JPH0667364A - Recording method for optical recording medium - Google Patents

Recording method for optical recording medium

Info

Publication number
JPH0667364A
JPH0667364A JP4219203A JP21920392A JPH0667364A JP H0667364 A JPH0667364 A JP H0667364A JP 4219203 A JP4219203 A JP 4219203A JP 21920392 A JP21920392 A JP 21920392A JP H0667364 A JPH0667364 A JP H0667364A
Authority
JP
Japan
Prior art keywords
recording
ratio
light
reproducing
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4219203A
Other languages
Japanese (ja)
Other versions
JP3048759B2 (en
Inventor
Tsuyoshi Tsujioka
強 辻岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4219203A priority Critical patent/JP3048759B2/en
Publication of JPH0667364A publication Critical patent/JPH0667364A/en
Application granted granted Critical
Publication of JP3048759B2 publication Critical patent/JP3048759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To enable information recording at a high density by specifying record ing conditions according to the SN ratio of the output of recording light. CONSTITUTION:A strong power laser is turned on/off according to recording signals and a medium 1 is irradiated with the beam at the time of recording with the optical recording and reproducing device, and therefore, the reflectivity changing parts according thereto remain as recording marks on the medium. The medium is irradiated with the DC light lowered in power by adjusting an ND filter 601 and the reflected light subjected to intensity modulation according to a reflectivity change is detected as photocurrent by a photodetector 7 at the time of reproducing. The photocurrent is subjected to current-voltage conversion by a preamplifier 8 and thereafter, the voltage is evaluated by a spectrum analyzer. The value of the recording light power Prec or beta satisfying the relation of equation when the SN ratio required at the time of reproducing is designated as SNR (reproducing) A and the SN ratio of the recording light as SNR (recording) R is set according to the SN ratio of the reproducing light at the time of recording and reproducing the information by using the photon mode optical recording medium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度の情報記録が可能
な光記録媒体の記録方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording method for an optical recording medium capable of recording information at high density.

【0002】[0002]

【従来の技術】近年書き換え可能な光記録媒体としてフ
ォトクロミック材料を応用するための研究が盛んに進め
られている。このフォトクロミック材料は所定波長の光
を照射すると光化学反応に分子の構造が変化し、この変
化に伴って特定波長の光に対する吸光度や屈折率等の光
学的特性変化が生じ、またほかの波長の光や熱を加える
ことで前記変化した分子構造が基に戻るといった性質を
有している。したがってフォトクロミック光記録媒体の
記録は特定波長の光照射による分子構造変化によ行わ
れ、再生はこの構造変化に伴う光学的特性変化、特に吸
光度の差を検出することにより実行される。
2. Description of the Related Art In recent years, researches for applying a photochromic material as a rewritable optical recording medium have been actively pursued. When this photochromic material is irradiated with light of a certain wavelength, the structure of the molecule changes in the photochemical reaction, and with this change, optical characteristics such as absorbance and refractive index for light of a specific wavelength change, and light of other wavelengths It has the property that the changed molecular structure returns to the base upon application of heat or heat. Therefore, recording on the photochromic optical recording medium is performed by a change in molecular structure caused by irradiation with light having a specific wavelength, and reproduction is performed by detecting a change in optical characteristics associated with this change in structure, particularly a difference in absorbance.

【0003】ところで記録媒体の再生信号品質を表す尺
度にSN比がある。これは再生出力に含まれる信号出力
パワーとノイズ出力パワーとの比で定義され、光記録媒
体において高いSN比を得るには種々のノイズレベルが
十分低いことが必要であることが知られている。そして
このようなノイズの原因としてはディスク表面性や記録
総表面性に起因するノイズ、記録用光としてのレーザー
光の強度揺らぎによるレーザーノイズ、フォトディテク
ターやプリアンプ系のアンプノイズ、記録層材料に固有
の多結晶状態等のメディアノイズ、及びコヒーレント状
態で表される量子論的状態のレーザー光が本来有するシ
ョットノイズがある。
By the way, the SN ratio is a measure of the quality of a reproduction signal of a recording medium. This is defined by the ratio of the signal output power included in the reproduction output and the noise output power, and it is known that various noise levels must be sufficiently low in order to obtain a high SN ratio in the optical recording medium. . The causes of such noise are noise due to the disk surface property and the total recording surface property, laser noise due to fluctuations in the intensity of the laser light as recording light, photodetector and preamplifier system amplifier noise, and recording layer material specific There are media noises such as the polycrystal state and shot noise originally possessed by laser light in the quantum state represented by the coherent state.

【0004】上記ノイズの中で特にレーザーノイズにつ
いての再生信号品質との関係は、例えば電子通信学会論
文誌 '85/3 Vol. J68-C No.3 P.216やSPIE Vol.695 Opt
icalMass Data StorageII(1986) P.72 に開示されてい
る。しかしながらこれらの文献では再生時のレーザーノ
イズの影響だけが議論されており、記録時のレーザーノ
イズの影響については何等言及されていなかった。これ
はこれらの文献で開示された媒体がヒートモードによっ
て記録が行われること、及びこの記録によって多少のレ
ーザー光強度の揺らぎは媒体上で熱に変換された時に平
均化されるために余り問題とならないからである。
Among the above-mentioned noises, the relationship between the reproduced signal quality and particularly the laser noise is related to, for example, the Institute of Electronics and Communication Engineers '85 / 3 Vol. J68-C No.3 P.216 and SPIE Vol.695 Opt.
icalMass Data StorageII (1986) P.72. However, in these documents, only the influence of laser noise at the time of reproduction is discussed, and the influence of laser noise at the time of recording is not mentioned at all. This is a problem that the medium disclosed in these documents is recorded by the heat mode, and that some fluctuation of the laser light intensity due to this recording is averaged when it is converted into heat on the medium. It will not happen.

【0005】一方前述したフォトクロミック媒体はフォ
トンモードで記録が行えることが特徴となっているが、
本願発明者はフォトンモード記録時には記録用レーザー
ノイズが再生SN比と重要な関係があることを見出し、
必要とされる再生SN比と記録用レーザーノイズ(記録
用レーザーのSN比)との関係を初めて明らかにしたの
で本願を出願するに至った。
On the other hand, the above-mentioned photochromic medium is characterized in that recording can be performed in the photon mode.
The inventor of the present application has found that the recording laser noise has an important relationship with the reproduction SN ratio during the photon mode recording,
The relationship between the required reproduction SN ratio and the recording laser noise (SN ratio of the recording laser) was clarified for the first time, and the present application was filed.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点に鑑み、フォトンモードの光記録媒体において
高い再生SN比を得るための記録方法を提供することを
目的とするものである。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, it is an object of the present invention to provide a recording method for obtaining a high reproduction SN ratio in a photon mode optical recording medium.

【0007】[0007]

【課題を解決するための手段】本発明は、フォトンモー
ド光記録媒体を用いて情報の記録及び再生を行う際の再
生時に要求されるSN比をSNR(再生)とし、記録用
光のSN比をSNR(記録)とするとき、
According to the present invention, the S / N ratio required for reproduction when recording and reproducing information using a photon mode optical recording medium is defined as SNR (reproduction), and the S / N ratio of recording light is set. Is the SNR (record),

【0008】[0008]

【数2】 [Equation 2]

【0009】なる関係を満足する記録用光パワー P
rec あるいはβの値を再生用光のSN比に応じて設定す
るものである。
Recording optical power P satisfying the following relation
The value of rec or β is set according to the SN ratio of the reproduction light.

【0010】なお、SNR(再生)及びSNR(記録)
をdB表示する場合には、
SNR (playback) and SNR (recording)
Is displayed in dB,

【0011】[0011]

【数3】 [Equation 3]

【0012】となる。[0012]

【0013】[0013]

【作用】フォトンモード光記録では記録時の反応分子の
量は記録用光パワーPrec により精度良く決まり、した
がって記録パワーPrec の揺らぎは反応分子の量の揺ら
ぎ及び反射率変化量の揺らぎとなって再生時のノイズの
原因となる。
In photon mode optical recording, the amount of reactive molecules at the time of recording is accurately determined by the recording optical power P rec . Therefore, the fluctuation of the recording power P rec causes fluctuation of the amount of reactive molecules and fluctuation of the reflectance change amount. May cause noise during playback.

【0014】本願発明者は、まず記録用光のノイズがな
い時のPrec と再生信号振幅との間の関係式が次の数4
のように表されることを理論的考察により導いた。なお
ここで記録用光は記録信号に応じてオンオフされるもの
となる。
The inventor of the present application first finds that the relational expression between P rec and the reproduction signal amplitude when there is no noise in the recording light is expressed by the following mathematical formula 4.
It was derived by theoretical consideration that it is expressed as follows. Here, the recording light is turned on / off according to the recording signal.

【0015】[0015]

【数4】 [Equation 4]

【0016】さて記録用光パワーがPrec からPrec
(1+δ)へと揺らぐと、再生信号出力Vout は次のよ
うになる。
[0016] Now recording light power from the P rec P rec
When it fluctuates to (1 + δ), the reproduction signal output V out becomes as follows.

【0017】[0017]

【数5】 [Equation 5]

【0018】この数5より再生SN比はFrom this equation 5, the reproduction SN ratio is

【0019】[0019]

【数6】 [Equation 6]

【0020】と求められる。Is required.

【0021】一方記録用光の平均値Prec と揺らぎの大
きさPrec ・δを用いて記録用光のSN比を数7のよう
に定義すると、
On the other hand, when the average value P rec of the recording light and the fluctuation magnitude P rec · δ are used to define the SN ratio of the recording light as shown in Equation 7,

【0022】[0022]

【数7】 [Equation 7]

【0023】結局次の数8のような関係式が得られる。After all, the following relational expression 8 is obtained.

【0024】[0024]

【数8】 [Equation 8]

【0025】かかる数8はSNR(記録)と記録効率β
が決まっている時に、ある決まった再生SN比、すなわ
ちSNR(再生)を得るための最低必要な記録パワーを
与える式なので、再生SN比がSNR(再生)より大き
い値を得るためには
The above equation 8 is SNR (recording) and recording efficiency β
Is a formula that gives a certain fixed reproduction SN ratio, that is, the minimum required recording power for obtaining the SNR (reproduction), the reproduction SN ratio must be larger than the SNR (reproduction).

【0026】[0026]

【数9】 [Equation 9]

【0027】となる。図6は記録用光としてのレーザー
光のSNR(記録)が最低必要なSN比、すなわちSN
R(再生)より小さいと記録パワーPrec とβとの積
と、得られたSNR(再生)/SNR(記録)の関係を
dB表示で示した図である。同図においてSNR(記
録)≧SNR(再生)であれば問題はないが、例えばS
NR(記録)がSNR(再生)より10dB小さい時は
βPrec が2以上となるようにPrec を調節することで
SNR(記録)とSNR(再生)は略等しくできること
がわかる。
[0027] FIG. 6 shows the SN ratio that requires the minimum SNR (recording) of laser light as recording light, that is, SN.
It is the figure which showed the product of recording power Prec and (beta) when it is smaller than R (reproduction), and the obtained SNR (reproduction) / SNR (recording) by dB display. In the figure, if SNR (recording) ≧ SNR (reproduction), there is no problem, but for example, S
It can be seen that when NR (recording) is 10 dB smaller than SNR (reproduction), SNR (recording) and SNR (reproduction) can be made substantially equal by adjusting P rec so that βP rec becomes 2 or more.

【0028】このように記録用光のSN比が悪くても、
記録条件の調整により再生SN比を改善することができ
る。
Thus, even if the SN ratio of the recording light is poor,
The reproduction SN ratio can be improved by adjusting the recording conditions.

【0029】[0029]

【実施例】以下本発明の光記録媒体の記録方法をいくつ
かの実施例について図面に基づいて詳細に説明する。 [第1実施例]フォトクロミック材料として図1で分子
構造と吸収スペクトルが示された2−(1,2−ジメチ
ル−3−インドリル)−3−(2,3,5−トリメチル
−3−チエニル)マレイン酸無水物(以下インドールチ
オフェン型材料と略す)をポリビニルブチラール樹脂
(PVB)に10wt%で混合し、アノン溶媒に溶解し
てガラスディスク基板上にスピンコートを行って記録層
を形成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A recording method for an optical recording medium according to the present invention will be described in detail with reference to the drawings with reference to the drawings. [First Example] 2- (1,2-dimethyl-3-indolyl) -3- (2,3,5-trimethyl-3-thienyl) whose molecular structure and absorption spectrum are shown in FIG. 1 as a photochromic material Maleic anhydride (hereinafter abbreviated as indolethiophene type material) was mixed with polyvinyl butyral resin (PVB) at 10 wt%, dissolved in anone solvent and spin-coated on a glass disk substrate to form a recording layer.

【0030】次にこの記録層の上から反射膜としてAg
層を真空蒸着により形成した。このようにして得られた
フォトクロミック材料は青色光照射により図1の破線で
示された特性状態から実線で示された特性状態へと変化
し、また波長600nm付近の光照射で実線の特性状態
から破線の特性状態へと変化する。
Next, Ag is used as a reflective film on the recording layer.
The layer was formed by vacuum evaporation. The photochromic material thus obtained changes from the characteristic state shown by the broken line in FIG. 1 to the characteristic state shown by the solid line by blue light irradiation, and from the characteristic state of the solid line by light irradiation at a wavelength of about 600 nm. The characteristic state changes to the broken line.

【0031】したがってこのようなフォトクロミック材
料を含む光記録媒体には、あらかじめ実線状態とした上
でλ=633nmのHe−Neレーザー光やλ=630
nm台の半導体レーザー光を比較的強いパワーで照射す
ることで記録でき、同波長光を低パワーで照射して反射
率変化を検出することにより再生が可能である。
Therefore, for an optical recording medium containing such a photochromic material, a He--Ne laser beam of λ = 633 nm or λ = 630 has been prepared in advance as a solid line state.
Recording can be performed by irradiating a semiconductor laser beam on the order of nm with relatively high power, and reproduction can be performed by irradiating the same wavelength light with low power and detecting a change in reflectance.

【0032】図2は前記光記録媒体のSN比の測定に用
いた光記録再生装置の構成を示す図である。同図におい
て6は光源部であり、光源603としてはまず低ノイズ
性のλ=633nm光を放射するHe−Neレーザーを
使用した。AO変調器602は記録時に同レーザーを記
録信号(この場合一定周波数fとする)に応じてオンオ
フし、再生時にはDCレベルで透過させる作用をする。
601は前記光源603のレーザーパワーを調整するた
めのNDフィルターである。光源603を出たレーザー
ビームはレンズ系5によって適当な幅にまで拡大され偏
光ビームスプリッタ4、λ/4板3を通過して対物レン
ズ2によって光記録媒体1上に集光される。
FIG. 2 is a view showing the arrangement of an optical recording / reproducing apparatus used for measuring the SN ratio of the optical recording medium. In the figure, 6 is a light source unit, and as the light source 603, a He-Ne laser that emits light of λ = 633 nm with low noise is used. The AO modulator 602 has a function of turning on and off the laser according to a recording signal (in this case, a constant frequency f) at the time of recording, and transmitting at a DC level during reproduction.
Reference numeral 601 is an ND filter for adjusting the laser power of the light source 603. The laser beam emitted from the light source 603 is expanded to an appropriate width by the lens system 5, passes through the polarization beam splitter 4 and the λ / 4 plate 3, and is focused on the optical recording medium 1 by the objective lens 2.

【0033】そして記録時には強パワーレーザーが記録
信号に応じてオンオフされて照射されるため前記媒体1
上にこれに応じた反射率変化部が記録マークとして残
る。また再生時にはNDフィルター601を調整し低パ
ワー化したDC光を照射し、前記反射率変化に応じて強
度変調された反射光がフォトディテクタ7により光電流
として検出され、プリアンプ8によって電流ー電圧変換
された後、スペクトラムアナライザー(図示せず)によ
って評価される。
At the time of recording, the high power laser is turned on and off according to the recording signal and is irradiated, so that the medium 1
The reflectance changing portion corresponding to this remains as a recording mark. During reproduction, the ND filter 601 is adjusted to emit low-power DC light, and the reflected light whose intensity is modulated according to the change in the reflectance is detected by the photodetector 7 as a photocurrent and converted into a current-voltage by the preamplifier 8. After that, it is evaluated by a spectrum analyzer (not shown).

【0034】また一定周波数fを記録再生した場合、ス
ペクトラムアナライザーで評価できるのはいわゆるCN
比(CNR)と呼ばれるものであり、CN比からSN比
(SNR)は次のように換算する。
When recording and reproducing a constant frequency f, the spectrum analyzer can evaluate the so-called CN.
It is called a ratio (CNR), and the SN ratio (SNR) is converted from the CN ratio as follows.

【0035】前記図2の装置系に使用される帯域幅を
B、スペクトラムアナライザーのRBW(Resolution Ba
nd Width) をΔfとすると
The bandwidth used in the system of FIG. 2 is B, and the RBW (Resolution Ba) of the spectrum analyzer is
nd Width) is Δf

【0036】[0036]

【数10】 [Equation 10]

【0037】したがって得られる測定結果はSN比の代
わりにCN比を用いることができる。
Therefore, in the obtained measurement result, the CN ratio can be used instead of the SN ratio.

【0038】以上の説明は再生時のSN比、すなわちC
N比の測定方法であるが、記録レーザー光のSN比、す
なわちCN比は次のようにして測定した。すなわち光記
録媒体(ディスク)1として反射層だけを設けたものを
静止状態で設定し、一定周波数で強度変調(オンオフ)
した時の反射光のフォトディテクター7、プリアンプ8
の出力を同時にスペクトラムアナライザーで評価した。
この時のレーザーノイズレベルとアンプノイズレベルと
の比較はレーザーオンの時のノイズレベルをレーザーノ
イズレベル、レーザーオフ時のノイズレベルをアンプノ
イズレベルとし、この時のすべての実験・測定において
レーザーノイズレベル>アンプノイズレベルであること
を確認しておいた。
The above description is based on the SN ratio at the time of reproduction, that is, C
Regarding the N ratio measurement method, the SN ratio of the recording laser light, that is, the CN ratio was measured as follows. That is, an optical recording medium (disk) 1 provided with only a reflection layer is set in a stationary state, and intensity modulation (on / off) is performed at a constant frequency.
Photodetector 7 and preamplifier 8 for reflected light when
The output of was evaluated simultaneously with the spectrum analyzer.
The comparison between the laser noise level at this time and the amplifier noise level is made such that the noise level when the laser is on is the laser noise level, and the noise level when the laser is off is the amplifier noise level. > I confirmed that it was the amplifier noise level.

【0039】さて上述の方法でHe−Neレーザーの記
録レーザーのCN比を測定した結果このCN比はレーザ
ーのパワーに依存せず、80dB(RBW:Δf=30
kHz、f=1MHz)であった。
As a result of measuring the CN ratio of the recording laser of the He-Ne laser by the above-mentioned method, this CN ratio does not depend on the power of the laser and is 80 dB (RBW: Δf = 30).
kHz, f = 1 MHz).

【0040】次に記録レーザー光強度を種々に変えて記
録を行い、再生CN比を測定した。この時の光記録媒体
1の相対回転速度は5m/s、レーザースポット系φ=
1.4μm、またλ=633nmに対する媒体1の記録
感度、すなわちε・κは1200l/mol・cmであ
り、この結果β=274(W-1)が得られる。
Next, recording was performed while changing the recording laser light intensity variously, and the reproducing CN ratio was measured. At this time, the relative rotation speed of the optical recording medium 1 is 5 m / s, and the laser spot system φ =
The recording sensitivity of medium 1 for 1.4 μm and λ = 633 nm, that is, ε · κ, is 1200 l / mol · cm, and as a result, β = 274 (W −1 ) is obtained.

【0041】通常のデジタル記録にはCN比として50
dB程度必要とされるが、上記の測定の結果βPrec
0.1〜4.0の範囲においてすべてCNR≧50dB
が得られた。これは記録レーザーのCN比においてCN
R(記録)=80dB≧50dBとなるためである。
For normal digital recording, the CN ratio is 50.
Although about dB is required, the result of the above measurement βP rec =
CNR ≧ 50 dB in the range of 0.1 to 4.0
was gotten. This is the CN ratio of the recording laser
This is because R (record) = 80 dB ≧ 50 dB.

【0042】次にλ=630nmのレーザー光を放射す
る半導体レーザーを記録用レーザーとして用いた。この
場合は光源部6の代わりに同半導体レーザーを設置すれ
ば良いことになる。この記録用レーザーのCN比を同様
にして前述の場合と測定したところ、ノイズが多くて4
4dBであった。なお、再生については低ノイズ性He
−Neレーザーで行った。
Next, a semiconductor laser emitting a laser beam of λ = 630 nm was used as a recording laser. In this case, the same semiconductor laser may be installed instead of the light source unit 6. When the CN ratio of this recording laser was measured in the same manner as the above case, it was found that there was much noise and
It was 4 dB. Regarding the reproduction, low noise He
-Ne laser.

【0043】前記図6によれば、理論的にβPrec
1.2であり、再生CN比が50dB以上が得られると
予想される。ここでPrec と再生CN比との関係を示す
実験結果を図3に示す。同図によればCN比が50dB
以上となるのはPrec ≧4.2(mW)となり、βP
rec ≧1.15とほぼ理論的に予測したとおりの結果が
得られた。 [第2実施例]次に第2実施例として、前記第1実施例
とは異なるフォトクロミック材料を持ちいた場合につい
て説明する。かかるフォトクロミック材料としては図4
にその分子構造と吸収スペクトルが示された2,3−ビ
ス(2−メチルベンゾ[b]チオフェン−3−イル)マ
レイン酸無水物を用いて、先の媒体と同条件でフォトク
ロミック光記録媒体を作成したものである。この光記録
媒体は青色光照射により図4の破線で示す特性状態から
実線で示す特性状態へと変化する。したがってあらかじ
め実線の特性状態とした上でλ=514.5nmのAr
レーザー光やλ=532nmのYAGレーザーのSHG
光を比較的高パワーで照射することによって記録するこ
とができ、逆に比較的低パワーで同レーザーを照射して
反射率変化を検出することで再生が可能である。
According to FIG. 6, theoretically βP rec
It is 1.2, and it is expected that a reproduction CN ratio of 50 dB or more will be obtained. Here, the experimental results showing the relationship between P rec and the reproduction CN ratio are shown in FIG. According to the figure, the CN ratio is 50 dB
The above is P rec ≧ 4.2 (mW), and βP
The result was almost theoretically predicted as rec ≧ 1.15. [Second Embodiment] Next, as a second embodiment, a case of using a photochromic material different from that of the first embodiment will be described. Such a photochromic material is shown in FIG.
A photochromic optical recording medium was prepared under the same conditions as the above medium using 2,3-bis (2-methylbenzo [b] thiophen-3-yl) maleic anhydride whose molecular structure and absorption spectrum were shown in Table 1. It was done. This optical recording medium changes from the characteristic state shown by the broken line in FIG. 4 to the characteristic state shown by the solid line by blue light irradiation. Therefore, after setting the characteristic state of the solid line in advance, Ar with λ = 514.5 nm
SHG of laser light or YAG laser of λ = 532 nm
Recording can be performed by irradiating light with relatively high power, and conversely, reproduction can be performed by irradiating the same laser with relatively low power and detecting a change in reflectance.

【0044】また記録再生装置は前記図2と同様の構成
とした。ただしλ=514.5nmのArレーザー光の
CN比が40dBと低く、またYAG−SHGレーザー
(λ=532nm)のCN比が100dBと高いので、
記録はArレーザーで行い、再生はYAG−SHGレー
ザーを使用した。なお光記録媒体1の相対速度は5m/
s、レーザースポット径φ=1.1μm、スポット面積
s=9.5×10-9cm2 、λ=514.5、532n
mに対してε×κ=1100l/mol・cmであり、
β=253(W-1)となる。したがってこの場合は理論
的にはβPrec≧2.0で再生CN比50dB以上が得
られると予想される。
The recording / reproducing apparatus has the same structure as that shown in FIG. However, since the CN ratio of Ar laser light of λ = 514.5 nm is as low as 40 dB, and the CN ratio of the YAG-SHG laser (λ = 532 nm) is as high as 100 dB,
Recording was performed with an Ar laser, and reproduction was performed with a YAG-SHG laser. The relative speed of the optical recording medium 1 is 5 m /
s, laser spot diameter φ = 1.1 μm, spot area s = 9.5 × 10 −9 cm 2 , λ = 514.5, 532n
ε × κ = 1100 l / mol · cm for m,
β = 253 (W −1 ). Therefore, in this case, it is expected that a reproduction CN ratio of 50 dB or more is theoretically obtained with βP rec ≧ 2.0.

【0045】図5は前記条件の時のPrec と再生CN比
との関係を示す図である。同図においてPrec >8mW
でCN比が50dBとなるが、βPrec =2.02とほ
ぼ理論的予測に一致することが明らかである。
FIG. 5 is a diagram showing the relationship between P rec and the reproduction CN ratio under the above conditions. In the figure, P rec > 8mW
Although the CN ratio becomes 50 dB, it is clear that βP rec = 2.02, which is almost in agreement with the theoretical prediction.

【0046】以上説明したように光記録媒体に照射する
記録用光の記録パワーを調整することにより必要なSN
R、すなわちSNR(再生)以上のSNRを得ることが
できることがわかる。しかもこれ以外の調整方法を取る
ことも可能である。すなわち重要なのはβPrec を調整
することなのでPrec の代わりにβ=αλκ・εt/s
を調整してもよい。そのための代表的なパラメータとし
ては光記録媒体特にディスクの相対速度が挙げられる。
As described above, the required SN is adjusted by adjusting the recording power of the recording light with which the optical recording medium is irradiated.
It can be seen that R, that is, SNR equal to or higher than SNR (reproduction) can be obtained. Moreover, it is possible to use other adjustment methods. That is, it is important to adjust βP rec , so β = αλκ · εt / s instead of P rec
May be adjusted. A typical parameter for this purpose is the relative speed of the optical recording medium, especially the disc.

【0047】また一般に記録パワーは高いほど光源の信
頼性の低下や、媒体に与える熱ダメージ等が大きくなる
ので、できるだけ
In general, the higher the recording power, the lower the reliability of the light source and the greater the heat damage to the medium.

【0048】[0048]

【数11】 [Equation 11]

【0049】とすることが望ましい。It is desirable that

【0050】もちろん本発明は以上に述べた以外に種々
の変更が可能である。例えば必要なCN比についてもア
ナログ動画記録で要求されるように60dB以上の場合
についても本発明を容易に適用することができる。
Of course, the present invention can be modified in various ways other than those described above. For example, the present invention can be easily applied to the case where the required CN ratio is 60 dB or more as required for analog moving image recording.

【0051】[0051]

【発明の効果】本発明によれば記録用光の出力のSN比
に応じて記録条件を最適に設定することができ、これに
よって光記録媒体に必要とされる再生時のSN比を確保
することが容易に可能となる効果が期待できる。
According to the present invention, the recording condition can be optimally set according to the SN ratio of the output of the recording light, and thereby the SN ratio at the time of reproduction required for the optical recording medium is secured. The effect that can be easily achieved can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例で用いたフォトクロミック
材料の分子構造式並びに吸収スペクトル特性を示す図で
ある。
FIG. 1 is a diagram showing a molecular structural formula and an absorption spectrum characteristic of a photochromic material used in a first embodiment of the present invention.

【図2】記録再生に用いた装置の構造を示す図である。FIG. 2 is a diagram showing a structure of an apparatus used for recording and reproduction.

【図3】第1実施例の再生CN比とPrec との関係を示
す図である。
FIG. 3 is a diagram showing a relationship between a reproduction CN ratio and P rec in the first embodiment.

【図4】本発明の第2実施例で用いたフォトクロミック
材料の分子構造式並びに吸収スペクトル特性を示す図で
ある。
FIG. 4 is a diagram showing a molecular structural formula and absorption spectrum characteristics of a photochromic material used in a second example of the present invention.

【図5】第2実施例の再生CN比とPrec との関係を示
す図である。
FIG. 5 is a diagram showing a relationship between a reproduction CN ratio and P rec in the second embodiment.

【図6】本発明の原理を示す図である。FIG. 6 is a diagram showing the principle of the present invention.

【符号の説明】[Explanation of symbols]

1 光記録媒体 2 対物レンズ 3 λ/4板 4 偏光ビームスプリッタ 5 レンズ系 6 光源部 1 Optical Recording Medium 2 Objective Lens 3 λ / 4 Plate 4 Polarization Beam Splitter 5 Lens System 6 Light Source Section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フォトンモード光記録媒体を用いて情報
の記録及び再生を行う際の再生時に要求されるSN比を
SNR(再生)とし、記録用光のSN比をSNR(記
録)とするとき、 【数1】 なる関係を満足するように記録用光パワーPrec あるい
はβの値を設定することを特徴とする光記録媒体の記録
方法。
1. When the SNR (reproduction) is the SN ratio required at the time of recording and reproducing information using a photon mode optical recording medium, and the SN ratio of the recording light is SNR (recording). , [Equation 1] A recording method for an optical recording medium, wherein the value of the recording optical power P rec or β is set so as to satisfy the following relationship.
JP4219203A 1992-08-18 1992-08-18 Optical recording medium recording method Expired - Lifetime JP3048759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219203A JP3048759B2 (en) 1992-08-18 1992-08-18 Optical recording medium recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219203A JP3048759B2 (en) 1992-08-18 1992-08-18 Optical recording medium recording method

Publications (2)

Publication Number Publication Date
JPH0667364A true JPH0667364A (en) 1994-03-11
JP3048759B2 JP3048759B2 (en) 2000-06-05

Family

ID=16731827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219203A Expired - Lifetime JP3048759B2 (en) 1992-08-18 1992-08-18 Optical recording medium recording method

Country Status (1)

Country Link
JP (1) JP3048759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696445A (en) * 1992-07-27 1994-04-08 Sanyo Electric Co Ltd Reproducing method for optical recording medium and reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696445A (en) * 1992-07-27 1994-04-08 Sanyo Electric Co Ltd Reproducing method for optical recording medium and reproducing device

Also Published As

Publication number Publication date
JP3048759B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JPH0810845Y2 (en) Optical recording device
JPH0613238B2 (en) Optical information recording medium
JPH0473224B2 (en)
JP3734621B2 (en) Optical information recording method and apparatus
EP0996123B1 (en) Optical recording medium and optical recording method
US5250796A (en) Noise reduction system for optical record and reproduction apparatus using auto-power controlled semiconductor laser device
Tsujioka et al. Optical density dependence of write/read characteristics in photon-mode photochromic memory
US4538159A (en) Ceramic overcoated optical recording element
US5398223A (en) Reproducing method and reproducing apparatus for optical recording medium
JP3048759B2 (en) Optical recording medium recording method
JP3518186B2 (en) Trial writing method and information recording / reproducing apparatus using the same
JP3081364B2 (en) Optical recording medium reproducing method and reproducing apparatus
JP2002150563A (en) Method and medium for optical recording
JP3649062B2 (en) Optical recording medium and optical recording method
JP3006645B2 (en) Optical disk drive
JP3048761B2 (en) Method of erasing recorded information on optical recording medium
CA2129233C (en) Erasable optical recording media
JP2690600B2 (en) Optical information processing device
KR20050074566A (en) Optical disc device and information recording/reproduction method
TW501126B (en) Optical recording medium
JP2957797B2 (en) Multiple recording method of optical recording medium
JPH11265509A (en) Optical information recording and reproducing method and optical information recording medium
JP2690601B2 (en) Optical information reproducing method and device
Tsujioka Photochromism and its application to a high-density optical memory
JPH0612671A (en) Recording method for optical recording medium