JPH0667244A - Semiconductor optical differentiator - Google Patents

Semiconductor optical differentiator

Info

Publication number
JPH0667244A
JPH0667244A JP22004092A JP22004092A JPH0667244A JP H0667244 A JPH0667244 A JP H0667244A JP 22004092 A JP22004092 A JP 22004092A JP 22004092 A JP22004092 A JP 22004092A JP H0667244 A JPH0667244 A JP H0667244A
Authority
JP
Japan
Prior art keywords
light
diode
pin
signal light
type diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22004092A
Other languages
Japanese (ja)
Other versions
JP2749744B2 (en
Inventor
Makoto Hosoda
誠 細田
Kenji Kawashima
健児 川島
Kenzo Fujiwara
賢三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A T R KOUDENPA TSUSHIN KENKYUSHO KK
ATR Optical and Radio Communications Research Laboratories
Original Assignee
A T R KOUDENPA TSUSHIN KENKYUSHO KK
ATR Optical and Radio Communications Research Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A T R KOUDENPA TSUSHIN KENKYUSHO KK, ATR Optical and Radio Communications Research Laboratories filed Critical A T R KOUDENPA TSUSHIN KENKYUSHO KK
Priority to JP22004092A priority Critical patent/JP2749744B2/en
Publication of JPH0667244A publication Critical patent/JPH0667244A/en
Application granted granted Critical
Publication of JP2749744B2 publication Critical patent/JP2749744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To provide the optical differentiator which has a simpler constitution than a conventional example and a smaller power consumption and makes a fast time response. CONSTITUTION:Two heterojunction pin type diodes D1 and D2 which have intrinsic semiconductor (i) layers 13 and 23 in multi-quantum well structure or superlattice structure and vary in light absorptivity in a wavelength range nearby a light absorption end by varying a reverse bias voltage are connected in series, and a variable voltage source 10 for reverse bias voltage application is connected across both the series-connected end; while a specific quantity of bias light Pin 1 is applied to one pin type diode D1, signal light pin 2 to optically be differentiated is made incident on the other pin diode D2 and then the differentiated light Pout 2 generated by optically differentiating the signal light Pin 2 is obtained from the pin type diode D2 on which the signal light Pin 2 is made incident.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体光双安定素子を
利用した半導体光微分器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical differentiator using a semiconductor optical bistable element.

【0002】[0002]

【従来の技術】図3に従来例の電気光微分器の構成を示
す。図3に示すように、従来、入射した光パルスを一旦
ホトダイオード等の光電変換素子30により電気信号に
変換した後、それを電気微分器31によって電気的に微
分する。次いで、電気微分器31から出力される電気信
号を増幅器32を介して別のレーザーダイオード等の発
光素子33(又は光変調器)を駆動することにより、光
微分出力を得ることができる。
2. Description of the Related Art FIG. 3 shows the configuration of a conventional electro-optical differentiator. As shown in FIG. 3, conventionally, an incident optical pulse is once converted into an electric signal by a photoelectric conversion element 30 such as a photodiode and then electrically differentiated by an electric differentiator 31. Next, an electric signal output from the electric differentiator 31 is driven through an amplifier 32 to another light emitting element 33 (or an optical modulator) such as a laser diode, whereby an optical differentiated output can be obtained.

【0003】[0003]

【発明が解決しようとする課題】上述の従来例では、次
のような欠点があり、問題点があった。 (a)電気回路の部品点数が増え、装置規模が比較的大
きい。 (b)消費電力が比較的大きい。 (c)電気回路31,32で処理した後、発光素子33
又は光変調器を駆動するため、光微分出力を得るまでの
遅延時間が大きく、また時間応答が遅い。
The above-mentioned conventional example has the following drawbacks and problems. (A) The number of electric circuit components is increased, and the device scale is relatively large. (B) Power consumption is relatively high. (C) The light emitting element 33 after being processed by the electric circuits 31 and 32
Alternatively, since the optical modulator is driven, the delay time until obtaining the optical differential output is large and the time response is slow.

【0004】本発明の目的は以上の問題点を解決し、従
来例に比較し構成が簡単であってかつ消費電力が小さ
く、しかも時間応答が速い光微分器を提供することにあ
る。
An object of the present invention is to solve the above problems and to provide an optical differentiator having a simpler structure, lower power consumption, and faster time response than the conventional example.

【0005】[0005]

【課題を解決するための手段】本発明に係る請求項1記
載の半導体光微分器は、それぞれ多重量子井戸構造又は
超格子構造の真性半導体i層を有し逆バイアス電圧を変
化することによって光吸収端付近の波長領域で光吸収率
が変化する2個のヘテロ接合pin型ダイオードが直列
に接続され、その直列接続された両端に逆バイアス電圧
印加用の可変電圧源が接続され、一方のpin型ダイオ
ードに所定の光量のバイアス光が印加される一方、他方
のpin型ダイオードに光微分すべき信号光を入射する
ことによって、当該信号光を入射したpin型ダイオー
ドから信号光を光微分した微分光を得ることを特徴とす
る。
A semiconductor optical differentiator according to a first aspect of the present invention has an intrinsic semiconductor i-layer having a multi-quantum well structure or a superlattice structure, respectively. Two heterojunction pin type diodes whose light absorptance changes in the wavelength region near the absorption end are connected in series, and a variable voltage source for applying a reverse bias voltage is connected to both ends of the series connection, and one pin is connected. A predetermined amount of bias light is applied to the diode, while the signal light to be optically differentiated is incident on the other pin diode to differentiate the signal light from the pin diode on which the signal light is incident. It is characterized by getting light.

【0006】また、本発明に係る請求項2記載の半導体
光微分器は、多重量子井戸構造又は超格子構造の真性半
導体i層を有し逆バイアス電圧を変化することによって
光吸収端付近の波長領域で光吸収率が変化するヘテロ接
合pin型ダイオードに定電流源により所定の定電流を
供給し、上記pin型ダイオードに光微分すべき信号光
を入射することによって、当該信号光を入射したpin
型ダイオードから信号光を光微分した微分光を得ること
を特徴とする。
A semiconductor optical differentiator according to a second aspect of the present invention has an intrinsic semiconductor i layer having a multiple quantum well structure or a superlattice structure, and a wavelength near the light absorption edge by changing the reverse bias voltage. A constant constant current source supplies a predetermined constant current to a heterojunction pin type diode whose light absorption rate changes in a region, and the signal light to be optically differentiated is made incident on the pin type diode, so that the pin that made the signal light incident is detected.
The differential light obtained by optically differentiating the signal light from the type diode is obtained.

【0007】[0007]

【作用】請求項1記載の半導体光微分器においては、そ
れぞれ多重量子井戸構造又は超格子構造の真性半導体i
層を有し逆バイアス電圧を変化することによって光吸収
端付近の波長領域で光吸収率が変化する各ダイオードに
おいて、交互に入れ替わりが可能な比較的高い透過状態
と比較的低い透過状態との2つの静的な光双安定動作が
得られる。本発明においては、まず、比較的高い光透過
状態にあった他方のダイオードがそのダイオード自身に
入射される光パルスによって動的に自己の内部に発生す
る光キャリアーによってセルフスイッチし、比較的高い
光透過状態からより低い光透過状態に遷移する時間の間
だけ光パルスが他方のダイオードを通過する新しい動的
過程を利用して光微分動作を行なうものである。
In the semiconductor optical differentiator according to claim 1, an intrinsic semiconductor i having a multiple quantum well structure or a superlattice structure, respectively.
In each diode, which has a layer and whose light absorption rate changes in the wavelength region near the light absorption edge by changing the reverse bias voltage, a relatively high transmissive state and a relatively low transmissive state that can be alternately switched are used. Two static optical bistable behaviors are obtained. In the present invention, first, the other diode, which was in a relatively high light transmission state, self-switches by an optical carrier dynamically generated inside itself by an optical pulse incident on the diode itself, and a relatively high light is emitted. The optical differential operation is carried out by utilizing a new dynamic process in which an optical pulse passes through the other diode only during the transition time from the transmission state to the lower light transmission state.

【0008】すなわち、バイアス光を一方のダイオード
に常に入射することにより、上記可変電圧源と一方のダ
イオードとが疑似的に定電流源として動作して、一定の
電流を他方のダイオードに流すことになる。他方のダイ
オードはその光入力である信号光が無いときには(Pi
n2=0)、常に図2のD点付近の比較的高い透過状態
である印加電圧に保持される。この比較的高い透過状態
を初期状態として、信号光を光入射パルスの形式で入射
するとその光入射パルスの光強度の立ち上がりによって
図2の負荷曲線は特性102,103,104と順次遷
移し、特性104を越えた所で他方のダイオードの印加
電圧はB点に遷移する。これにより、他方のダイオード
は比較的低い透過状態へスイッチングし、以後信号光の
光パルスが立ち下がるまでこの状態を保持する。従っ
て、信号光の光入射パルスが立ち上がっている間に比較
的高い透過状態の他方のダイオードを、光入射パルスの
立ち上がり部分が抜けて出射してくるため、その他方の
ダイオードの出力光として微分光が得られることにな
る。
That is, when the bias light always enters one of the diodes, the variable voltage source and the one diode act as a pseudo constant current source, and a constant current is supplied to the other diode. Become. The other diode receives the signal light that is its optical input (Pi
n2 = 0), the applied voltage is always maintained at a relatively high transmission state near point D in FIG. When the signal light is incident in the form of a light incident pulse with this relatively high transmission state as the initial state, the load curve of FIG. 2 sequentially transits to the characteristics 102, 103, 104 due to the rise of the light intensity of the light incident pulse, When the voltage exceeds 104, the voltage applied to the other diode transits to point B. As a result, the other diode switches to a relatively low transmission state, and holds this state until the optical pulse of the signal light falls thereafter. Therefore, while the light incident pulse of the signal light is rising, the other diode, which has a relatively high transmission state, passes through the rising portion of the light incident pulse and exits, so that the differential light is output as the output light of the other diode. Will be obtained.

【0009】さらに、請求項2記載の半導体光微分器の
ように、請求項1記載の1個のpin型ダイオードと上
記可変電圧源とに代えて、定電流源を接続することによ
り、同様の作用を得る。
Further, as in the semiconductor optical differentiator according to claim 2, by replacing the one pin type diode according to claim 1 with the variable voltage source, a constant current source is connected. Get the action.

【0010】[0010]

【実施例】以下、図面を参照して本発明による実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例である、それぞれ
多重量子井戸構造の真性半導体i層を有する2個のpi
n型ダイオードD1,D2を用いた半導体光微分器の構
成を示す断面図及び回路図である。
FIG. 1 is an embodiment of the present invention, in which two pis each having an intrinsic semiconductor i-layer having a multiple quantum well structure are provided.
It is sectional drawing and the circuit diagram which show the structure of the semiconductor optical differentiator using n-type diode D1, D2.

【0012】本実施例の光微分器は、図1に示すよう
に、それぞれ多重量子井戸構造の真性半導体i層を有し
逆バイアス電圧を変化することによって光吸収端付近の
波長領域で光吸収率が変化しこれによって光電流が変化
する2個のヘテロ接合pin型ダイオードD1,D2が
直列に接続され、その直列接続された両端に逆バイアス
電圧印加用の可変電圧源10が接続され、一方のpin
型ダイオードD1に所定の光量のバイアス光が印加され
る一方、他方のpin型ダイオードD2に光微分すべき
信号光を入射することによって、当該pin型ダイオー
ドD2から信号光を光微分した微分光を得ることを特徴
としている。
As shown in FIG. 1, the optical differentiator of this embodiment has intrinsic semiconductor i-layers each having a multiple quantum well structure and changes the reverse bias voltage to absorb light in the wavelength region near the light absorption edge. Two heterojunction pin type diodes D1 and D2 whose rate changes and photocurrent changes accordingly are connected in series, and a variable voltage source 10 for applying a reverse bias voltage is connected to both ends of the series connection. The pin
A predetermined amount of bias light is applied to the diode D1, while the signal light to be optically differentiated is incident on the other pin diode D2 to generate differentiated light obtained by optically differentiating the signal light from the pin diode D2. It is characterized by getting.

【0013】本実施例において用いるpin型ダイオー
ドD1は、図1に示すように、電極11,15間に、p
型半導体クラッド層12と、多重量子井戸層構造を有す
る真性半導体i層13と、n型半導体基板14とを挟設
することにより形成され、逆バイアス電圧を変化するこ
とによって光吸収率が変化しこれによって光電流が変化
する特性を有する。また、他方のpin型ダイオードD
2もダイオードD1と同様に、電極21,25間にp型
半導体クラッド層22と、多重量子井戸層構造を有する
真性半導体i層23と、n型半導体基板24とを挟設す
ることにより形成されダイオードD1と同様の逆バイア
ス電圧に対する光吸収率及び光電流特性を有する。
The pin type diode D1 used in this embodiment has a p-type diode D1 between electrodes 11 and 15 as shown in FIG.
Type semiconductor clad layer 12, an intrinsic semiconductor i layer 13 having a multiple quantum well layer structure, and an n-type semiconductor substrate 14 are sandwiched, and the light absorptance is changed by changing the reverse bias voltage. This has the characteristic that the photocurrent changes. The other pin type diode D
Similarly to the diode D1, 2 is also formed by sandwiching a p-type semiconductor clad layer 22, an intrinsic semiconductor i layer 23 having a multiple quantum well layer structure, and an n-type semiconductor substrate 24 between electrodes 21 and 25. It has light absorption and photocurrent characteristics with respect to a reverse bias voltage similar to the diode D1.

【0014】電極15と電極21が接続されるととも
に、電極11は可変電圧源10の負極に接続され、電極
25が可変電圧源10の正極に接続される。
The electrodes 15 and 21 are connected, the electrode 11 is connected to the negative electrode of the variable voltage source 10, and the electrode 25 is connected to the positive electrode of the variable voltage source 10.

【0015】各ダイオードD1,D2はそれぞれ真性半
導体i層13,23内の電界による吸収率変調効果によ
って図2のような光吸収特性を有する。ここで、図2
は、図1の半導体光微分器の動作を説明するための、逆
バイアス電圧に対する光電流Ip(又は光吸収率)の特
性を示すグラフである。なお、各ダイオードD1,D2
の光吸収率は光透過率に概ね反比例している。
Each of the diodes D1 and D2 has a light absorption characteristic as shown in FIG. 2 due to the absorption rate modulation effect by the electric field in the intrinsic semiconductor i layers 13 and 23. Here, FIG.
FIG. 4 is a graph showing characteristics of a photocurrent Ip (or a light absorption rate) with respect to a reverse bias voltage, for explaining the operation of the semiconductor optical differentiator of FIG. 1. In addition, each diode D1, D2
The light absorptivity of is almost inversely proportional to the light transmittance.

【0016】図2から明らかなように、各ダイオードD
1,D2に印加される逆バイアス電圧を高くすることに
よって、光吸収端付近の波長領域で、光電流Ip又は光
吸収率は一旦大きくなった後、低下する特性を示す。こ
こで、光電流Ip又は光吸収率の極大値は信号光の光電
力Pin2を、例えばP1乃至P5の順序で大きくする
ことによって増大する特性を示す。
As is apparent from FIG. 2, each diode D
By increasing the reverse bias voltage applied to 1 and D2, the photocurrent Ip or the light absorption rate once increases in the wavelength region near the light absorption edge, and then decreases. Here, the maximum value of the photocurrent Ip or the light absorptance shows a characteristic of increasing by increasing the optical power Pin2 of the signal light in the order of P1 to P5, for example.

【0017】このような構成のダイオードD1,D2は
図1に示したような、ダイオードD1のp型半導体クラ
ッド層12に入射するバイアス光の光電力Pin1と、
ダイオードD2のp型半導体クラッド層22に入射する
信号光の光電力Pin2との間のパワーの差により、以
下に示す光双安定動作を行う。
The diodes D1 and D2 having such a configuration have the optical power Pin1 of the bias light incident on the p-type semiconductor cladding layer 12 of the diode D1 as shown in FIG.
The optical bistable operation described below is performed due to the difference in power between the signal light and the optical power Pin2 of the signal light incident on the p-type semiconductor cladding layer 22 of the diode D2.

【0018】逆バイアス電圧の増加により光吸収が減少
する波長領域において、一定波長、一定強度のバイアス
光がダイオードD1に入射すると、ダイオードD1は光
吸収により生成された電荷キャリアーが存在するために
低インピーダンス状態になり、逆バイアス電圧はほぼそ
のままダイオードD2に印加されることになる一方、ダ
イオードD2は高インピーダンス状態となる。このと
き、いわゆる公知の量子シュタルク効果により、ダイオ
ードD1はダイオードD2に比較して光吸収が比較的大
きい状態になり、ダイオードD2はダイオードD1に比
較して光吸収が比較的小さい状態となる。
In the wavelength region where the light absorption decreases due to the increase of the reverse bias voltage, when bias light having a constant wavelength and a constant intensity is incident on the diode D1, the diode D1 is low because the charge carriers generated by the light absorption exist. The diode D2 enters the impedance state, and the reverse bias voltage is applied to the diode D2 almost as it is, while the diode D2 enters the high impedance state. At this time, due to the so-called known quantum Stark effect, the diode D1 is in a state where the light absorption is relatively larger than that of the diode D2, and the diode D2 is in a state where the light absorption is relatively smaller than that of the diode D1.

【0019】次いで、ダイオードD2に信号光を入射
し、その強度を増加させると、ダイオードD2に流れる
光電流は図2の実線に示すように増加し、当該回路を流
れる電流はダイオードD1の負荷曲線(図2の点線)と
の交点によって決まる電流値となる。ダイオードD2に
照射される信号光の光電力Pin2がダイオードD1に
照射されるバイアス光の光電力Pin1よりも小さい時
は、ダイオードD1とダイオードD2における逆バイア
ス電圧の印加状態は上述と同様の状態となる。すなわ
ち、ダイオードD1は低インピーダンス状態となる一
方、ダイオードD2は高インピーダンス状態となる。
Next, when signal light is incident on the diode D2 and its intensity is increased, the photocurrent flowing through the diode D2 increases as shown by the solid line in FIG. 2, and the current flowing through the circuit is the load curve of the diode D1. The current value is determined by the intersection with (dotted line in FIG. 2). When the optical power Pin2 of the signal light with which the diode D2 is irradiated is smaller than the optical power Pin1 of the bias light with which the diode D1 is irradiated, the application state of the reverse bias voltage in the diodes D1 and D2 is the same as that described above. Become. That is, the diode D1 is in a low impedance state, while the diode D2 is in a high impedance state.

【0020】さらに、Pin2>Pin1のときであっ
て、信号光の光電力Pin2が所定のしきい値Pthを
超えるとダイオードD2が高インピーダンス状態で存在
することができる負荷曲線の交点Aが存在しなくなるの
で、ダイオードD2は低インピーダンス状態となり、印
加バイアス電圧値のスイッチングの結果として、ダイオ
ードD1は低インピーダンス状態から高インピーダンス
状態Bへスイッチングする。このとき、ダイオードD1
の光吸収は小さく、従って、光透過は大きい状態、すな
わち光吸収率が大きい状態となる。従って、信号光の光
電力Pin2の増加により、ダイオードD1から出射す
るバイアス光の透過光(その光電力Pout1)のオン
からオフへの光スイッチング動作が得られる。
Further, when Pin2> Pin1 and the optical power Pin2 of the signal light exceeds a predetermined threshold Pth, there is an intersection A of the load curve where the diode D2 can exist in a high impedance state. Since it disappears, the diode D2 is in a low impedance state, and as a result of switching the applied bias voltage value, the diode D1 switches from the low impedance state to the high impedance state B. At this time, the diode D1
Has a small light absorption and therefore a large light transmission, that is, a large light absorption rate. Therefore, due to the increase in the optical power Pin2 of the signal light, the optical switching operation of the transmitted light of the bias light (its optical power Pout1) emitted from the diode D1 from ON to OFF can be obtained.

【0021】一方、信号光の光電力Pin2を所定のし
きい値Pthよりも減少させるとき、負荷曲線との交点
CまではダイオードD2の低インピーダンス状態は保持
されるので、ダイオードD1のオン状態、すなわち高イ
ンピーダンス状態は保持される。しかしながら、信号光
の光電力Pin2が減少し、負荷曲線との交点Cを越え
ると、Cより下には、図2において点線で示す負荷曲線
との交点は無いので初期状態への光スイッチング動作、
すなわちCからDへの遷移動作が起こる。
On the other hand, when the optical power Pin2 of the signal light is reduced below the predetermined threshold value Pth, the low impedance state of the diode D2 is maintained until the intersection C with the load curve, so that the diode D1 is in the ON state, That is, the high impedance state is maintained. However, when the optical power Pin2 of the signal light decreases and exceeds the intersection C with the load curve, there is no intersection with the load curve shown by the dotted line in FIG. 2 below C, so the optical switching operation to the initial state,
That is, the transition operation from C to D occurs.

【0022】以上説明したように、当該回路装置におい
ては光双安定動作が得られる。以上の双安定動作は静的
な動作であり、しかも光電力Pin1の大きさと光電力
Pin2の大きさを交互に入れて二つの状態間を遷移さ
せ、光のスイッチングを行なうものである。
As described above, optical bistable operation can be obtained in the circuit device. The above-described bistable operation is a static operation, in which the magnitude of the optical power Pin1 and the magnitude of the optical power Pin2 are alternately entered to transition between the two states, thereby switching the light.

【0023】本発明に係る本実施例においては、まず、
比較的高い光透過状態にあったダイオードD2がダイオ
ードD2自身に入射される光パルスによって動的に自己
の内部に発生する光キャリアーによってセルフスイッチ
し、比較的高い光透過状態からより低い光透過状態に遷
移する時間の間だけ光パルスがダイオードD2を通過す
る新しい動的過程を利用して光微分動作を行なうもので
ある。
In this embodiment of the present invention, first,
The diode D2, which has been in a relatively high light transmission state, self-switches by an optical carrier that is dynamically generated inside itself by the light pulse incident on the diode D2 itself, so that the relatively high light transmission state becomes a lower light transmission state. The optical differential operation is performed by utilizing a new dynamic process in which the optical pulse passes through the diode D2 only during the transition time to.

【0024】すなわち、バイアス光をダイオードD1に
常に入射することにより、可変電圧源10とダイオード
D1とが疑似的に定電流源として動作して、一定の電流
をダイオードD2に流すことになる。ダイオードD2は
その光入力である信号光が無いときには(Pin2=
0)、常に図2のD点付近の比較的高い透過状態である
印加電圧に保持される。この比較的高い透過状態を初期
状態として、信号光を光入射パルスの形式で入射すると
その光入射パルスの光強度の立ち上がりによって図2の
負荷曲線は特性102,103,104と順次遷移し、
特性104を越えた所でダイオードD2の印加電圧はB
点に遷移する。これにより、ダイオードD2は比較的低
い透過状態へスイッチングし、以後信号光の光パルスが
立ち下がるまでこの状態を保持する。従って、信号光の
光入射パルスが立ち上がっている間に比較的高い透過状
態のダイオードD2を、光入射パルスの立ち上がり部分
が抜けて出射してくるため、そのダイオードD2の出力
光として光電力Pout2の微分光が得られることにな
る。
That is, when the bias light is always incident on the diode D1, the variable voltage source 10 and the diode D1 operate as a pseudo constant current source, and a constant current is supplied to the diode D2. When there is no signal light which is the optical input of the diode D2 (Pin2 =
0), the applied voltage is always maintained in a relatively high transmission state near point D in FIG. When the signal light is incident in the form of a light incident pulse with this relatively high transmission state as the initial state, the load curve of FIG. 2 sequentially changes to the characteristics 102, 103, 104 due to the rise of the light intensity of the light incident pulse.
When the characteristic 104 is exceeded, the applied voltage of the diode D2 is B
Transition to a point. As a result, the diode D2 switches to a relatively low transmission state, and holds this state until the optical pulse of the signal light falls thereafter. Therefore, while the light incident pulse of the signal light is rising, the diode D2 having a relatively high transmission state is emitted with the rising portion of the light incident pulse passing through, and thus the light of the optical power Pout2 is output as the output light of the diode D2. Differentiated light will be obtained.

【0025】以上説明したように、本実施例の半導体光
微分器によれば、簡単な構成で光微分が可能であるとと
もに、バイアス光の光電力Pin1を可変することによ
り、負荷曲線を容易に調整できるため、広い強度範囲の
光入射に対してその微分動作を可能にすることができる
という特有の利点を有する。また、従来例に比較して以
下の利点を有する。 (a)従来例に比較し構成が簡単である。 (b)一方のpin型ダイオードD1に印加する逆バイ
アス電圧を印加するのみであるので、従来例に比較して
消費電力が小さい。 (c)信号光は1個のpin型ダイオードD2を通過す
るだけであり、従来例のように複数の回路を通過しない
ので、従来例に比較して時間応答が速い。
As described above, according to the semiconductor optical differentiator of this embodiment, optical differentiation is possible with a simple structure, and the load power curve is easily changed by changing the optical power Pin1 of the bias light. Since it can be adjusted, it has a unique advantage that it can be differentiated for a wide range of incident light. Further, it has the following advantages as compared with the conventional example. (A) The structure is simple as compared with the conventional example. (B) Since only the reverse bias voltage applied to one pin type diode D1 is applied, the power consumption is smaller than that of the conventional example. (C) Since the signal light only passes through one pin-type diode D2 and does not pass through a plurality of circuits as in the conventional example, the time response is faster than in the conventional example.

【0026】以上の実施例において、各ダイオードD
1,D2における真性半導体i層13,23は多重量子
井戸構造を有しているが、本発明はこれに限らず、超格
子構造を有しても同様の作用を得ることができる。
In the above embodiments, each diode D
The intrinsic semiconductor i layers 13 and 23 in 1 and D2 have a multiple quantum well structure, but the present invention is not limited to this, and a similar effect can be obtained even if they have a superlattice structure.

【0027】以上の実施例において、可変電圧源10と
ダイオードD1とを用いているが、これらに代えて、ダ
イオードD2に常に所定の電流を供給する定電流源を用
いてもよい。
Although the variable voltage source 10 and the diode D1 are used in the above embodiments, a constant current source that constantly supplies a predetermined current to the diode D2 may be used instead of them.

【0028】[0028]

【発明の効果】以上詳述したように本発明によれば、そ
れぞれ多重量子井戸構造又は超格子構造の真性半導体i
層を有し逆バイアス電圧を変化することによって光吸収
端付近の波長領域で光吸収率が変化する2個のヘテロ接
合pin型ダイオードが直列に接続され、その直列接続
された両端に逆バイアス電圧印加用の可変電圧源が接続
され、一方のpin型ダイオードに所定の光量のバイア
ス光が印加される一方、他方のpin型ダイオードに光
微分すべき信号光を入射することによって、当該信号光
を入射したpin型ダイオードから信号光を光微分した
微分光を得るようにし、もしくは多重量子井戸構造又は
超格子構造の真性半導体i層を有し逆バイアス電圧を変
化することによって光吸収端付近の波長領域で光吸収率
が変化するヘテロ接合pin型ダイオードに定電流源に
より所定の定電流を供給し、上記pin型ダイオードに
光微分すべき信号光を入射することによって、当該信号
光を入射したpin型ダイオードから信号光を光微分し
た微分光を得る。
As described in detail above, according to the present invention, an intrinsic semiconductor i having a multi-quantum well structure or a superlattice structure, respectively.
Two hetero-junction pin type diodes, each having a layer and having a light absorption coefficient in the wavelength region near the light absorption edge that is changed by changing the reverse bias voltage, are connected in series, and the reverse bias voltage is applied to both ends of the series connection. A variable voltage source for application is connected, and a predetermined amount of bias light is applied to one pin-type diode, while the signal light to be optically differentiated is made incident on the other pin-type diode. A wavelength near the light absorption edge is obtained by obtaining differentiated light obtained by optically differentiating the signal light from the incident pin type diode or by changing the reverse bias voltage by having an intrinsic semiconductor i layer having a multiple quantum well structure or a superlattice structure. A signal to be optically differentiated to the pin diode by supplying a predetermined constant current to the heterojunction pin diode whose light absorption rate changes in a region by a constant current source. By entering to obtain a light obtained by differentiating the differential optical signal light from the pin-type diode which is incident the signal light.

【0029】従って、本発明に係る半導体光微分器は、
以下の特有の利点を有する。 (a)従来例に比較し構成が簡単である。 (b)一方のpin型ダイオードに印加する逆バイアス
電圧又は定電流の供給のみであるので、従来例に比較し
て消費電力が小さい。 (c)信号光は1個のpin型ダイオードを通過するだ
けであり、従来例のように複数の回路を通過しないの
で、従来例に比較して時間応答が速い。
Therefore, the semiconductor optical differentiator according to the present invention is
It has the following unique advantages. (A) The structure is simple as compared with the conventional example. (B) Since only the reverse bias voltage or the constant current applied to one of the pin type diodes is supplied, the power consumption is smaller than that of the conventional example. (C) Since the signal light only passes through one pin-type diode and does not pass through a plurality of circuits as in the conventional example, the time response is faster than in the conventional example.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例である、それぞれ多重量子
井戸構造の真性半導体i層を有する2個のpin型ダイ
オードD1,D2を用いた半導体光微分器の構成を示す
断面図及び回路図である。
FIG. 1 is a cross-sectional view and a circuit diagram showing a configuration of a semiconductor optical differentiator using two pin type diodes D1 and D2 each having an intrinsic semiconductor i layer having a multiple quantum well structure, which is an embodiment of the present invention. Is.

【図2】 図1の半導体光微分器の動作を説明するため
の、逆バイアス電圧に対する光電流Ipを示すグラフで
ある。
FIG. 2 is a graph showing a photocurrent Ip with respect to a reverse bias voltage, for explaining the operation of the semiconductor optical differentiator of FIG.

【図3】 従来例の電気微分器の構成を示すブロック図
である。
FIG. 3 is a block diagram showing a configuration of a conventional electrical differentiator.

【符号の説明】[Explanation of symbols]

D1,D2…pin型ダイオード、 10…可変電圧源、 11,15,21,25…電極、 12,22…p型半導体クラッド層、 13,23…多重量子井戸構造の真性半導体i層、 14,24…n型半導体基板。 D1, D2 ... Pin type diode, 10 ... Variable voltage source, 11, 15, 21, 25 ... Electrode, 12, 22 ... P type semiconductor clad layer, 13, 23 ... Intrinsic semiconductor i layer of multiple quantum well structure, 14, 24 ... N-type semiconductor substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川島 健児 京都府相楽郡精華町大字乾谷小字三平谷5 番地 株式会社エイ・ティ・アール光電波 通信研究所内 (72)発明者 藤原 賢三 福岡県北九州市戸畑区仙水町1番1号 九 州工業大学工学部電気工学科内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Kawashima, No. 5 Sanhiraya, Inui, Osamu, Seika-cho, Soraku-gun, Kyoto Pref., ATR Optical & Radio Communications Laboratory, Inc. (72) Kenzo Fujiwara Kitakyushu, Fukuoka 1-1, Sensui-cho, Tobata-ku, Department of Electrical Engineering, Faculty of Engineering, Kyushu Institute of Technology

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ多重量子井戸構造又は超格子構
造の真性半導体i層を有し逆バイアス電圧を変化するこ
とによって光吸収端付近の波長領域で光吸収率が変化す
る2個のヘテロ接合pin型ダイオードが直列に接続さ
れ、その直列接続された両端に逆バイアス電圧印加用の
可変電圧源が接続され、一方のpin型ダイオードに所
定の光量のバイアス光が印加される一方、他方のpin
型ダイオードに光微分すべき信号光を入射することによ
って、当該信号光を入射したpin型ダイオードから信
号光を光微分した微分光を得ることを特徴とする半導体
光微分器。
1. Two heterojunction pins, each of which has an intrinsic semiconductor i-layer having a multiple quantum well structure or a superlattice structure and whose light absorption rate changes in the wavelength region near the light absorption edge by changing the reverse bias voltage. Type diodes are connected in series, a variable voltage source for applying a reverse bias voltage is connected to both ends of the series type diode, and one pin type diode is applied with a predetermined amount of bias light, while the other pin is connected.
A semiconductor optical differentiator, characterized in that, by injecting a signal light to be optically differentiated into a type diode, a differential light obtained by optically differentiating the signal light is obtained from a pin type diode into which the signal light is incident.
【請求項2】 多重量子井戸構造又は超格子構造の真性
半導体i層を有し逆バイアス電圧を変化することによっ
て光吸収端付近の波長領域で光吸収率が変化するヘテロ
接合pin型ダイオードに定電流源により所定の定電流
を供給し、上記pin型ダイオードに光微分すべき信号
光を入射することによって、当該信号光を入射したpi
n型ダイオードから信号光を光微分した微分光を得るこ
とを特徴とする半導体光微分器。
2. A heterojunction pin-type diode having an intrinsic semiconductor i-layer having a multi-quantum well structure or a superlattice structure, in which the light absorption rate changes in the wavelength region near the light absorption edge by changing the reverse bias voltage. A predetermined constant current is supplied from a current source, and the signal light to be optically differentiated is made incident on the pin type diode, so that the signal light is incident on the pi.
A semiconductor optical differentiator which obtains a differentiated light by optically differentiating a signal light from an n-type diode.
JP22004092A 1992-08-19 1992-08-19 Semiconductor optical differentiator Expired - Fee Related JP2749744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22004092A JP2749744B2 (en) 1992-08-19 1992-08-19 Semiconductor optical differentiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22004092A JP2749744B2 (en) 1992-08-19 1992-08-19 Semiconductor optical differentiator

Publications (2)

Publication Number Publication Date
JPH0667244A true JPH0667244A (en) 1994-03-11
JP2749744B2 JP2749744B2 (en) 1998-05-13

Family

ID=16744987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22004092A Expired - Fee Related JP2749744B2 (en) 1992-08-19 1992-08-19 Semiconductor optical differentiator

Country Status (1)

Country Link
JP (1) JP2749744B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832107A (en) * 1994-07-20 1996-02-02 Atr Kodenpa Tsushin Kenkyusho:Kk Optical semiconductor device having electro-absorption effect
US8180184B2 (en) * 2008-12-10 2012-05-15 Electronics And Telecommunications Research Institute Absorption modulator and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832107A (en) * 1994-07-20 1996-02-02 Atr Kodenpa Tsushin Kenkyusho:Kk Optical semiconductor device having electro-absorption effect
US8180184B2 (en) * 2008-12-10 2012-05-15 Electronics And Telecommunications Research Institute Absorption modulator and manufacturing method thereof

Also Published As

Publication number Publication date
JP2749744B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US4754132A (en) Symmetric optical device with quantum well absorption
Lentine et al. Symmetric self-electrooptic effect device: optical set-reset latch, differential logic gate, and differential modulator/detector
EP0385803B1 (en) An optical element device
US4782223A (en) Optically bistable photodiode device with voltage control circuitry to change photodiode light absorption
US5446293A (en) Resonant tunneling opto-electronic device having a plurality of window layers
US5952683A (en) Functional semiconductor element with avalanche multiplication
JPH02103021A (en) Quantum well optical device
US4967068A (en) Single-ended optical logic arrangement
EP0437740B1 (en) Integrated circuit optoelectronic toggle flip-flop
JP2749744B2 (en) Semiconductor optical differentiator
US5663572A (en) Optical functional semiconductor element
Goossen et al. Stacked-diode electroabsorption modulator
JP2584167B2 (en) Optical operation storage device
US5343032A (en) Diode-clamped optical receiver
JP3198169B2 (en) Light unstable device
Knupfer et al. Monolithic waveguide-based smart pixel operating at 120 Mb/s
JP2662154B2 (en) Semiconductor optical multilevel logic switching device
JP2720136B2 (en) Semiconductor optical function device
Knuepfer et al. Novel monolithic waveguide-based smart pixel for high-contrast, high-gain, and high-speed optical switching
JP3286034B2 (en) Semiconductor light receiving element
Woodward et al. Operating characteristics of GaAs/AlGaAs FET-SEED smart pixels
JP2002141547A (en) Semiconductor photodetector
Campbell et al. Optical AND gate
Goossen et al. Optical bandwidth considerations in pin multiple quantum-well modulators
Hilburger et al. Monolithic waveguide smart pixels for high‐contrast and high‐gain all‐optical switching

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees