JPH0668035U - Acousto-optic deflector - Google Patents

Acousto-optic deflector

Info

Publication number
JPH0668035U
JPH0668035U JP743693U JP743693U JPH0668035U JP H0668035 U JPH0668035 U JP H0668035U JP 743693 U JP743693 U JP 743693U JP 743693 U JP743693 U JP 743693U JP H0668035 U JPH0668035 U JP H0668035U
Authority
JP
Japan
Prior art keywords
acousto
angle
prism
light
optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP743693U
Other languages
Japanese (ja)
Inventor
覚 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP743693U priority Critical patent/JPH0668035U/en
Publication of JPH0668035U publication Critical patent/JPH0668035U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 回折光の偏光角度または分離角を大きく広げ
ると共に高速角度変調が可能な応答性に優れた音響光学
偏向器を提供する。 【構成】 ブラッグ回折条件を満たす音響光学媒体11
を用いてレーザ入射光を回折させる音響光学偏向器であ
る。音響光学媒体11の回折光側11Aに1または2以
上のプリズム15,21,22を配設する。音響光学媒
体11はモリブデン酸鉛単結晶等のブラッグ回折条件を
満たす硝子または単結晶で構成される。使用レーザ光に
対して透光性を有するプリズム15,21,22を用
い、プリズム角は30度以上に設定する。プリズム1
5,21,22によって回折光の偏向角度または分離角
を大きくすることができる。
(57) [Abstract] [PROBLEMS] To provide an acousto-optic deflector which greatly expands the polarization angle or separation angle of diffracted light and is capable of high-speed angle modulation and has excellent responsiveness. [Constitution] Acousto-optic medium 11 satisfying the Bragg diffraction condition
Is an acousto-optic deflector that diffracts laser incident light by using. One or more prisms 15, 21, 22 are arranged on the diffracted light side 11A of the acousto-optic medium 11. The acousto-optic medium 11 is made of glass or a single crystal such as lead molybdate single crystal that satisfies the Bragg diffraction condition. The prisms 15, 21, and 22 having a light-transmitting property with respect to the laser light used are used, and the prism angle is set to 30 degrees or more. Prism 1
5, 21, 22 can increase the deflection angle or separation angle of the diffracted light.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、ポリゴンミラーやガルバノミラー等の角度変調の代用、レーザ顕微 鏡やスペクトラムアナライザや音響光学フィルタ等の高速分光に応用される音響 光学偏向器に関し、特にブラッグ回折条件を満たす音響光学媒体を用いて0次回 折光と1次以上の回折光とのなす角度である偏向角度を大きく設定できる音響光 学偏向器に関する。 The present invention relates to an acousto-optic deflector applied to high-speed spectroscopy such as a laser microscope, a spectrum analyzer, and an acousto-optic filter in place of an angle modulation such as a polygon mirror or a galvano mirror. The present invention relates to an acoustooptic deflector capable of setting a large deflection angle, which is an angle formed by a 0th-order folded light and a 1st-order or more diffracted light.

【0002】[0002]

【従来の技術】[Prior art]

従来の音響光学偏向器は、大きな角度変調を得るために二酸化テルル(TeO2 )単結晶を用いる異方ブラッグ回折を主に利用していた。この結晶は、ある結 晶軸から一定の角度だけ傾斜した面から横波超音波を発生させると、その進行方 向は軸から大きく傾斜するという特異な性質がある。Conventional acousto-optic deflectors have mainly utilized anisotropic Bragg diffraction using tellurium dioxide (TeO 2 ) single crystals to obtain large angle modulation. This crystal has a peculiar property that when a transverse ultrasonic wave is generated from a plane inclined by a certain angle from a certain crystal axis, its traveling direction is greatly inclined from the axis.

【0003】 図4に代表的な異方ブラッグ回折音響光学偏向器を示す。図中の1は音響光学 媒体である。この音響光学媒体1は前記二酸化テルル単結晶で構成されている。 2はf1〜f2の周波数を持つ発振器である。3は音響光学媒体1に当接され発振 器2からの周波数信号により音響光学媒体1内に超音波を伝達するトランジュー サである。二酸化テルル単結晶は超音波の波面法線方向が[110]軸から5度 傾くと、超音波の進行方向、即ちエネルギーの伝搬方向は約45度傾く(図中の 矢印4の方向)。[110]軸進行[110]軸変位の横波弾性波は、弾性定数 (C11−C12)/2が小さいため、音速が616m/secと極めて遅い。レーザ入射光 5が音響光学媒体1に入射し、発振器2の周波数をf1からf2の範囲で駆動する と、0次回折光6の他にf1で回折された一次回折光7及びf2で回折された一次 回折光8が得られる。このf1とf2による一次回折光8のなす角が分離角である 。なお、9は音響光学媒体1に貼設された吸音材である。FIG. 4 shows a typical anisotropic Bragg diffractive acousto-optic deflector. In the figure, 1 is an acousto-optic medium. The acousto-optic medium 1 is composed of the tellurium dioxide single crystal. 2 is an oscillator having a frequency of f 1 to f 2 . Reference numeral 3 is a transducer which is in contact with the acousto-optic medium 1 and transmits ultrasonic waves into the acousto-optic medium 1 by a frequency signal from the oscillator 2. In the tellurium dioxide single crystal, when the wavefront normal direction of the ultrasonic wave is inclined by 5 degrees from the [110] axis, the traveling direction of the ultrasonic wave, that is, the energy propagation direction is inclined by about 45 degrees (the direction of arrow 4 in the figure). [110] transverse acoustic wave axis progression [110] axis displacement, because a small elastic constant (C 11 -C 12) / 2 , the sound velocity is very slow and 616m / sec. When the laser incident light 5 is incident on the acousto-optic medium 1 and the frequency of the oscillator 2 is driven in the range from f 1 to f 2 , in addition to the 0th-order diffracted light 6, the 1st-order diffracted lights 7 and f 2 diffracted by f 1 are emitted. The first-order diffracted light 8 diffracted by is obtained. The angle formed by the first-order diffracted light 8 by f 1 and f 2 is the separation angle. In addition, 9 is a sound absorbing material attached to the acousto-optic medium 1.

【0004】 ところで、発振器2の周波数をf、レーザ光波長をλ、音響光学媒体1中の音 速をvとすると、0次回折光と一次回折光の角度変位δθは、δθ=λf/(2 v)の式で近似される。角度変位δθを大きくするには音響光学媒体1中の音速 vが遅いほどよく、この点で二酸化テルル単結晶の[110]軸進行[110] 軸変位の横波弾性波は優れている。By the way, when the frequency of the oscillator 2 is f, the laser light wavelength is λ, and the sound velocity in the acousto-optic medium 1 is v, the angular displacement δθ between the 0th-order diffracted light and the 1st-order diffracted light is δθ = λf / (2 v) is approximated. In order to increase the angular displacement δθ, the slower the sound velocity v in the acousto-optic medium 1, the better. In this respect, the transverse wave elastic wave of the [110] axis traveling [110] axis displacement of the tellurium dioxide single crystal is excellent.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところが、従来の音響光学偏向器では以下のような問題がある。 However, the conventional acousto-optic deflector has the following problems.

【0006】 (1) 従来の音響光学偏向器は前述のように異方ブラッグ回折条件を満たす音 響光学媒体1を用いて構成されているが、この音響光学偏向器で高い回折効率を 得るためにはレーザ入射光を特定の偏光状態(円偏光)にしておかなければなら ない。さらにこれによる回折光は入射光と異なった偏光状態となる。即ち、レー ザ入射光としては右回り(あるいは左回り)の円偏光が要求され、これによる回 折光は逆に左回り(あるいは右回り)の円偏光となる。このため、使用するレー ザ光源を円偏光にする必要があるが、レーザ光源の偏光状態は直線偏光となって いるのが一般的であり、この直線偏光を円偏光にするには高額な波長板(λ/4 板)を用いなければならない。この結果、部品コストが嵩む。(1) The conventional acousto-optic deflector is configured using the acoustic optical medium 1 that satisfies the anisotropic Bragg diffraction condition as described above, but this acousto-optic deflector provides high diffraction efficiency. To achieve this, the laser incident light must be in a specific polarization state (circular polarization). Further, the diffracted light due to this has a polarization state different from that of the incident light. That is, clockwise (or counterclockwise) circularly polarized light is required as laser incident light, and conversely, the circularly polarized light is counterclockwise (or clockwise) circularly polarized light. For this reason, the laser light source used must be circularly polarized light, but the polarization state of the laser light source is generally linearly polarized light. A plate (λ / 4 plate) must be used. As a result, the cost of parts increases.

【0007】 (2) また、回折光は入射光と反対の円偏光になるので、使用条件が制限され る。(2) Further, since the diffracted light is circularly polarized light opposite to the incident light, the usage conditions are limited.

【0008】 (3) 一般に、音響光学偏向器の応答性は超音波がレーザ光のビームを横切る のに要する時間(アクセス時間τ)が速いほどよい。アクセス時間τ、レーザ光 のビーム径D及び音響光学媒体1中の音速vとの間にはτ=D/vの関係があり 、音速vが遅いほどアクセス時間τは遅くなる。これは、高速でレーザ光を角度 変調する目的に反する。これに対して前記従来の音響光学媒体1での音速は61 6m/secと極めて遅く、角度変位δθを大きくするにはよいが、高速角度変調の 目的には反する。(3) Generally, the response of the acousto-optic deflector is better as the time (access time τ) required for the ultrasonic wave to cross the beam of the laser light is faster. There is a relationship of τ = D / v between the access time τ, the beam diameter D of the laser light, and the sound velocity v in the acoustooptic medium 1. The slower the sound velocity v, the longer the access time τ. This defeats the purpose of angularly modulating the laser light at high speed. On the other hand, the sound velocity in the conventional acousto-optic medium 1 is extremely slow at 616 m / sec, which is good for increasing the angular displacement δθ, but it is against the purpose of high-speed angle modulation.

【0009】 (4) 異方ブラッグ回折の音響光学媒体1は結晶の方位角度の精度がたいへん 厳しいため、歩留り率が悪い。このため、前記波長板と相俟って音響光学偏向器 のコストを上げる原因となる。(4) The acousto-optic medium 1 of anisotropic Bragg diffraction has a very low accuracy in the azimuth angle of the crystal, so that the yield rate is low. Therefore, the cost of the acousto-optic deflector increases in combination with the wave plate.

【0010】 本考案は上述の問題点に鑑みてなされたものであり、第1の目的は高額な波長 板を不要とし、かつ音響光学媒体に歩留り率の高い材料を用いてコスト低減を図 ることにある。第2の目的は入射光として直線偏光を利用できると共に回折光を 直線偏光にして使用条件の制限を解消することにある。第3の目的は高速角度変 調が可能な応答性に優れた音響光学偏向器を提供することになる。第4の目的は 異方ブラッグ回折を用いず、ブラッグ回折を用いて大きな値の角度変調が得られ る音響光学偏向器を提供することにある。The present invention has been made in view of the above problems, and a first object of the present invention is to reduce the cost by eliminating the need for an expensive wave plate and using a material with a high yield rate for the acousto-optic medium. Especially. The second purpose is to use linearly polarized light as the incident light and to make the diffracted light linearly polarized light to eliminate the limitation of the use conditions. A third object is to provide an acousto-optic deflector which is capable of high-speed angle modulation and has excellent responsiveness. A fourth object is to provide an acousto-optic deflector that can obtain a large value of angle modulation by using Bragg diffraction without using anisotropic Bragg diffraction.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

上述の課題を解決するために、本考案にかかる音響光学偏向器は、 (1) ブラッグ回折条件を満たす音響光学媒体を用いてレーザ入射光を回折さ せると共に周波数を調整して回折光の回折角を変える音響光学偏向器において、 前記音響光学媒体の1次または2次以上の回折光出射側に、当該回折光の進行 方向を変える1個または2個以上のプリズムを配設し、0次回折光に対する偏向 角度、または前記周波数の違いによる回折光の分離角を大きく広げることを特徴 とする構成とした。 In order to solve the above-mentioned problems, the acousto-optic deflector according to the present invention comprises: (1) a laser incident light is diffracted using an acousto-optic medium satisfying the Bragg diffraction condition, and the frequency is adjusted to rotate the diffracted light. In an acousto-optic deflector that changes the bending angle, one or more prisms that change the traveling direction of the diffracted light are disposed on the emission side of the acousto-optic medium that is the first-order or second-order or more diffracted light. The configuration is characterized in that the deflection angle with respect to the folded light or the separation angle of the diffracted light due to the difference in the frequency is greatly widened.

【0012】 (2) 構成1の音響光学偏向器において、 音響光学媒体がブラッグ回折条件を満たす硝子または単結晶で構成されたこと を特徴とする構成とした。(2) In the acousto-optic deflector of the constitution 1, the acousto-optic medium is constituted by glass or a single crystal satisfying the Bragg diffraction condition.

【0013】 (3) 構成1または2の音響光学偏向器において、 プリズムが使用レーザ光に対して透光性を有し、かつそのプリズム角が30度 以上に構成されたことを特徴とする構成とした。(3) In the acousto-optic deflector of configuration 1 or 2, the prism has a property of transmitting the used laser light, and the prism angle is configured to be 30 degrees or more. And

【0014】[0014]

【作用】[Action]

上述の構成1によれば、音響光学媒体の回折光出射側に配設したプリズムによ って回折光の偏向角度または分離角を大きくすることができる。構成2によれば 、音響光学媒体をブラッグ回折条件を満たす硝子または単結晶で構成するため、 使用条件の制限が少ない直線偏光を効率的に得ることができる。構成3によれば 、使用レーザ光に対して透光性を有しかつそのプリズム角が30度以上に構成さ れたプリズムを使用することにより、回折光の効率的な角度偏光が可能になる。 According to the above configuration 1, the deflection angle or the separation angle of the diffracted light can be increased by the prism arranged on the diffracted light emitting side of the acousto-optic medium. According to the configuration 2, since the acousto-optic medium is made of glass or single crystal that satisfies the Bragg diffraction condition, it is possible to efficiently obtain linearly polarized light with less restrictions on use conditions. According to the configuration 3, by using a prism that is transparent to the laser light used and has a prism angle of 30 degrees or more, efficient angular polarization of the diffracted light becomes possible. .

【0015】[0015]

【実施例】【Example】

以下、本考案の実施例について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0016】 [第1実施例] 図1は本考案の第1実施例に係る音響光学偏向器を示す断面図である。[First Embodiment] FIG. 1 is a sectional view showing an acousto-optic deflector according to a first embodiment of the present invention.

【0017】 図中の11は音響光学媒体である。この音響光学媒体11はモリブデン酸鉛( PbMoO4)単結晶によって構成されている。このモリブデン酸鉛単結晶は音 響光学媒体としての性能指数が高い。即ち、モリブデン酸鉛単結晶は超音波吸収 係数が比較的低いため駆動周波数として500MHzくらいまで動作が可能で、音 速は3630m/secと速い。常光線屈折率と異常光線屈折率との差である複屈折率が 小さく、レーザ入射光の偏光状態の違いによる回折効率の変化量が極めて少ない 。Reference numeral 11 in the drawing is an acousto-optic medium. The acousto-optic medium 11 is made of lead molybdate (PbMoO 4 ) single crystal. This lead molybdate single crystal has a high figure of merit as an acoustic optical medium. That is, since lead molybdate single crystal has a relatively low ultrasonic absorption coefficient, it can operate up to a driving frequency of about 500 MHz and has a high sound speed of 3630 m / sec. The birefringence, which is the difference between the ordinary and extraordinary ray indices, is small, and the amount of change in diffraction efficiency due to the difference in the polarization state of the laser incident light is extremely small.

【0018】 12は発振器である。この発振器12はその周波数を60MHz(f1)から100 MHz(f2)まで変化できるように設定されている。13は音響光学媒体11 に当接されたトランスジューサで、発振器12に電気的に接続されこの発振器1 2からの前記周波数信号によって音響光学媒体11内に超音波を伝搬させる。1 4は音響光学媒体11に当接された吸音材である。Reference numeral 12 is an oscillator. The oscillator 12 is set so that its frequency can be changed from 60 MHz (f 1 ) to 100 MHz (f 2 ). Reference numeral 13 denotes a transducer which is in contact with the acousto-optic medium 11 and which is electrically connected to the oscillator 12 and propagates ultrasonic waves into the acousto-optic medium 11 by the frequency signal from the oscillator 12. Reference numeral 14 is a sound absorbing material that is in contact with the acousto-optic medium 11.

【0019】 音響光学媒体11に入射したレーザ光が出射する面である出射面11A(図1 においては右側面)側には音響光学媒体11からの回折光の進行角度を偏光させ るためのプリズム15が設けられている。プリズム15の屈折率nは偏向させた い角度に合せて適宜設定する。音響光学媒体11とプリズム15との距離は適宜 設定する。プリズム15はその角度を利用するだけなので、動作上において距離 は問題にならないが、音響光学偏向器の小型化のためにはプリズム15をできる だけ音響光学媒体11に近接させて設けた方がよい。なおここでは、プリズム1 5の主断面ABCのうち、光の入射側面ABと出射側面ACとのなす頂角(∠B AC)をプリズム角という。このプリズム角や、プリズム15の材料(使用レー ザ光に対するプリズム15の屈折率等)や、レーザ光のプリズム15への入射角 等の条件は、大きな角度変調を得るために、屈折の法則や幾何光学の関係を満足 しなければならない。即ち、プリズム角をφ、入射側面ABでの入射角(面AB へ入射する光の進行方向と面ABの法線方向とのなす角)をi1、屈折角(面A Bで屈折した光の進行方向と面ABの法線方向とのなす角)をr1、出射側面A Cでの入射角をr2、屈折角をi2とし、さらに入射側面ABへの入射光の方向と 出射側面ACからの出射光の方向とのなす角である振れ角をψとすると、屈折の 法則や幾何光学の関係によって以下の関係式が得られる。A prism for polarizing the traveling angle of the diffracted light from the acousto-optic medium 11 on the side of the emission surface 11 A (the right side surface in FIG. 1), which is the surface from which the laser light incident on the acousto-optic medium 11 is emitted. 15 are provided. The refractive index n of the prism 15 is set as appropriate according to the angle to be deflected. The distance between the acousto-optic medium 11 and the prism 15 is set appropriately. Since the prism 15 only uses its angle, the distance does not matter in operation, but it is better to provide the prism 15 as close to the acousto-optic medium 11 as possible for the miniaturization of the acousto-optic deflector. . Here, in the main cross section ABC of the prism 15, the apex angle (∠B AC) formed by the light incident side surface AB and the light emitting side surface AC is referred to as a prism angle. Conditions such as the prism angle, the material of the prism 15 (refractive index of the prism 15 with respect to the laser light used, etc.) and the incident angle of the laser light on the prism 15 are determined by the law of refraction and the law of refraction in order to obtain large angle modulation. The relation of geometrical optics must be satisfied. That is, the prism angle is φ, the incident angle at the incident side surface AB (the angle formed by the traveling direction of the light incident on the surface AB and the normal direction of the surface AB) is i 1 , and the refraction angle (the light refracted at the surface AB is R 1 is the angle formed by the traveling direction and the normal to the surface AB, the incident angle at the exit side surface AC is r 2 , the refraction angle is i 2, and the direction of the incident light to the incident side surface AB is the exit direction. When the deflection angle, which is the angle formed by the direction of the light emitted from the side surface AC, is ψ, the following relational expression is obtained according to the law of refraction and the relation of geometrical optics.

【0020】 [入射側面AB] sini1=nsinr1 [入射側面BC] sini2=nsinr2 [プリズム角] φ=r1+r2 [振れ角] ψ=i1+i2−φ 一方、プリズム15の屈折率をn=1.52、プリズム角φを45度とすると、入射 側面ABへの入射角i1の変化と振れ角ψの変化との間には図2に示す一定の関 係がある。この図2に示す入射角i1と振れ角ψとの関係曲線から、振れ角ψが 大きくなる程、関係曲線の傾きが大きくなることが分かる。この傾きが大きいと 、入射角i1の僅かな変化に対して振れ角ψは大きく変化する。即ち、周波数f1 =60MHzの場合の入射角i11及び屈折角i21と、周波数f2=100MHzの場合 の入射角i12、屈折角i22とにおける振れ角ψの差Δψ{=ψ1−ψ2=(i11+ i21−φ)−(i12+i22−φ)}が大きくなる。[Incident side surface AB] sini 1 = nsinr 1 [incident side surface BC] sini 2 = nsinr 2 [prism angle] φ = r 1 + r 2 [deflection angle] ψ = i 1 + i 2 −φ When the refractive index is n = 1.52 and the prism angle φ is 45 degrees, there is a certain relationship shown in FIG. 2 between the change of the incident angle i 1 on the incident side surface AB and the change of the deflection angle ψ. From the relationship curve between the incident angle i 1 and the shake angle ψ shown in FIG. 2, it can be seen that the larger the shake angle ψ, the greater the slope of the relationship curve. When this inclination is large, the deflection angle ψ changes greatly with a slight change in the incident angle i 1 . That is, the difference Δψ {= ψ 1 between the deflection angles ψ between the incident angle i 11 and the refraction angle i 21 when the frequency f 1 = 60 MHz and the incident angle i 12 and the refraction angle i 22 when the frequency f 2 = 100 MHz. −ψ 2 = (i 11 + i 21 −φ) − (i 12 + i 22 −φ)} becomes large.

【0021】 レーザ入射光としてHe-Neレーザからのレーザ光(波長633nm)を使 用すると、音響光学媒体11による一次回折光の分離角は6.9mrad(約0.4度)で ある。発振器12の駆動周波数f1=60MHzのときの一次回折光の入射角i11 を6度とすると、振れ角ψ1=47.7033度となる。一方、駆動周波数f2=100MH zのときの一次回折光の入射角i12は6.4(6+0.4)度となり、振れ角ψ2=44.6 592度となる。このため、振れ角ψの差Δψ=3.0441度となる。When laser light (wavelength 633 nm) from a He—Ne laser is used as the laser incident light, the separation angle of the first-order diffracted light by the acousto-optic medium 11 is 6.9 mrad (about 0.4 degrees). When the incident frequency i 11 of the first-order diffracted light when the driving frequency f 1 of the oscillator 12 is 60 MHz is 6 degrees, the deflection angle ψ 1 = 47.7033 degrees. On the other hand, when the drive frequency f 2 = 100 MHz, the incident angle i 12 of the first-order diffracted light is 6.4 (6 + 0.4) degrees, and the deflection angle ψ 2 = 44.6 592 degrees. Therefore, the difference between the deflection angles ψ is Δψ = 3.0441 degrees.

【0022】 この結果、発振器12の駆動周波数をf1(=60MHz)からf2(=100MH z)まで周波数変調させると、音響光学媒体11から出射する一次回折光の分離 角は0.4度であるが、プリズム15を通過させることで振れ角は3度となり、分 離角の約10倍になる。As a result, when the drive frequency of the oscillator 12 is frequency-modulated from f 1 (= 60 MHz) to f 2 (= 100 MHz), the separation angle of the first-order diffracted light emitted from the acousto-optic medium 11 is 0.4 degrees. However, by passing through the prism 15, the deflection angle becomes 3 degrees, which is about 10 times the separation angle.

【0023】 なお、ここで使用したレーザ光は直線偏光である。また、図1では駆動周波数 f1(=60MHz)での回折、屈折状態のみを示している。The laser light used here is linearly polarized light. Further, FIG. 1 shows only the diffraction and refraction states at the driving frequency f 1 (= 60 MHz).

【0024】 この結果、従来の異方ブラッグ回折条件を満たす音響光学媒体1を用いた音響 光学偏向器のように高額な波長板を必要とせず、レーザ光の偏光面をそのまま用 いることができので、部品コストの低減を図ることができる。また、音響光学媒 体11の材料であるモリブデン酸鉛単結晶は、結晶成長させる際に比較的大口径 のものが速く引き上がるため、製造コストの低減を図ることができる。さらに、 プリズムはBK−7等の廉価な光学硝子で十分可能である。これらにより、低コ ストの音響光学偏向器提供することができる。As a result, unlike the conventional acousto-optic deflector using the acousto-optic medium 1 that satisfies the anisotropic Bragg diffraction condition, it is possible to use the polarization plane of the laser light as it is without the need for an expensive wave plate. Therefore, the cost of parts can be reduced. Further, the lead molybdate single crystal, which is the material of the acousto-optic medium 11, has a relatively large diameter and is pulled up quickly during crystal growth, so that the manufacturing cost can be reduced. Further, the prism can be made of inexpensive optical glass such as BK-7. By these, a low cost acousto-optic deflector can be provided.

【0025】 また、音響光学媒体11へ入射するレーザ光は直線偏光であるので、従来の異 方ブラッグ回折音響光学偏向器に比して使用条件の制限が大幅に緩和する。Further, since the laser light incident on the acousto-optic medium 11 is linearly polarized light, the limitation on the use conditions is greatly eased as compared with the conventional anisotropic Bragg diffractive acousto-optic deflector.

【0026】 プリズム15を設けその角度増幅作用を利用するので、プリズム15を用いな い音響光学偏向器に比して約10倍の角度変調が得られる。Since the prism 15 is provided and its angle amplifying effect is utilized, an angle modulation of about 10 times can be obtained as compared with an acousto-optic deflector not using the prism 15.

【0027】 さらに、音響光学媒体11の音速は、従来の音響光学媒体である二酸化テルル の6倍も速いため、高速応答性に優れた音響光学偏向器を実現できる。Further, since the acoustic velocity of the acousto-optic medium 11 is 6 times as fast as that of tellurium dioxide which is a conventional acousto-optic medium, an acousto-optic deflector excellent in high-speed response can be realized.

【0028】 [第2実施例] 図3は本考案の第2実施例に係る音響光学偏向器を示す断面図である。[Second Embodiment] FIG. 3 is a sectional view showing an acousto-optic deflector according to a second embodiment of the present invention.

【0029】 本実施例の音響光学偏向器は音響光学媒体11の出射面11A側に前記プリズ ム15と同様の第1プリズム21を設け、さらにこの第1プリズム21の出射側 面ACに第1プリズム21と同じ材質の第2プリズム22を設けている。各プリ ズム21,22はそれらによるレーザ光の屈折方向が同じになるように、即ち第 1プリズム21の頂角側を通ったレーザ光が第2プリズム22でも頂角側を通る ように配列されている。この配列により、全体として角度変位が加算される。In the acousto-optic deflector of the present embodiment, a first prism 21 similar to the prism 15 is provided on the exit surface 11 A side of the acousto-optic medium 11, and the exit surface AC of the first prism 21 has a first prism 21. A second prism 22 made of the same material as the prism 21 is provided. The prisms 21 and 22 are arranged such that the refraction directions of the laser light by them are the same, that is, the laser light passing through the apex angle side of the first prism 21 also passes through the apex angle side of the second prism 22. ing. With this arrangement, the angular displacement is added as a whole.

【0030】 第1プリズム21のプリズム角をφ1、入射側面ABでの入射角をi1、屈折角 をr1、出射側面ACでの入射角をr2、屈折角をi2、振れ角をψ1とすると、屈 折の法則や幾何光学の関係によって以下の関係式が得られる。The prism angle of the first prism 21 is φ 1 , the incident angle on the incident side surface AB is i 1 , the refraction angle is r 1 , the incident angle on the exit side surface AC is r 2 , the refraction angle is i 2 , and the deflection angle is Let ψ 1 be the following relational expression due to the bending law and the relation of geometrical optics.

【0031】 [入射側面AB] sini1=nsinr1 [入射側面BC] sini2=nsinr2 [プリズム角] φ1=r1+r2 [振れ角] ψ1=i1+i2−φ1 また、第2プリズム22のプリズム角をφ2、入射側面ABでの入射角をi3、 屈折角をr3、出射側面ACでの入射角をr4、屈折角をi4、振れ角をψ2とする と、以下の関係式が得られる。[Incident side surface AB] sini 1 = nsinr 1 [incident side surface BC] sini 2 = nsinr 2 [prism angle] φ 1 = r 1 + r 2 [deflection angle] ψ 1 = i 1 + i 2 −φ 1 The prism angle of the second prism 22 is φ 2 , the incident angle at the incident side surface AB is i 3 , the refraction angle is r 3 , the incident angle at the exit side surface AC is r 4 , the refraction angle is i 4 , and the deflection angle is ψ 2. Then, the following relational expression is obtained.

【0032】 [入射側面AB] sini3=nsinr3 [入射側面BC] sini4=nsinr4 [プリズム角] φ2=r3+r4 [振れ角] ψ2=i3+i4−φ2 第1プリズム21の出射側面ACと第2プリズム22の入射側面DEとのなす 角をδとすると、δ=i2+i3である。また、第1及び第2プリズム21,22 による合成振れ角は前述の式よりψ12=ψ1+ψ2=i1+i4+δ−(φ1+φ2) となる。[Incoming Side AB] sini 3 = nsinr 3 [Incoming Side BC] sini 4 = nsinr 4 [Prism Angle] φ 2 = r 3 + r 4 [Swing Angle] ψ 2 = i 3 + i 4 −φ 2 1st Letting δ be the angle between the exit side surface AC of the prism 21 and the entrance side surface DE of the second prism 22, δ = i 2 + i 3 . Further, the combined deflection angle by the first and second prisms 21 and 22 is ψ 12 = ψ 1 + ψ 2 = i 1 + i 4 + δ- (φ 1 + φ 2 ) from the above equation.

【0033】 前記第1実施例と同様に、各プリズム21,22の屈折率をn=1.52、プリズ ム角φを45度とすると、駆動周波数f1=60MHzの場合の一次回折光が第1プ リズム21の入射側面ABに入射する入射角i1を6度とし、第2プリズム22 の入射側面DEに入射する入射角i2も6度とすると、駆動周波数f2=100MH zの場合との差である合成振れ角は6(3+3)度となる。Similar to the first embodiment, when the refractive index of each prism 21 and 22 is n = 1.52 and the prism angle φ is 45 degrees, the first-order diffracted light when the driving frequency f 1 = 60 MHz is the first When the incident angle i 1 incident on the incident side surface AB of the prism 21 is 6 degrees and the incident angle i 2 incident on the incident side surface DE of the second prism 22 is also 6 degrees, the case of the driving frequency f 2 = 100 MHz The combined shake angle, which is the difference between, is 6 (3 + 3) degrees.

【0034】 この結果、従来の異方ブラッグ回折条件を満たす媒体を用いた場合に比しても 十分に大きな偏向角度が得られる。As a result, a sufficiently large deflection angle can be obtained as compared with the case of using the conventional medium satisfying the anisotropic Bragg diffraction condition.

【0035】 なお、音響光学媒体としてモリブデン酸鉛単結晶を用いたが、本実施例はこれ に限らず、ブラッグ回折条件を満たし音響光学媒体としての性能指数が高いもの であれば、他の材料、例えばブラッグ回折条件を満たす他の結晶(例えばGaA s、GaPb、TeO2)や硝子(例えばホーヤ(株)製硝子、AOT−5、A OT−401)や水でもよい。Although lead molybdate single crystal was used as the acousto-optic medium, the present embodiment is not limited to this, and other materials can be used as long as they satisfy the Bragg diffraction condition and have a high figure of merit as an acousto-optic medium. For example, other crystals satisfying the Bragg diffraction condition (for example, GaAs, GaPb, TeO 2 ) or glass (for example, glass manufactured by Hoya Co., Ltd., AOT-5, AOT-401) or water may be used.

【0036】 前記角実施例ではプリズム頂角φを45度としたが、30度以上であれば、ほ ぼ前記同様の作用、効果を奏することができる。Although the prism apex angle φ is set to 45 degrees in the above-mentioned angular embodiments, if the angle is 30 degrees or more, it is possible to obtain the same operation and effect as described above.

【0037】 プリズム15は三角形に構成したが、この形状に限る必要はなく、多角形等の 他の形状でもよい。Although the prism 15 is formed in a triangular shape, it is not limited to this shape and may be another shape such as a polygon.

【0038】 前記各実施例では1個のプリズム15を設けた場合及び2個のプリズム21, 22を設けた場合を例に説明したが、角度変調を行ないたい角度の大きさに応じ て3個以上設けてもよい。In each of the above embodiments, the case where one prism 15 is provided and the case where two prisms 21 and 22 are provided have been described as examples, but three prisms are provided depending on the size of the angle at which the angle modulation is desired to be performed. The above may be provided.

【0039】[0039]

【考案の効果】[Effect of device]

以上詳述したように、本考案によれば以下の効果を奏する。 As described in detail above, the present invention has the following effects.

【0040】 (1)音響光学媒体の回折光側に1個のプリズムを配設したので、異方ブラッグ 回折を用いず、ブラッグ回折を用いて大きな値の角度変調を得ることができる。 (2) 前記プリズムの出射光側に、さらに1または2以上のプリズムを配設し たので、さらに大きな値の角度変調を得ることができる。(1) Since one prism is arranged on the diffracted light side of the acousto-optic medium, a large value of angle modulation can be obtained by using Bragg diffraction instead of anisotropic Bragg diffraction. (2) Since one or more prisms are further arranged on the outgoing light side of the prism, a larger value of angle modulation can be obtained.

【0041】 (3) 前記音響光学媒体をブラッグ回折条件を満たす硝子または単結晶で構成 したので、使用条件の制限が少ない直線偏光を効率的に得ることができる。(3) Since the acousto-optic medium is made of glass or a single crystal that satisfies the Bragg diffraction condition, linearly polarized light can be efficiently obtained with less restrictions on use conditions.

【0042】 (4) プリズムが使用レーザ光に対して透光性を有し、かつそのプリズム角が 30度以上に構成したので、回折光の効率的な角度偏光が可能になる。(4) Since the prism has a light-transmitting property with respect to the laser light used and the prism angle is configured to be 30 degrees or more, efficient angular polarization of the diffracted light becomes possible.

【0043】 (5) ブラッグ回折を用いて高額な波長板を不要とし、かつ音響光学媒体に歩 留り率の高い材料を用いるので、コスト低減を図ることことができる。(5) By using Bragg diffraction, an expensive wave plate is not required, and a material with a high yield rate is used for the acousto-optic medium, so that the cost can be reduced.

【0044】 (6) 音響光学媒体として音速の速い材料を使用することができるので、高速 角度変調が可能になり、応答性に優れた音響光学偏向器を提供することができる 。(6) Since a material with a high sound velocity can be used as the acousto-optic medium, high-speed angle modulation is possible, and an acousto-optic deflector with excellent responsiveness can be provided.

【提出日】平成5年3月24日[Submission date] March 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0035】 なお、音響光学媒体としてモリブデン酸鉛単結晶を用いたが、本実施例はこれ に限らず、ブラッグ回折条件を満たし音響光学媒体としての性能指数が高いもの であれば、他の材料、例えばブラッグ回折条件を満たす他の結晶(例えばGaA s、GaPb、TeO2 )や硝子(例えばホーヤ(株)製硝子、AOT−5、A OT−40)や水でもよい。Although lead molybdate single crystal was used as the acousto-optic medium, the present embodiment is not limited to this, and other materials can be used as long as they satisfy the Bragg diffraction condition and have a high figure of merit as an acousto-optic medium. , for example, Bragg diffraction condition is satisfied other crystalline (e.g. GaA s, gaPb, TeO 2) and glass (e.g. Jolla Co. glass, AOT-5, a OT- 40) may be or water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の第1実施例に係る音響光学偏向器を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an acousto-optic deflector according to a first embodiment of the present invention.

【図2】プリズムへの入射角に対する振れ角の関係を示
すグラフである。
FIG. 2 is a graph showing a relationship between a deflection angle and an incident angle on a prism.

【図3】本考案の第2実施例に係る音響光学偏向器を示
す概略構成図である。
FIG. 3 is a schematic configuration diagram showing an acousto-optic deflector according to a second embodiment of the present invention.

【図4】従来の音響光学偏向器を示す概略構成図であ
る。
FIG. 4 is a schematic configuration diagram showing a conventional acousto-optic deflector.

【符号の説明】[Explanation of symbols]

11…音響光学媒体、12…発振器、13…トランスジ
ューサ、15…プリズム、21…第1プリズム、22…
第2プリズム。
11 ... Acousto-optic medium, 12 ... Oscillator, 13 ... Transducer, 15 ... Prism, 21 ... First prism, 22 ...
Second prism.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 ブラッグ回折条件を満たす音響光学媒体
を用いてレーザ入射光を回折させると共に周波数を調整
して回折光の回折角を変える音響光学偏向器において、 前記音響光学媒体の1次または2次以上の回折光出射側
に、当該回折光の進行方向を変える1個または2個以上
のプリズムを配設し、0次回折光に対する偏向角度、ま
たは前記周波数の違いによる回折光の分離角を大きく広
げることを特徴とする音響光学偏向器。
1. An acousto-optic deflector that diffracts laser incident light using an acousto-optic medium satisfying the Bragg diffraction condition and adjusts the frequency to change the diffraction angle of the diffracted light. One or two or more prisms that change the traveling direction of the diffracted light are arranged on the exit side of the diffracted light of the second order or higher, and the deflection angle for the 0th order diffracted light or the separation angle of the diffracted light due to the difference in the frequency is increased Acousto-optic deflector characterized by widening.
【請求項2】 請求項1に記載の音響光学偏向器におい
て、 前記音響光学媒体がブラッグ回折条件を満たす硝子また
は単結晶で構成されたことを特徴とする音響光学偏向
器。
2. The acousto-optic deflector according to claim 1, wherein the acousto-optic medium is made of glass or a single crystal satisfying a Bragg diffraction condition.
【請求項3】 請求項1または2に記載の音響光学偏向
器において、 前記プリズムが使用レーザ光に対して透光性を有し、か
つそのプリズム角が30度以上に構成されたことを特徴
とする音響光学偏向器。
3. The acousto-optic deflector according to claim 1, wherein the prism has a light-transmitting property with respect to the laser light used, and the prism angle is set to 30 degrees or more. And an acousto-optic deflector.
JP743693U 1993-02-26 1993-02-26 Acousto-optic deflector Pending JPH0668035U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP743693U JPH0668035U (en) 1993-02-26 1993-02-26 Acousto-optic deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP743693U JPH0668035U (en) 1993-02-26 1993-02-26 Acousto-optic deflector

Publications (1)

Publication Number Publication Date
JPH0668035U true JPH0668035U (en) 1994-09-22

Family

ID=11665817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP743693U Pending JPH0668035U (en) 1993-02-26 1993-02-26 Acousto-optic deflector

Country Status (1)

Country Link
JP (1) JPH0668035U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182370A (en) * 2013-03-15 2014-09-29 Sumitomo Electric Ind Ltd Wavelength selection switch
CN107065235A (en) * 2017-03-31 2017-08-18 中国电子科技集团公司第二十六研究所 A kind of low shift frequency frequency pigtail coupling acousto-optic frequency shifters based on tellurium oxide crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182370A (en) * 2013-03-15 2014-09-29 Sumitomo Electric Ind Ltd Wavelength selection switch
CN107065235A (en) * 2017-03-31 2017-08-18 中国电子科技集团公司第二十六研究所 A kind of low shift frequency frequency pigtail coupling acousto-optic frequency shifters based on tellurium oxide crystal

Similar Documents

Publication Publication Date Title
US7894125B2 (en) Acousto-optic devices
JPS5945965B2 (en) Noncollinear tunable acousto-optic filter
US4037933A (en) Light deflector of acousto-optic interaction type
US4945539A (en) Acousto-optic tunable filter
US20070103778A1 (en) Device for dispersing light pulses of which the spectral amplitude is programmable
CN101672988A (en) An acousto-optic tunable filter
US3944334A (en) Acousto-optic filter
US20230307883A1 (en) Acousto-optic system having phase-shifting reflector
US5953154A (en) Optically parametric oscillator and wavelength-tunable laser system
JP7162022B2 (en) Optical contact acousto-optic device and manufacturing method thereof
JPH0451006B2 (en)
US4342502A (en) Transverse tunable acousto-optic filter
Voloshinov et al. Application of acousto-optic interactions in anisotropic media for control of light radiation
US7684110B2 (en) High frequency acousto-optic frequency shifter having wide acceptance angle
JPH0668035U (en) Acousto-optic deflector
GB1380475A (en) Acoustooptic light deflectors
US4232952A (en) Acousto-optic device
JPH05204001A (en) Light deflecting device
GB1468911A (en) Acousto-optic filter
JP3151827B2 (en) Acousto-optic filter
JPS6360889B2 (en)
JPH06104512A (en) Titanium sapphire laser oscillator
JP3533714B2 (en) Acousto-optic device and method of adjusting polarization characteristics thereof
Voloshinov Acousto-optic phenomena in crystals with strong anisotropy of optic and elastic properties
JPH03241883A (en) Wavelength variable semiconductor laser device