JPH066724B2 - Nozzle for injection molding machine excellent in wear resistance and corrosion resistance and method for manufacturing the same - Google Patents
Nozzle for injection molding machine excellent in wear resistance and corrosion resistance and method for manufacturing the sameInfo
- Publication number
- JPH066724B2 JPH066724B2 JP60025948A JP2594885A JPH066724B2 JP H066724 B2 JPH066724 B2 JP H066724B2 JP 60025948 A JP60025948 A JP 60025948A JP 2594885 A JP2594885 A JP 2594885A JP H066724 B2 JPH066724 B2 JP H066724B2
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- outer shell
- injection molding
- molding machine
- based alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/20—Injection nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/30—Extrusion nozzles or dies
- B29C48/3001—Extrusion nozzles or dies characterised by the material or their manufacturing process
- B29C48/3003—Materials, coating or lining therefor
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラスチック等の射出成形機に使用されるノ
ズルおよびその製造方法に関する。TECHNICAL FIELD The present invention relates to a nozzle used in an injection molding machine for plastics and the like, and a manufacturing method thereof.
プラスチックの射出成形は、熱可塑性または熱硬化性樹
脂を、第4図に示すような、先端にノズル(N)が取付
けられたシリンダ(C)内で加熱流動化し、スクリュー
(S)またはプランジャ等で圧送して先端のノズル
(N)からその前部に配置されている金型(図示せず)
に注入することにより行われる。In injection molding of plastic, a thermoplastic or thermosetting resin is heated and fluidized in a cylinder (C) having a nozzle (N) attached to the tip as shown in FIG. 4, and a screw (S) or a plunger is used. A die (not shown) arranged in front of the nozzle (N) by pressure feeding with
It is performed by injecting into.
上記射出成形機用ノズルは、溶融プラスチックの高圧高
速流に対する摩耗抵抗にすぐれ、しかも溶融プラスチッ
クから発生する弗素ガス等の腐食性ガスに対する耐食性
をも有していることが必要である。従来より、この射出
成形機用ノズルとして、高ニッケル系マルエージング鋼
からなるものが使用されている。The nozzle for an injection molding machine is required to have excellent abrasion resistance against a high-pressure and high-speed flow of molten plastic, and also have corrosion resistance to a corrosive gas such as fluorine gas generated from the molten plastic. Conventionally, a nozzle made of high nickel maraging steel has been used as the nozzle for the injection molding machine.
しかるに、従来のマルエージング鋼製ノズルの耐摩耗性
および耐食性は必ずしも十分なものとは言い難い。殊
に、エンジニアリングプラスチックと称される複合材料
からなる成形体等の射出成形にあっては、溶融プラスチ
ックにセラミック繊維等の硬質の補強材が分散相として
配合されるため、摩耗の進行が極めて速く、耐用寿命の
低下傾向が著しい。However, it cannot be said that the conventional maraging steel nozzle has sufficient wear resistance and corrosion resistance. In particular, in the injection molding of molded articles made of composite materials called engineering plastics, because hard reinforcing materials such as ceramic fibers are mixed as a dispersed phase in molten plastic, the progress of wear is extremely fast. , There is a marked decrease in service life.
また、近時は、セラミック製品の射出成形の試みが多く
なされているが、この場合も、従来のマルエージング鋼
製ノズルでは、耐摩耗性や耐食性に問題がある。Recently, many attempts have been made to injection-mold ceramic products, but in this case, the conventional maraging steel nozzle also has problems in wear resistance and corrosion resistance.
本発明は、かかる事情に鑑み、改良された耐摩耗性およ
び耐食性等を有する射出成形機用ノズルを提供しようと
するものである。In view of such circumstances, the present invention aims to provide an injection molding machine nozzle having improved wear resistance, corrosion resistance, and the like.
本発明の射出成形機用ノズルは、マルエージング鋼から
なる外殻基体の内面に、タングステン炭化物粒子5〜50
%を含むCo基合金もしくはNi基合金系焼結合金から
なる内殻体が一体的に積層形成されている二層構造体で
ある点に特徴を有する。The nozzle for an injection molding machine of the present invention has tungsten carbide particles of 5 to 50 on the inner surface of an outer shell substrate made of maraging steel.
Is a two-layer structure in which an inner shell made of a Co-based alloy or a Ni-based alloy-based sintered alloy containing 100% is integrally laminated.
本発明の射出成形機用ノズルの層構造を第1図に模式的
に示す。(1)は外殻基体であり、(2)は焼結合金からなる
内殻体である。外殻基体(1)とその内面に積層されてい
る内殻体は、その界面において密着し一体化している。The layer structure of the nozzle for an injection molding machine of the present invention is schematically shown in FIG. (1) is an outer shell base, and (2) is an inner shell made of a sintered alloy. The outer shell base body (1) and the inner shell body laminated on the inner surface of the outer shell base body (1) are in close contact with each other at their interfaces to be integrated.
第4図に、内殻体をなす焼結合金の組織を示す(倍率:
×800)。(M)は基地金属(但し、Co基合金)、
(P)はタングステン炭化物粒子である。FIG. 4 shows the structure of the sintered alloy forming the inner shell (magnification:
× 800). (M) is a base metal (however, Co-based alloy),
(P) is a tungsten carbide particle.
本発明の射出成形機用ノズルは、溶融プラスチックやセ
ラミック懸濁液等の流動物と接触する内面が、タングス
テン炭化物粒子とCo基合金もしくはNi基合金との焼
結合金からなるので、従来のノズルをはるかに凌ぐ耐食
性および耐摩耗性を有する。また、マルエージング鋼か
らなる外殻基体は、射出成形機用ノズルとして必要な強
靭性を補償する。In the nozzle for an injection molding machine of the present invention, the inner surface that comes into contact with a fluid such as molten plastic or ceramic suspension is made of a sintered alloy of tungsten carbide particles and a Co-based alloy or a Ni-based alloy. It has corrosion resistance and wear resistance far exceeding Further, the outer shell substrate made of maraging steel compensates for the toughness required as a nozzle for an injection molding machine.
本発明の射出成形機用ノズルの内殻体をなす焼結合金に
おけるCo基合金、またはNi基合金は、耐熱性、耐熱
衝撃性、および耐食性等の点から、Mo、Cr、Si、
その他の諸元素の1種もしくは2種以上を合計量で、20
〜55%含有する合金であることが好ましい。そのような
好ましいCo基合金の具体例として、Mo:24〜33%、
Cr:4〜20%、Si:3.5%以下、残部Coからな
るものが挙げられる。また、Ni基合金の好ましい具体
例として、Mo:24〜33%、Cr:4〜20%、Si:
3.5%以下、残部Niからなるものが挙げられる。The Co-based alloy or the Ni-based alloy in the sintered alloy forming the inner shell of the nozzle for an injection molding machine of the present invention is Mo, Cr, Si, from the viewpoint of heat resistance, thermal shock resistance, corrosion resistance and the like.
20 in total of one or more of other elements
It is preferably an alloy containing ˜55%. As a specific example of such a preferable Co-based alloy, Mo: 24-33%,
An example is one in which Cr: 4 to 20%, Si: 3.5% or less, and the balance Co. Moreover, as a preferable specific example of the Ni-based alloy, Mo: 24-33%, Cr: 4-20%, Si:
An example is 3.5% or less, with the balance being Ni.
焼結合金におけるタングステン炭化物粒子は、濡れ性等
の改善の点から、Coを5〜40%含有しているものであ
るものが好ましい。粒径は特に制限されないが、分散性
および耐摩耗性の点から、5〜150μmの範囲が好まし
い。The tungsten carbide particles in the sintered alloy are preferably those containing Co in an amount of 5 to 40% from the viewpoint of improving wettability and the like. The particle size is not particularly limited, but from the viewpoint of dispersibility and abrasion resistance, the range of 5 to 150 μm is preferable.
また、焼結合金におけるタングステン炭化物粒子量(重
量)を5%以上とするのは、耐摩耗性を十分なものとす
るためである。タングステン炭化物粒子量が増すに伴っ
て耐摩耗性の向上をみるが、あまり多くなると、強度・
靭性が不足することになるので50%を上限とする。The amount of tungsten carbide particles (weight) in the sintered alloy is set to 5% or more in order to ensure sufficient wear resistance. The wear resistance improves as the amount of tungsten carbide particles increases.
Since the toughness will be insufficient, the upper limit is 50%.
一方、外殻基体をなすマルエージング鋼は、例えば18%
Ni系、20%Ni系、25%Ni系等であってよい。On the other hand, the maraging steel that forms the outer shell substrate is, for example, 18%
It may be Ni-based, 20% Ni-based, 25% Ni-based, or the like.
本発明の射出成形機用ノズルは、外殻基体と、焼結合金
原料粉末混合物とを各々準備し、外殻基体内に原料粉末
混合物をキャニングしたのち、熱間静水圧焼結に付して
外殻基体の内面に焼結合金からなる内殻体を形成し、し
かるのち外殻基体および内殻基体に機械加工を施して所
定の形状に仕上げることにより得られる。The nozzle for an injection molding machine of the present invention prepares an outer shell substrate and a sintered alloy raw material powder mixture, respectively, and after canning the raw material powder mixture in the outer shell substrate, it is subjected to hot isostatic pressing. It is obtained by forming an inner shell body made of a sintered alloy on the inner surface of the outer shell substrate, and then subjecting the outer shell substrate and the inner shell substrate to machining to finish them into a predetermined shape.
熱間静水圧焼結は、好ましくは、900kgf/cm2以上の加
圧力のもとに、温度1000〜1100℃にて行われる。加圧力
を900kgf/cm2以上、温度を1000℃以上とするのは、十
分な焼結を行わしめ、緻密性に富む内殻体を形成するた
めであり、またこの高温・高圧力下に外殻基体の緻密化
も進行する。加熱温度の上限を1100℃とするのは、それ
を越えると、外殻基体や金属粉末が溶融することがある
からである。なお、加圧力の上限は規定しないが、約13
00kgf/cm2を越える加圧力を加える必要は特にない。The hot isostatic pressing is preferably performed at a temperature of 1000 to 1100 ° C. under a pressure of 900 kgf / cm 2 or more. The reason why the applied pressure is 900 kgf / cm 2 or more and the temperature is 1000 ° C. or more is to perform sufficient sintering to form a highly dense inner shell body, and to keep the outside under this high temperature and high pressure. The densification of the shell substrate also progresses. The upper limit of the heating temperature is set to 1100 ° C, because if it exceeds that temperature, the outer shell substrate and the metal powder may melt. The upper limit of the pressing force is not specified, but it is about 13
There is no particular need to apply a pressure force exceeding 00 kgf / cm 2 .
上記焼結において、形成される内殻体(焼結合金)の緻
密化を促進するとともに、外殻基体の内面との密着結合
関係を十分ならしめるためには、加圧力を外殻基体の外
面からだけでなく、その内部に充填されている焼結合金
原料粉末混合物にも直接作用させることが望ましい。こ
のためには、外殻基体内への原料粉末混合物のキャニン
グに当たり、外殻基体内に導圧管として金属管を組み込
むとよい。これを第2図により説明すると、(1)は外殻
基体、(a)は導圧用金属管である。外殻基体(1)は、
先端面に開口する噴射口用小孔(11)と、その小孔(11)に
連続して後端面に開口する比較的断面径の大きい空洞部
(12)とが形成されている。この外殻基体(1)の空洞部(1
2)内に適当な深さまで金属管(a)を差し込むととも
に、先端の小孔(11)の開口部をプラグ(b)で閉塞し、
後部の開口端から原料粉末混合物(Pw)を供給する。
原料粉末混合物を先端の小孔(11)内、およびその上部の
空洞部(12)の金属管(a)のまわりの空隙内に充填し、
脱気して後端面に、ドーナツ型の金属蓋(c)をあてが
い、外殻基体(1)および金属管(a)に溶接止め(d)
してキャニングを終え、これを熱間静水圧焼結に付す。
こうすれば、雰囲気圧力は外殻基体(1)の外面のみなら
ず、金属管(a)を介して焼結合金粉末混合物層の内面
側からも直接作用することにより、外殻基体(1)と内殻
体(焼結合金)の緻密化、および両者の密着一体化が確
保される。In the above-mentioned sintering, in order to promote the densification of the inner shell body (sintered alloy) to be formed and to even out the close-bonding relationship with the inner surface of the outer shell substrate, the pressing force is applied to the outer surface of the outer shell substrate. It is desirable to directly act on not only the powder mixture but also the sintered alloy raw material powder mixture filled therein. For this purpose, it is advisable to incorporate a metal tube as a pressure guiding tube into the outer shell base upon canning the raw material powder mixture into the outer shell base. This will be described with reference to FIG. 2. (1) is an outer shell substrate, and (a) is a pressure guiding metal tube. The outer shell substrate (1) is
A small hole (11) for the injection port that opens to the tip surface, and a cavity with a relatively large cross-sectional diameter that opens to the rear end surface continuously from the small hole (11)
(12) and are formed. The cavity (1
2) Insert the metal pipe (a) into the inside to an appropriate depth and close the opening of the small hole (11) at the tip with the plug (b).
The raw material powder mixture (Pw) is supplied from the rear open end.
The raw material powder mixture is filled in the small hole (11) at the tip and in the space around the metal tube (a) in the cavity (12) above it,
After degassing, apply a donut-shaped metal lid (c) to the rear end face, and weld stop (d) the outer shell substrate (1) and the metal pipe (a).
Then, canning is finished, and this is subjected to hot isostatic pressing.
In this case, the atmospheric pressure directly acts not only on the outer surface of the outer shell substrate (1) but also on the inner surface side of the sintered alloy powder mixture layer through the metal tube (a), so that the outer shell substrate (1) And the inner shell (sintered alloy) is densified, and both are closely adhered and integrated.
こうして、外殻基体(1)の内面に密着した緻密性に富む
焼結合金からなる内殻体(2)を形成したのち、機械加工
により、金属蓋(c)、内部の金属管(a)、および内
殻体(2)の内面側の余肉等を切削除去し、更に先端の小
孔(11)内に、所要の層厚の内殻体を残してノズル孔(21)
を穿設すると共に、外殻基体(1)の外面に機械加工を施
して内・外面を所定の形状に仕上げることにより、第1
図に示すごとき射出成形機用ノズルとして完成される。
なお、外殻基体の材質調整のための熱処理は機械加工に
先立って行えばよい。In this way, after forming the inner shell body (2) made of a highly dense sintered alloy that is in close contact with the inner surface of the outer shell substrate (1), the metal lid (c) and the inner metal tube (a) are machined. , And the inner wall of the inner shell (2) is removed by cutting, and the inner shell of the required layer thickness is left inside the small hole (11) at the tip, and the nozzle hole (21)
And the outer surface of the outer shell base (1) is machined to finish the inner and outer surfaces into a predetermined shape.
It is completed as a nozzle for an injection molding machine as shown in the figure.
The heat treatment for adjusting the material of the outer shell substrate may be performed prior to machining.
本発明の射出成形機用ノズルの内殻体(2)の層厚は特に
限定されないが、一般に0.5〜3mm程度であればよ
い。また、内殻体(2)は必ずしもノズル内面の全体に積
層されている必要はなく、例えばノズルの後端部近傍の
ように比較的摩耗の進行が緩慢である部分は、内殻体
(2)の積層を省略し、外殻基体(1)が露出しているような
形状であってもよい。The layer thickness of the inner shell body (2) of the nozzle for an injection molding machine of the present invention is not particularly limited, but generally may be about 0.5 to 3 mm. Further, the inner shell (2) does not necessarily have to be laminated on the entire inner surface of the nozzle, and for example, the portion where the progress of wear is relatively slow, such as near the rear end of the nozzle, is the inner shell.
The shape of the outer shell substrate (1) may be exposed by omitting the lamination of (2).
Co基合金粉末とタングステン炭化物粉末とを9:1
(重量比)の割合で混合した焼結合金原料粉末混合物
と、外殻基体とを準備し、第2図に示すように外殻基体
(1)内に原料粉末混合物をキャニングして熱間静水圧焼
結を行い、その後、外殻基体に対するマルエージング処
理を行い、ついで外殻基体(1)および焼結により形成さ
れた内殻体とに機械加工を施して第1図に示す形状を有
する射出成形機用ノズルを得た。このノズルを(A)と
する。また、Co基合金粉末に代えて、Ni基合金粉末
を用いて焼結合金原料粉末混合物を調製する以外は上記
と同じ条件で射出成形機用ノズルを製造した。このノズ
ルをノズル(B)とする。ノズル(A)およびノズル
(B)のサイズは、いずれも、外径:32mm、高さ:50m
m、中間胴部外殻基体肉厚:8mm、中央胴部内殻体肉
厚:2mm、ノズル孔径:4mm。Co-based alloy powder and tungsten carbide powder 9: 1
A sintered alloy raw material powder mixture mixed at a ratio of (weight ratio) and an outer shell substrate were prepared, and as shown in FIG.
(1) The raw material powder mixture is canned and hot isostatically sintered, then the outer shell substrate is subjected to maraging treatment, and then the outer shell substrate (1) and the inner shell body formed by sintering. By machining the and, a nozzle for an injection molding machine having a shape shown in FIG. 1 was obtained. This nozzle is designated as (A). Further, a nozzle for an injection molding machine was manufactured under the same conditions as above except that the sintered alloy raw material powder mixture was prepared by using the Ni-based alloy powder instead of the Co-based alloy powder. This nozzle is called a nozzle (B). The size of the nozzle (A) and the nozzle (B) are both 32 mm in outer diameter and 50 m in height.
m, middle shell outer shell base body thickness: 8 mm, center shell inner shell body thickness: 2 mm, nozzle hole diameter: 4 mm.
〔I〕焼結原料粉末混合物 (1)Co基合金粉末(粒径:50〜150μm) Mo:28%、Cr:17%、Si:2%、残部Co (2)Ni基合金粉末(粒径:50〜150μm) Mo:32%、Cr:15%、Si:3% (3)タングステン炭化物(粒径:50〜150μm) Co12%を含有するWC粉末 〔II〕焼結条件 焼結温度:1000〜1100℃、加圧力:1100〜1300kgf/cm
2、保持時間:1〜2時間。[I] Sintering raw material powder mixture (1) Co-based alloy powder (particle size: 50 to 150 μm) Mo: 28%, Cr: 17%, Si: 2%, balance Co (2) Ni-based alloy powder (particle size: : 50-150 μm) Mo: 32%, Cr: 15%, Si: 3% (3) Tungsten carbide (particle size: 50-150 μm) WC powder containing 12% Co [II] Sintering conditions Sintering temperature: 1000 〜1100 ℃ 、 Pressure: 1100〜1300kgf / cm
2 , retention time: 1-2 hours.
〔III〕製品特性 供試ノズル(A)および(B)をそれぞれ、セラミック
繊維強化プラスチック成形体の射出成形に使用し、従来
のマルエージング鋼製ノズルと比較した結果、従来のノ
ズルの耐用寿命は約100時間であるのに対し、ノズル
(A)は300時間、ノズル(B)は250時間と、2.5〜
3倍の耐用寿命を示した。[III] Product characteristics Test nozzles (A) and (B) were used for injection molding of ceramic fiber reinforced plastic moldings, respectively, and as a result of comparison with conventional maraging steel nozzles, the service life of conventional nozzles was It is about 100 hours, while nozzle (A) is 300 hours and nozzle (B) is 250 hours.
It showed a service life three times longer.
本発明の射出成形機用ノズルは、従来のマルエージング
鋼製ノズルをはるかに凌ぐ耐摩耗性および耐食性を有
し、また従来ノズルと同等の強靭性を兼備しているの
で、通常のプラスチック射出成形はもとより、繊維強化
型プラスチック成形品やセラミック成形品等の射出成形
機用ノズルとして好適であり、従来ノズルにまさる耐久
性を保証し、射出成形操業の安定化、能率化等に寄与す
る。The injection molding machine nozzle of the present invention has wear resistance and corrosion resistance far superior to those of conventional maraging steel nozzles, and also has the same toughness as conventional nozzles, so that it is used for ordinary plastic injection molding. Of course, it is suitable as a nozzle for injection molding machines such as fiber reinforced plastic molded products and ceramic molded products, guarantees durability superior to conventional nozzles, and contributes to stabilization and efficiency of injection molding operation.
第1図は本発明ノズルの層構造の例を示す模式的断面
図、第2図は本発明ノズルの製造方法の断面説明図、第
3図は射出成形機のノズル部を示す断面図、第4図は本
発明ノズルの内殻体の結合合金組織を示す図である。 1:外殻基体、2:内殻体、a:導圧用金属管、b:金
属蓋、N:ノズル。FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of the nozzle of the present invention, FIG. 2 is a cross-sectional explanatory view of the method of manufacturing the nozzle of the present invention, and FIG. 3 is a cross-sectional view showing the nozzle portion of an injection molding machine. FIG. 4 is a diagram showing the bond alloy structure of the inner shell of the nozzle of the present invention. 1: outer shell substrate, 2: inner shell, a: pressure guiding metal tube, b: metal lid, N: nozzle.
Claims (2)
に、タングステン炭化物粒子5〜50%を含むCo基合金
もしくはNi基合金系焼結合金からなる内殻体が一体的
に積層形成されてなる耐摩耗性および耐食性にすぐれた
射出成形機用ノズル。1. An inner shell body made of a Co-based alloy or a Ni-based alloy-based sintered alloy containing 5 to 50% of tungsten carbide particles is integrally laminated on the inner surface of an outer shell substrate made of maraging steel. A nozzle for injection molding machines with excellent wear resistance and corrosion resistance.
に導圧用金属管を挿入し、外殻基体の内面と金属管の外
面とで画成される空隙内に、タングステン炭化物粒子5
〜50%、残部はNi基合金粉末またはCo基合金粉末か
らなる混合粉末を充填してキャニングしたのち、温度:
1000〜1100℃、加圧力:900〜1300kgf/cm2にて熱間静
水圧焼結処理を行うことにより、外殻基体の内面に密着
した焼結合金からなる内殻体を形成せしめ、ついで外殻
基体および内殻体に機械加工を施して所定形状に仕上げ
ることを特徴とする耐摩耗性および耐食性にすぐれた射
出成形機用ノズルの製造方法。2. A metal tube for pressure guiding is inserted into an outer shell substrate made of maraging steel, and tungsten carbide particles 5 are placed in a void defined by an inner surface of the outer shell substrate and an outer surface of the metal tube.
~ 50%, the rest is mixed powder consisting of Ni-based alloy powder or Co-based alloy powder and canned, then temperature:
By carrying out hot isostatic pressing at 1000 to 1100 ° C and a pressure of 900 to 1300 kgf / cm 2, an inner shell made of a sintered alloy adhered to the inner surface of the outer shell substrate was formed, and then the outer shell was formed. A method for manufacturing a nozzle for an injection molding machine, which is excellent in wear resistance and corrosion resistance, characterized by subjecting a shell base body and an inner shell body to a predetermined shape by machining.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60025948A JPH066724B2 (en) | 1985-02-13 | 1985-02-13 | Nozzle for injection molding machine excellent in wear resistance and corrosion resistance and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60025948A JPH066724B2 (en) | 1985-02-13 | 1985-02-13 | Nozzle for injection molding machine excellent in wear resistance and corrosion resistance and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61186406A JPS61186406A (en) | 1986-08-20 |
JPH066724B2 true JPH066724B2 (en) | 1994-01-26 |
Family
ID=12179976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60025948A Expired - Lifetime JPH066724B2 (en) | 1985-02-13 | 1985-02-13 | Nozzle for injection molding machine excellent in wear resistance and corrosion resistance and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH066724B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623721U (en) * | 1990-12-21 | 1994-03-29 | 株式会社名機製作所 | Injection molding machine nozzle tip |
JPH0860334A (en) * | 1995-08-03 | 1996-03-05 | Meiki Co Ltd | Manufacture of nozzle tip of injection molding machine |
CN102328075B (en) * | 2011-07-22 | 2013-06-26 | 浙江一火科技有限公司 | Stainless steel rehabilitation medical instrument and manufacture method thereof |
JP5745437B2 (en) * | 2012-02-14 | 2015-07-08 | 平井工業株式会社 | Die for pellet manufacturing |
EP2740553A1 (en) | 2012-12-07 | 2014-06-11 | Sandvik Intellectual Property AB | Method for manufacture of HIP consolidated component |
CN106282859B (en) * | 2016-08-11 | 2017-12-15 | 许昌学院 | A kind of stainless steel rehabilitation medical instrument and its manufacture method |
CN108393485B (en) * | 2018-03-02 | 2020-03-20 | 厦门钨业股份有限公司 | Tungsten alloy feed for powder injection molding and preparation method thereof |
CN116083778A (en) * | 2023-01-12 | 2023-05-09 | 西安欧中材料科技有限公司 | Low-cost corrosion-resistant SMT-18Ni300 composite bar and preparation method of powder thereof |
-
1985
- 1985-02-13 JP JP60025948A patent/JPH066724B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61186406A (en) | 1986-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4729789A (en) | Process of manufacturing an extruder screw for injection molding machines or extrusion machines and product thereof | |
US4398952A (en) | Methods of manufacturing gradient composite metallic structures | |
EP1216314B1 (en) | Low thermal conductivity hard metal | |
EP2900404B1 (en) | Methods of forming a metallic or ceramic article having a novel composition of functionally graded material | |
US4368788A (en) | Metal cutting tools utilizing gradient composites | |
US4372404A (en) | Cutting teeth for rolling cutter drill bit | |
EP0958262B1 (en) | Method for infiltrating preformed components and component assemblies | |
EP2152921B1 (en) | Cemented carbide with ultra-low thermal conductivity | |
US4594219A (en) | Powder metal consolidation of multiple preforms | |
EP0111600A1 (en) | Improvements in or relating to cutting tools | |
US20050072601A1 (en) | Roller cone bits with wear and fracture resistant surface | |
GB2365025A (en) | Cermet rock bit inserts with wear resistant coating | |
JP2003516867A (en) | Composite turning tool and method of manufacturing the same | |
EP0078102A2 (en) | Polycrystalline silicon-bonded cubic boron nitride body and method | |
US20030012677A1 (en) | Bi-metallic metal injection molded hand tool and manufacturing method | |
US6319437B1 (en) | Powder injection molding and infiltration process | |
JPH066724B2 (en) | Nozzle for injection molding machine excellent in wear resistance and corrosion resistance and method for manufacturing the same | |
US3841870A (en) | Method of making articles from powdered material requiring forming at high temperature | |
JPS61183430A (en) | Screw superior in resistances to wear and corrosion for injection molding machine and its manufacture | |
CA1184571A (en) | Composite cylinder and casting alloy for use therein | |
CN114101678B (en) | Preparation method of metal-ceramic composite material | |
CN112893843A (en) | Preparation method of MoNiB metal ceramic threaded element | |
Ellis et al. | Cermets | |
CN112893848B (en) | Preparation method of MoFeB metal ceramic threaded element | |
JPS61218869A (en) | Construction and manufacture for cylinder with high resistance to abrasion and erosion |