JPH0668415A - Magnetic head for vtr - Google Patents

Magnetic head for vtr

Info

Publication number
JPH0668415A
JPH0668415A JP4223684A JP22368492A JPH0668415A JP H0668415 A JPH0668415 A JP H0668415A JP 4223684 A JP4223684 A JP 4223684A JP 22368492 A JP22368492 A JP 22368492A JP H0668415 A JPH0668415 A JP H0668415A
Authority
JP
Japan
Prior art keywords
magnetic
mno
zno
magnetic head
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4223684A
Other languages
Japanese (ja)
Inventor
Kunio Kanai
邦夫 金井
Tadashi Yamaguchi
正 山口
Yukio Ota
幸雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4223684A priority Critical patent/JPH0668415A/en
Publication of JPH0668415A publication Critical patent/JPH0668415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To provide the magnetic head for VTRs which can deal with the miniaturization of the VTRs, long-time recording and making higher image quality of televisions and has good recording and reproducing characteristics in a high-frequency band. CONSTITUTION:This magnetic head for the VTRs is constituted by having a pair of core pieces 11, 12 constituted of the nonmagnetic Mn-Zn single crystal ferrite of the compsn. within the range enclosed by A-B-C-D-E-F connecting the respective points, by molar %, A (25 Fe2O3, 30 MnO, 45 ZnO), B (25 Fe2O3, 40 MnO, 35 ZnO) D (58 Fe2O3, 12 MnO, 30 ZnO) E (58 Fe2O3, 4 MnO, 38 ZnO), F (51 Fe2O3, 4 MnO, 45 ZnO), magnetic metallic films 14 formed on the butt surfaces of at least one magnetic gap 15 of a pair of these core pieces 11, 12 and the magnetic gap 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特に小型、長時間記録の
VTRやS−VHS、Hi8ミリVTR等の高画質のV
TR、更にはHDTVに用いられる磁気ヘッドに関す
る。
BACKGROUND OF THE INVENTION The present invention is particularly suitable for high-quality VTRs such as small-sized, long-time recording VTRs, S-VHSs and Hi8mm VTRs.
The present invention relates to a magnetic head used in TR and further in HDTV.

【0002】[0002]

【従来の技術】近年、VTRの小型化、長時間記録やテ
レビの大画面化や高画質化に伴い、家庭用VTRの高画
質化が求められ、高密度記録化や短波長記録化、周波数
の広帯域化が進められている。これに対応して、VTR
用のテ−プはFe等の強磁性金属粉末の粒子サイズを細
かくしたメタルテ−プやCo−Ni磁性体を直接ベ−ス
フィルムに真空蒸着したテ−プを用いることにより保磁
力が1,000〜1,500(Oe)と高保磁力化する
傾向にある。こうした高保磁力のVTRテ−プに対して
は、従来の飽和磁束密度が5000G程度のMn−Zn
単結晶フェライトをコアに用いた磁気ヘッドでは、フェ
ライトコアが磁気飽和を起こして、十分な記録再生がで
きないという問題が顕著になってきた。また、Mn−Z
n単結晶フェライトは5MHz前後の周波数帯域での再
生出力は十分にあるが7〜8MHz以上の高周波帯域に
なると再生出力の低下が大きいという点をもっている。
そのために、センダストやアモルファス等の軟磁気特性
が良好で、飽和磁束密度が10,000G前後の金属磁
性膜を用いた磁気ヘッドが主流となってきた。図8はそ
の一例を示すMIG型の磁気ヘッドである。同図におい
て、10’は磁気ヘッドであり、高透磁率の磁性Mn−
Zn単結晶フェライトをコア片11’、12’とし、そ
の磁気ギャップ対向面に飽和磁束密度の高いセンダスト
やアモルファス等の金属磁性膜14’をスパッタリング
等で成膜し、一対のコア片11’、12’を磁気ギャッ
プとなる非磁性膜15’で接合しガラス13’で接合を
補強すると共にトラック幅を規制している。図9は最近
実用化され始めてきた積層型の磁気ヘッド20’を示す
図である。その磁気ヘッド20’は、セラミックス等の
非磁性基板21a’の側面に、同じくセンダストやアモ
ルファス等の金属磁性膜とSiO2等の非磁性膜をスパ
ッタリング等で交互に積層して積層膜24’を形成し、
その積層膜と非磁性基板21b’とをガラス等で接合し
てコア半体を作製する。次にこのコア半体と同様にして
作製した積層膜を非磁性基板22a’,22b’で挾持
したコア半体とを突合せ、磁気ギャップとなる非磁性膜
25’で接合し、ガラス23’でその接合を補強すると
共にトラック幅を規制している。
2. Description of the Related Art In recent years, with the downsizing of VTRs, recording for a long time, and large screens and high image quality of televisions, high image quality of home VTRs has been demanded, and high density recording, short wavelength recording, frequency Broadband is being promoted. Corresponding to this, VTR
The tape for use has a coercive force of 1 by using a metal tape in which the particle size of a ferromagnetic metal powder such as Fe is made fine or a tape in which a Co-Ni magnetic material is directly vacuum-deposited on a base film. 000 to 1,500 (Oe) tends to have a high coercive force. For such a high coercive force VTR tape, Mn-Zn having a conventional saturation magnetic flux density of about 5000 G is used.
In a magnetic head using a single crystal ferrite as a core, the problem that the ferrite core causes magnetic saturation and sufficient recording / reproduction cannot be performed becomes remarkable. Also, Mn-Z
The n single crystal ferrite has a sufficient reproduction output in the frequency band of about 5 MHz, but has a large decrease in the reproduction output in the high frequency band of 7 to 8 MHz or more.
Therefore, a magnetic head using a metal magnetic film having good soft magnetic characteristics such as sendust and amorphous and having a saturation magnetic flux density of about 10,000 G has become mainstream. FIG. 8 shows an example of the MIG type magnetic head. In the figure, 10 'denotes a magnetic head, which has a high magnetic permeability Mn-.
Zn single crystal ferrite is used as the core pieces 11 'and 12', and a metal magnetic film 14 'having a high saturation magnetic flux density such as sendust or amorphous is formed on the surfaces facing the magnetic gap by sputtering or the like to form a pair of core pieces 11', 12 'is joined by a non-magnetic film 15' which serves as a magnetic gap, glass 13 'reinforces the joint, and the track width is regulated. FIG. 9 is a view showing a laminated type magnetic head 20 'which has recently been put into practical use. The magnetic head 20 'has a laminated film 24' formed by alternately laminating a metal magnetic film such as sendust or amorphous and a nonmagnetic film such as SiO 2 on the side surface of a nonmagnetic substrate 21a 'such as ceramics by sputtering or the like. Formed,
The laminated film and the non-magnetic substrate 21b 'are joined with glass or the like to produce a core half. Next, the laminated film produced in the same manner as this core half body is abutted with the core half body sandwiched by the non-magnetic substrates 22a 'and 22b', joined by the non-magnetic film 25 'which becomes the magnetic gap, and the glass 23' is used. The joint width is reinforced and the track width is regulated.

【0003】[0003]

【発明が解決しようとする課題】図8に示す磁性Mn−
Zn単結晶フェライトコア片に金属磁性膜を用いたMI
G型の磁気ヘッドは、単結晶フェライトの加工性が良好
でテ−プとの摩耗特性に優れた磁気ヘッドである。しか
しながら、単結晶フェライトは磁歪定数が大きい為に、
VTRテ−プとの摺動によるノイズが大きく、また、イ
ンダクタンスが大きい為に高周波帯域での再生出力が低
下したり、ノイズが発生しやすいという欠点がある。更
に、金属磁性膜とフェラトコアとが反応してその境界に
擬似ギャップを生じ、磁気ギャップと干渉しあって、再
生出力の周波数にうねりが発生し、そのために、高品質
化した再生画像に揺らぎや劣化を生じ易い。一方、図9
に示す非磁性基板でコアと金属磁性膜の積層膜を挾持し
た積層型の磁気ヘッドは、インダクタンスが小さく、磁
歪定数も小さくでき、かつ、構造上狭トラック化が容易
で高密度、短波長記録に適した磁気ヘッドである。しか
し、非磁性基板を構成するセラミックスは多結晶の組織
であるために、クラックやチッピング等が発生し易く加
工性に問題がある材料である。また、テ−プとの摺動特
性がそれほど良くなく偏摩耗を起こし、積層膜と非磁性
コアとの間に段差を生じたり、テ−プとの疑着による面
荒れを発生し易い等の欠点がある。
The magnetic Mn- shown in FIG.
MI using a metal magnetic film on a Zn single crystal ferrite core piece
The G type magnetic head is a magnetic head which has good workability of single crystal ferrite and excellent wear characteristics with respect to the tape. However, since single crystal ferrite has a large magnetostriction constant,
There is a drawback that the noise caused by sliding on the VTR tape is large, and the large inductance causes a reduction in reproduction output in a high frequency band and noise is easily generated. Further, the metallic magnetic film and the ferro-core react to generate a pseudo gap at the boundary, which interferes with the magnetic gap and causes undulations in the frequency of the reproduction output, which causes fluctuations in the reproduced image of high quality. Easy to deteriorate. On the other hand, FIG.
The laminated magnetic head sandwiching the laminated film of the core and the metallic magnetic film on the non-magnetic substrate shown in Fig. 3 has a small inductance and a small magnetostriction constant, and it is easy to narrow the track due to its structure, so that high density and short wavelength recording is possible. It is a magnetic head suitable for. However, since the ceramics forming the non-magnetic substrate has a polycrystalline structure, cracks and chippings are easily generated and the material has a problem in workability. In addition, the sliding property with the tape is not so good that uneven wear is caused, a step is formed between the laminated film and the non-magnetic core, and surface roughness due to suspicious attachment with the tape is likely to occur. There are drawbacks.

【0004】本発明者等は、先に特開平3−12666
2号公報において磁気ヘッド用の非磁性Mn−Znフェ
ライトを、特開平3−127315号公報において非磁
性Mn−Znフェライトでスライダ−を構成したコンポ
ジット型の浮上式磁気ヘッドを提案している。しかしな
がら、先に開示した発明は、主組成にCaO,MgO,
ZrO2等の添加物必須とした非磁性のMn−Znフェ
ライトであって、多結晶では有効であったが、単結晶で
は品質の良好な単結晶ができず実用に供し得ないもので
あった。本発明者等は単結晶の育成条件を更に検討する
と共に、CaO等を添加せず、組成範囲を更に限定する
ことにより、高品質の非磁性のMn−Zn単結晶フェラ
イトを育成することを可能とした。そして、その非磁性
のMn−Zn単結晶フェライトを基板に用いることによ
り、加工性が良好で、摺動ノイズが小さく、高周波帯域
でのヘッド特性が良好で、かつ、長寿命のVTR用磁気
ヘッドを提供することができた。
The inventors of the present invention previously disclosed in Japanese Patent Laid-Open No. 3-12666.
No. 2 discloses a non-magnetic Mn-Zn ferrite for a magnetic head, and Japanese Patent Application Laid-Open No. 3-127315 proposes a composite floating magnetic head in which a slider is formed of a non-magnetic Mn-Zn ferrite. However, the invention disclosed above is mainly composed of CaO, MgO,
It is a non-magnetic Mn-Zn ferrite in which an additive such as ZrO 2 is indispensable, and it was effective in a polycrystal, but a single crystal of good quality could not be formed and could not be put to practical use. . The inventors of the present invention are able to grow a high-quality non-magnetic Mn-Zn single crystal ferrite by further examining the growth conditions of the single crystal and further limiting the composition range without adding CaO or the like. And Further, by using the non-magnetic Mn-Zn single crystal ferrite for the substrate, the workability is good, the sliding noise is small, the head characteristics in the high frequency band are good, and the magnetic head for a VTR has a long life. Could be provided.

【0005】[0005]

【課題を解決するための手段】本発明の磁気ヘッドはモ
ル%で、A(Fe23:25,MnO:30,ZnO:4
5)、B(Fe23:25,MnO:40,ZnO:35)、
C(Fe23:30,MnO:40,ZnO:30)、D(F
23:58,MnO:12,ZnO:30)、E(Fe2
3:58,MnO:4,ZnO:38)、F(Fe23:5
1,MnO:4,ZnO:45)の各点を結んだA−B−
C−D−E−Fに囲まれた範囲内の組成の非磁性のMn
−Zn単結晶フェライトを用いたVTR用磁気ヘッドで
ある。その一つは、1対のコア片を非磁性のMn−Zn
単結晶フェライトで構成し、その少なくとも一方のコア
片の磁気ギャップ対向面に、金属磁性膜を成膜したMI
G型のVTR用磁気ヘッドである。金属磁性膜は一方の
コア片にのみ成膜しても良いし、双方のコア片に成膜し
ても良い。他の一つは、非磁性のMn−Zn単結晶フェ
ライトで基板を構成し、その基板で金属磁性膜と非磁性
膜との積層膜を挾持した一対のコア片と、そのコア片の
突合せ面に磁気ギャップを形成した積層型のVTR用磁
気ヘッドである。
The magnetic head of the present invention has a mol% of A (Fe 2 O 3 : 25, MnO: 30, ZnO: 4).
5), B (Fe 2 O 3 : 25, MnO: 40, ZnO: 35),
C (Fe 2 O 3 : 30, MnO: 40, ZnO: 30), D (F
e 2 O 3 : 58, MnO: 12, ZnO: 30), E (Fe 2 O)
3: 58, MnO: 4, ZnO: 38), F (Fe 2 O 3: 5
1, MnO: 4, ZnO: 45) are connected to each other.
Non-magnetic Mn having a composition within the range surrounded by C-D-E-F
A magnetic head for a VTR using -Zn single crystal ferrite. One of them is that a pair of core pieces is made of non-magnetic Mn-Zn.
MI which is composed of single crystal ferrite and has a metal magnetic film formed on the magnetic gap facing surface of at least one of the core pieces.
This is a G-type VTR magnetic head. The metal magnetic film may be formed on only one core piece, or may be formed on both core pieces. The other one is that a substrate is made of non-magnetic Mn-Zn single crystal ferrite, and a pair of core pieces sandwiching a laminated film of a metal magnetic film and a non-magnetic film on the substrate, and abutting surfaces of the core pieces. It is a laminated type VTR magnetic head in which a magnetic gap is formed.

【0006】[0006]

【作用】本発明のVTR用磁気ヘッドは、非磁性Mn−
Zn単結晶フェライトでコア片を構成し、金属磁性膜を
用いているので摺動ノイズ発生が少なく、またインダク
タンスが小さく高周波帯域でのノイズの発生も少なく、
良好なヘッド特性を有している。更に、高飽和磁束密度
の金属磁性膜を用いているので、高密度記録に対応でき
る。一方、非磁性Mn−Zn単結晶フェライトは非磁性
であること、熱膨張係数が(82〜98)×10-7/℃
で、磁性フェライトの110×10-7/℃前後に比較し
てやや小さいことを除くと、ビッカ−ス硬度が600〜
700kg/mm2と適度な硬さでありテ−プとの摺動によ
る摩耗も少なく、加工性も良好で、長寿命の磁気ヘッド
を得ることができる。
The magnetic head for a VTR according to the present invention is a non-magnetic Mn-
Since the core piece is composed of Zn single crystal ferrite and the metal magnetic film is used, the sliding noise is small, the inductance is small, and the noise in the high frequency band is small.
It has good head characteristics. Furthermore, since a metal magnetic film having a high saturation magnetic flux density is used, high density recording can be supported. On the other hand, the non-magnetic Mn-Zn single crystal ferrite is non-magnetic, thermal expansion coefficient (82~98) × 10- 7 / ℃
In, except that slightly smaller than the front and rear 110 × 10- 7 / ℃ of magnetic ferrite, Vickers - scan hardness 600
The magnetic head has an appropriate hardness of 700 kg / mm 2 , little wear due to sliding with the tape, good workability, and a long-life magnetic head can be obtained.

【0007】[0007]

【実施例】【Example】

(実施例)モル%で(Fe23:45,MnO:17,
ZnO:38)と(Fe23:30,MnO:35,Z
nO:35)の2種類の組成を配合した材料を、ライカ
イ機で乾式混合した後1200℃で3時間仮焼した。そ
の後白金ルツボに入れ温度1650℃、酸素雰囲気中で
育成後窒素雰囲気に切替え、ルツボを降下させて、先端
から徐々に冷却させ非磁性単結晶フェライトを製作し
た。この非磁性Mn−Zn単結晶フェライトを用いて磁
気ヘッドを作製し特性の比較を行なった。 (実施例1)モル%で(Fe23:45,MnO:1
7,ZnO:38)の非磁性のMn−Zn単結晶フェラ
イトを用い、図1に示すMIG型の磁気ヘッドを作製し
た。図1において、10は磁気ヘッド、11,12は非
磁性のMn−Zn単結晶フェライトコア片、13は補強
ガラス、14はスパッタリングにより成膜したFe−A
l−Si系の金属磁性膜である。比較のためにモル%
で、(Fe23:54,MnO:30,ZnO:16)
の磁性Mn−Zn単結晶フェライトを用いて同様の磁気
ヘッドを作製し、それぞれの自己録再の再生出力特性の
比較を行なった。ヘッド主構成と条件は下記に示す。 金属磁性膜:Fe−Al−Si系 磁性膜の膜厚:2μm 積層膜の膜厚:10μm トラック幅:20μm ギャップ長:0.35μm ギャップ深さ:25μm テ−プ:メタルテ−プ 相対速度:5.6m/sec 図6はその測定結果を示す図である。比較例の磁性Mn
−Zn単結晶フェライトを用いた磁気ヘッドでは、擬似
ギャップや摺動ノイズの影響のために、うねり現象が見
られ、高周波帯域側での再生出力の低下が著しい。一方
本発明の非磁性Mn−Zn単結晶フェライトを用いた磁
気ヘッドはうねり現象の発生も無く、高周波帯域での再
生出力の低下も小さく、磁気ヘッド特性に優れている。
(Example) in mole% (Fe 2 O 3: 45 , MnO: 17,
ZnO: 38) and (Fe 2 O 3: 30, MnO: 35, Z
(nO: 35) was mixed with two materials in a dry mixer and then calcined at 1200 ° C. for 3 hours. Then, it was put into a platinum crucible and grown in an oxygen atmosphere at a temperature of 1650 ° C., and then switched to a nitrogen atmosphere, the crucible was lowered, and gradually cooled from the tip to manufacture a non-magnetic single crystal ferrite. A magnetic head was manufactured using this non-magnetic Mn-Zn single crystal ferrite and the characteristics were compared. (Example 1) in mole% (Fe 2 O 3: 45 , MnO: 1
7, ZnO: 38) non-magnetic Mn-Zn single crystal ferrite was used to fabricate the MIG type magnetic head shown in FIG. In FIG. 1, 10 is a magnetic head, 11 and 12 are non-magnetic Mn-Zn single crystal ferrite core pieces, 13 is reinforced glass, and 14 is Fe-A formed by sputtering.
It is a 1-Si based metal magnetic film. Mol% for comparison
And (Fe 2 O 3 : 54, MnO: 30, ZnO: 16)
A similar magnetic head was manufactured using the magnetic Mn-Zn single crystal ferrite of No. 1 and the reproduction output characteristics of self-recording and reproducing were compared. The main configuration and conditions of the head are shown below. Metal magnetic film: Fe-Al-Si system Magnetic film thickness: 2 μm Laminated film thickness: 10 μm Track width: 20 μm Gap length: 0.35 μm Gap depth: 25 μm Tape: Metal tape Relative speed: 5 .6 m / sec FIG. 6 is a diagram showing the measurement results. Magnetic Mn of Comparative Example
In the magnetic head using -Zn single crystal ferrite, a waviness phenomenon is observed due to the influence of the pseudo gap and sliding noise, and the reproduction output is remarkably reduced on the high frequency band side. On the other hand, the magnetic head using the non-magnetic Mn-Zn single crystal ferrite of the present invention does not cause a waviness phenomenon, has a small decrease in reproduction output in a high frequency band, and is excellent in magnetic head characteristics.

【0008】(実施例2)モル%で、(Fe23:3
0,MnO:35,ZnO:35)の非磁性Mn−Zn
単結晶フェライトを用い図2に示す積層型の磁気ヘッド
を作製した。図2において、20は磁気ヘッド、21
a,21b,22a,22bは非磁性基板、23は補強
ガラス、24は積層膜、25は磁気ギャップである。こ
の積層型ヘッドと実施例1で用いたモル%で、(Fe2
3:54,MnO:30,ZnO:16)の磁性Mn
−Zn単結晶フェライトでコア片を構成したMIG型の
磁気ヘッドのC/Nの周波数特性の比較を行なった。ヘ
ッド主構成と条件は下記に示す。 金属磁性膜:Fe−Al−Si系 積層膜:5μm×4層 非磁性膜:100nm トラック幅:20μm ギャップ長:0.35μm ギャップ深さ:25μm テ−プ:メタルテ−プ 相対速度:5.6m/sec 図7にその結果を示す。記録していない未使用のS−V
HSのテ−プを用い摺動ノイズの比較を行なった。MI
G型の磁気ヘッドではテ−プとの摺動ノイズが発生しC
/Nが低下しているが、本発明の磁気ヘッドでほとんど
ノイズの発生がなく、特に高周波帯域でのノイズ低減の
効果が大きくなっている。次に、実施例1,2で用いた
本発明の磁気ヘッドとMnO−NiO系のセラミックス
を用いた磁気ヘッドとの摺動摩耗特性の比較を行なっ
た。本発明の磁気ヘッドは適度に摩耗し、金属磁性薄膜
との偏摩耗や面荒れも発生せず良好な摺動特性を有する
ことが認められた。以上平行なMIG型と積層型を例に
とり説明したが、本発明は図4に示す台形型、図5に示
す傾斜型に磁気ヘッドに適用してもその効果に変りは無
いのは当然である。
Example 2 (Fe 2 O 3 : 3 in mol%)
0, MnO: 35, ZnO: 35) non-magnetic Mn-Zn
A laminated magnetic head shown in FIG. 2 was manufactured using single crystal ferrite. In FIG. 2, 20 is a magnetic head, and 21
Reference numerals a, 21b, 22a and 22b are non-magnetic substrates, 23 is a reinforcing glass, 24 is a laminated film, and 25 is a magnetic gap. With this laminated head and the mol% used in Example 1, (Fe 2
O 3 : 54, MnO: 30, ZnO: 16) magnetic Mn
The C / N frequency characteristics of the MIG type magnetic head in which the core piece was composed of -Zn single crystal ferrite were compared. The main configuration and conditions of the head are shown below. Metal magnetic film: Fe-Al-Si system Laminated film: 5 μm × 4 layers Non-magnetic film: 100 nm Track width: 20 μm Gap length: 0.35 μm Gap depth: 25 μm Tape: Metal tape Relative speed: 5.6 m / Sec The result is shown in FIG. Unused SV not recorded
The sliding noise was compared using an HS tape. MI
In the G type magnetic head, sliding noise with the tape occurs and C
Although / N is decreased, the magnetic head of the present invention hardly generates noise, and the noise reduction effect is particularly large in a high frequency band. Next, the sliding wear characteristics of the magnetic head of the present invention used in Examples 1 and 2 and the magnetic head using MnO—NiO ceramics were compared. It was confirmed that the magnetic head of the present invention was appropriately worn, had no uneven wear with the metal magnetic thin film, and had no surface roughness, and had good sliding characteristics. The parallel MIG type and the laminated type have been described above as an example, but the present invention can be applied to the trapezoidal type shown in FIG. 4 and the inclined type shown in FIG. .

【0009】[0009]

【発明の効果】本発明の高品質のVTR用磁気ヘッドに
より、高周波帯域でもノイズが少ない高画質で、長寿命
の磁気ヘッドが可能となった。
The high-quality magnetic head for a VTR of the present invention enables a magnetic head having high image quality with little noise even in a high frequency band and having a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例を示すVTR用磁気ヘッドの斜視
図である。
FIG. 1 is a perspective view of a magnetic head for a VTR showing an example of the present invention.

【図2】本発明の一例を示すVTR用磁気ヘッドの斜視
図である。
FIG. 2 is a perspective view of a magnetic head for a VTR showing an example of the present invention.

【図3】本発明の非磁性Mn−Zn単結晶フェライトコ
アの組成範囲を示す図である。
FIG. 3 is a diagram showing a composition range of a non-magnetic Mn—Zn single crystal ferrite core of the present invention.

【図4】本発明の他の実施例の示すVTR用磁気ヘッド
の斜視図である。
FIG. 4 is a perspective view of a VTR magnetic head according to another embodiment of the present invention.

【図5】本発明の他の実施例の示すVTR用磁気ヘッド
の斜視図である。
FIG. 5 is a perspective view of a VTR magnetic head according to another embodiment of the present invention.

【図6】本発明と比較例の磁気ヘッドの自己録再の再生
出力特性を示す図である。
FIG. 6 is a diagram showing reproduction output characteristics of self-recording / reproduction of magnetic heads of the present invention and a comparative example.

【図7】本発明と比較例の磁気ヘッドのC/Nの周波数
特性を示す図である。
FIG. 7 is a diagram showing C / N frequency characteristics of magnetic heads of the present invention and a comparative example.

【図8】従来のVTR用磁気ヘッドの基本構成を示す斜
視図である。
FIG. 8 is a perspective view showing the basic configuration of a conventional VTR magnetic head.

【図9】従来のVTR用磁気ヘッドの基本構成を示す斜
視図である。
FIG. 9 is a perspective view showing the basic structure of a conventional VTR magnetic head.

【符号の説明】[Explanation of symbols]

10 VTR用磁気ヘッド 11 非磁性Mn−Zn単結晶フェライトコア片 12 非磁性Mn−Zn単結晶フェライトコア片 13 ボンディングガラス 14 金属磁性膜 15 磁気ギャップ 20 VTR用磁気ヘッド 21 非磁性Mn−Zn単結晶フェライトコア片 22 非磁性Mn−Zn単結晶フェライトコア片 23 ボンディングガラス 24 積層膜 25 磁気ギャップ 10 magnetic head for VTR 11 non-magnetic Mn-Zn single crystal ferrite core piece 12 non-magnetic Mn-Zn single crystal ferrite core piece 13 bonding glass 14 metal magnetic film 15 magnetic gap 20 VTR magnetic head 21 non-magnetic Mn-Zn single crystal Ferrite core piece 22 Non-magnetic Mn-Zn single crystal ferrite core piece 23 Bonding glass 24 Laminated film 25 Magnetic gap

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 モル%で、 A(Fe23:25,MnO:30,ZnO:45)、 B(Fe23:25,MnO:40,ZnO:35)、 C(Fe23:30,MnO:40,ZnO:30)、 D(Fe23:58,MnO:12,ZnO:30)、 E(Fe23:58,MnO:4,ZnO:38)、 F(Fe23:51,MnO:4,ZnO:45) の各点を結ぶA−B−C−D−E−Fに囲まれた範囲内
の組成の非磁性のMn−Zn単結晶フェライトで構成さ
れた一対のコア片と、その一対のコア片の少なくとも一
方のコア片の磁気ギャップ対向面に成膜された金属磁性
膜と、磁気ギャップとを有することを特徴とするMIG
型のVTR用磁気ヘッド。
1. A mol% of A (Fe 2 O 3 : 25, MnO: 30, ZnO: 45), B (Fe 2 O 3 : 25, MnO: 40, ZnO: 35), C (Fe 2 O). 3: 30, MnO: 40, ZnO: 30), D (Fe 2 O 3: 58, MnO: 12, ZnO: 30), E (Fe 2 O 3: 58, MnO: 4, ZnO: 38), F (Fe 2 O 3 : 51, MnO: 4, ZnO: 45) A non-magnetic Mn-Zn single crystal ferrite with a composition within a range surrounded by ABCDECF connecting points. And a magnetic gap formed between the pair of core pieces, a metal magnetic film formed on the magnetic gap facing surface of at least one core piece of the pair of core pieces, and a magnetic gap.
Type magnetic head for VTR.
【請求項2】 モル%で、 A(Fe23:25,MnO:30,ZnO:45)、 B(Fe23:25,MnO:40,ZnO:35)、 C(Fe23:30,MnO:40,ZnO:30)、 D(Fe23:58,MnO:12,ZnO:30)、 E(Fe23:58,MnO:4,ZnO:38)、 F(Fe23:51,MnO:4,ZnO:45) の各点を結ぶA−B−C−D−E−Fに囲まれた範囲内
の組成の非磁性のMn−Zn単結晶フェライトで構成さ
れた基板で挾持された、金属磁性膜と非磁性膜との積層
膜で構成された一対のコア片と、そのコア片の突合せ面
に形成された磁気ギャップとを有することを特徴とする
積層型のVTR用磁気ヘッド。
2. A mol% of A (Fe 2 O 3 : 25, MnO: 30, ZnO: 45), B (Fe 2 O 3 : 25, MnO: 40, ZnO: 35), C (Fe 2 O). 3: 30, MnO: 40, ZnO: 30), D (Fe 2 O 3: 58, MnO: 12, ZnO: 30), E (Fe 2 O 3: 58, MnO: 4, ZnO: 38), F (Fe 2 O 3 : 51, MnO: 4, ZnO: 45) A non-magnetic Mn-Zn single crystal ferrite with a composition within a range surrounded by ABCDECF connecting points. A pair of core pieces composed of a laminated film of a metal magnetic film and a non-magnetic film, and a magnetic gap formed on the abutting surface of the core pieces sandwiched by a substrate composed of A laminated type magnetic head for a VTR.
JP4223684A 1992-08-24 1992-08-24 Magnetic head for vtr Pending JPH0668415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223684A JPH0668415A (en) 1992-08-24 1992-08-24 Magnetic head for vtr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223684A JPH0668415A (en) 1992-08-24 1992-08-24 Magnetic head for vtr

Publications (1)

Publication Number Publication Date
JPH0668415A true JPH0668415A (en) 1994-03-11

Family

ID=16802030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223684A Pending JPH0668415A (en) 1992-08-24 1992-08-24 Magnetic head for vtr

Country Status (1)

Country Link
JP (1) JPH0668415A (en)

Similar Documents

Publication Publication Date Title
JP2513205B2 (en) Composite magnetic head
US5270894A (en) MIG magnetic head structured to minimize pseudo-gap problem
EP0496201B1 (en) Magnetic head
JP2635422B2 (en) Magnetic head
JPH0668415A (en) Magnetic head for vtr
JP2775770B2 (en) Method for manufacturing soft magnetic thin film
JPH03116409A (en) Magnetic head
JP2624101B2 (en) Composite magnetic head
JP2570891B2 (en) Substrate for magnetic head
JP2570305B2 (en) Magnetic head
JPH08255308A (en) Production of composite magnetic head
JP2565173B2 (en) Composite magnetic head
JPH0721513A (en) Magnetic head
JPS63302406A (en) Magnetic head
JPH05225515A (en) Magnetic head
JPH05128421A (en) Joint type magnetic head
JPH0696414A (en) Magnetic head
JPH06103513A (en) Composite magnetic head
JPS6215805A (en) Magnetic head
JPH05210816A (en) Magnetic head
JPH09204605A (en) Magnetic head
JPH076320A (en) Magnetic head
JPH07326014A (en) Joined ferrite material for magnetic head and magnetic head
JPH04302807A (en) Composite magnetic head
JPH03228204A (en) Joined type magnetic head