be omitted and the manufacturing time can be shortened. In addition, in the above configuration, since the electric insulation may change due to moisture absorption, it is preferable to apply a waterproof treatment such as a waterproof coat at the time of use.

【0050】なお、上記各実施例では、湿式混合の際の
溶媒として、2−プロパノールを用いた例を挙げたが、
混合時の温度で揮発性が低くなるように沸点が高く、か
つ、混合し易いように粘度が高くなければ、特に上記に
限定されるものではなく、他のアルコール類、例えば1
−プロパノールやブタノールを用いることができる。
In each of the above examples, 2-propanol was used as the solvent for wet mixing.
It is not particularly limited to the above as long as it has a high boiling point so as to have low volatility at the temperature at the time of mixing and a high viscosity so as to facilitate mixing, and other alcohols such as 1
-Propanol or butanol can be used.

【0051】[0051]

【発明の効果】本発明の請求項1記載の正特性サーミス
タは、以上のように、イオン結晶からなる電気絶縁性粒
子と導電性粒子とを混合した後、加圧成形してなる構成
である。
As described above, the positive temperature coefficient thermistor according to the first aspect of the present invention is constructed by mixing the electrically insulating particles made of ionic crystals and the electrically conductive particles and then press-molding the mixture. .

【0052】それゆえ、上記構成は、温度の上昇に伴っ
て抵抗値が上昇するPTC特性を備えることができる。
その上、温度特性を制御する導電性粒子が、従来のセラ
ミックスPTCサーミスタにおける半導体化剤粒子のよ
うに微量な配合量と比べて多く配合できるから、秤量誤
差等による温度特性の制御不良を改善できるという効果
を奏する。
Therefore, the above structure can have a PTC characteristic in which the resistance value rises as the temperature rises.
In addition, since the conductive particles for controlling the temperature characteristics can be added in a larger amount than the small amount of the semiconductor agent particles in the conventional ceramics PTC thermistor, it is possible to improve the control failure of the temperature characteristics due to a weighing error or the like. Has the effect.

【0053】その上、上記構成は、イオン結晶からなる
電気絶縁性粒子を用いることにより耐熱性を従来の有機
高分子より高めることができるから、適用範囲を広げる
ことができるという効果も奏する。
In addition, the above-mentioned structure has the effect that the heat resistance can be increased more than that of the conventional organic polymer by using the electrically insulating particles made of ionic crystals, and therefore the range of application can be expanded.

【0054】本発明の請求項2記載の正特性サーミスタ
は、請求項1記載の正特性サーミスタにおいて、上記電
気絶縁性粒子は塩化ナトリウム粒子であり、上記導電性
粒子はカーボン粒子である構成である。
A positive temperature coefficient thermistor according to a second aspect of the present invention is the positive temperature coefficient thermistor according to the first aspect, wherein the electrically insulating particles are sodium chloride particles and the conductive particles are carbon particles. .

【0055】それゆえ、上記構成は、上記請求項1記載
の発明の効果に加えて、電気絶縁性粒子に塩化ナトリウ
ム粒子を、導電性粒子にカーボン粒子を用いたから、そ
れらが容易に入手できて、迅速に正特性サーミスタを得
ることができるという効果を奏する。
Therefore, in the above structure, in addition to the effect of the invention described in claim 1, since sodium chloride particles are used as the electrically insulating particles and carbon particles are used as the conductive particles, they can be easily obtained. Thus, it is possible to obtain a positive temperature coefficient thermistor quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の正特性サーミスタの粒子構造を示す模
式断面図であって、(a)は室温時の模式断面図であ
り、(b)は温度上昇時の模式要部断面図である。
FIG. 1 is a schematic cross-sectional view showing a particle structure of a positive temperature coefficient thermistor of the present invention, in which (a) is a schematic cross-sectional view at room temperature and (b) is a schematic cross-sectional view of a main part at a temperature rise. .

【図2】本発明の実施例1における正特性サーミスタに
用いたカーボン粒子の粒子構造を走査型電子顕微鏡を用
いて示す図面代用写真である。
FIG. 2 is a drawing-substituting photograph showing the particle structure of carbon particles used in the PTC thermistor in Example 1 of the present invention, using a scanning electron microscope.

【図3】本発明の実施例1における各正特性サーミスタ
の抵抗率−温度特性をそれぞれ示すグラフである。
FIG. 3 is a graph showing the resistivity-temperature characteristics of each positive temperature coefficient thermistor in the first embodiment of the present invention.

【図4】本発明の実施例2における一正特性サーミスタ
の粒子構造を走査型電子顕微鏡を用いて示す図面代用写
真である。
FIG. 4 is a drawing-substituting photograph showing the particle structure of the positive temperature coefficient thermistor in Example 2 of the present invention using a scanning electron microscope.

【図5】本発明の実施例2における各正特性サーミスタ
の抵抗率−温度特性をそれぞれ示すグラフである。
FIG. 5 is a graph showing the resistivity-temperature characteristics of each positive temperature coefficient thermistor in the second embodiment of the present invention.

【図6】本発明の実施例3における一正特性サーミスタ
の粒子構造を走査型電子顕微鏡を用いて示す図面代用写
真である。
FIG. 6 is a drawing-substituting photograph showing the particle structure of the positive temperature coefficient thermistor in Example 3 of the present invention, using a scanning electron microscope.

【図7】本発明の実施例3における他の正特性サーミス
タの粒子構造を走査型電子顕微鏡を用いて示す図面代用
写真である。
FIG. 7 is a drawing-substituting photograph showing the particle structure of another positive temperature coefficient thermistor in Example 3 of the present invention using a scanning electron microscope.

【図8】本発明の実施例4において用いたカーボン粒子
の粒子構造を走査型電子顕微鏡を用いて示す図面代用写
真である。
FIG. 8 is a drawing-substitute photograph showing a particle structure of carbon particles used in Example 4 of the present invention, using a scanning electron microscope.

【図9】従来の正特性サーミスタの抵抗率−温度特性例
を示すグラフである。
FIG. 9 is a graph showing an example of resistivity-temperature characteristics of a conventional positive temperature coefficient thermistor.

【符号の説明】[Explanation of symbols]

2 電気絶縁性粒子(塩化ナトリウム粒子) 3 導電性粒子(カーボン粒子) 2 Electrically insulating particles (sodium chloride particles) 3 Conductive particles (carbon particles)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】イオン結晶からなる電気絶縁性粒子と導電
性粒子とを混合した後、加圧成形してなることを特徴と
する正特性サーミスタ。
1. A positive temperature coefficient thermistor characterized by being formed by mixing electrically insulating particles made of ionic crystals and conductive particles and then pressure-molding the mixture.
【請求項2】上記電気絶縁性粒子は塩化ナトリウム粒子
であり、上記導電性粒子はカーボン粒子であることを特
徴とする請求項1記載の正特性サーミスタ。
2. The positive temperature coefficient thermistor according to claim 1, wherein the electrically insulating particles are sodium chloride particles and the conductive particles are carbon particles.
JP24581292A 1992-08-21 1992-08-21 Positive thermistor Expired - Fee Related JP3179879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24581292A JP3179879B2 (en) 1992-08-21 1992-08-21 Positive thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24581292A JP3179879B2 (en) 1992-08-21 1992-08-21 Positive thermistor

Publications (2)

Publication Number Publication Date
JPH0669001A true JPH0669001A (en) 1994-03-11
JP3179879B2 JP3179879B2 (en) 2001-06-25

Family

ID=17139219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24581292A Expired - Fee Related JP3179879B2 (en) 1992-08-21 1992-08-21 Positive thermistor

Country Status (1)

Country Link
JP (1) JP3179879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013121912A1 (en) * 2012-02-15 2015-05-11 コニカミノルタ株式会社 Method for producing transparent electrode, transparent electrode and organic electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132001A (en) * 1989-10-18 1991-06-05 Norio Mori Complex temperature sensing element having self temperature control characteristic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132001A (en) * 1989-10-18 1991-06-05 Norio Mori Complex temperature sensing element having self temperature control characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013121912A1 (en) * 2012-02-15 2015-05-11 コニカミノルタ株式会社 Method for producing transparent electrode, transparent electrode and organic electronic device

Also Published As

Publication number Publication date
JP3179879B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
El-Mallah AC Electrical Conductivity and Dielectric Properties of Perovskite (Pb,Ca)TiO_3 Ceramic
KR100535175B1 (en) Composition for producing Carbon Flexible Heating Structure and Carbon Flexible Heating Structure using the same and Manufacturing Method Thereof
US4629869A (en) Self-limiting heater and resistance material
JP2003049084A (en) Polymer blend having non-linear current-voltage- characteristic curve and method for producing the same blend
EP0219678B1 (en) Method for controlling steady state exothermic temperature in the use of heat sensitive-electrically resistant composites
US2855491A (en) Metal-ceramic electrical resistors
JPH02504333A (en) conductive polymer composition
US3326720A (en) Cermet resistance composition and resistor
KR102341611B1 (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
JP3179879B2 (en) Positive thermistor
JPH0812814B2 (en) Varistor material and manufacturing method thereof
JPH01225663A (en) Conductive resin composition
JP2852778B2 (en) Heat-sensitive electrical resistance composition
Deki et al. Properties of CaCl2 hydrate with an inorganic powder. Part 1.—Electrical conductivity of CaCl2· nH2O (n= 6.00–7.35) with α-Al2O3 powder
US3248345A (en) Electrical resistance compositions, elements and methods of making same
Miyayama et al. PTCR property in carbon-NaCl composites
JPS59122524A (en) Composition having positive temperature characteristics of resistance
Deis et al. On the switching characteristics and the bulk properties of chalcogenide glasses
JPS6353017A (en) Preparation of resin molding
CA2024776A1 (en) Self temperature limiting electrical-conducting composite
JPH07277825A (en) Electric conductive ceramic
JPS6237903A (en) Manufacture of positive resistance temperature coefficient heat generating resin composition
JP3322466B2 (en) Humidity sensor
CN1138201A (en) Inorganic resistive coating and its preparation method
JP3841238B2 (en) Method for manufacturing positive thermistor material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees