JPH0667158B2 - Method for manufacturing saw-shaped casting rotor - Google Patents

Method for manufacturing saw-shaped casting rotor

Info

Publication number
JPH0667158B2
JPH0667158B2 JP61104815A JP10481586A JPH0667158B2 JP H0667158 B2 JPH0667158 B2 JP H0667158B2 JP 61104815 A JP61104815 A JP 61104815A JP 10481586 A JP10481586 A JP 10481586A JP H0667158 B2 JPH0667158 B2 JP H0667158B2
Authority
JP
Japan
Prior art keywords
rotor
rotor core
slot
cast
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61104815A
Other languages
Japanese (ja)
Other versions
JPS62262639A (en
Inventor
直人 若井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61104815A priority Critical patent/JPH0667158B2/en
Publication of JPS62262639A publication Critical patent/JPS62262639A/en
Publication of JPH0667158B2 publication Critical patent/JPH0667158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は誘導電動機のかご形回転子、特にアルミニウム
鋳込回転子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a squirrel-cage rotor of an induction motor, particularly an aluminum cast rotor.

(従来の技術) 従来のかご形回転子の製造方法の代表例として第5図に
示す製造工程図により説明する。同図において、1は回
転子抜板の組立工程、2はアルミニウム導体の溶融工
程、3はアルミダイカスト工程、4はダイカスト機から
アルミニウム鋳込回転子鉄心を取り出す工程、6aは加熱
されたアルミニウム鋳込回転子鉄心に回転軸を所定の位
置に挿入し冷却する工程、5はアルミニウム鋳込回転子
鉄心の外径表面を旋削加工し固定子とのギヤツプを作る
工程、7は完成した回転子を保管する工程で矢印は工程
の順序を示す。
(Prior Art) A typical example of a conventional method for manufacturing a squirrel cage rotor will be described with reference to manufacturing process diagrams shown in FIG. In the figure, 1 is a rotor blank assembling step, 2 is an aluminum conductor melting step, 3 is an aluminum die casting step, 4 is a step of taking out an aluminum casting rotor core from a die casting machine, and 6a is a heated aluminum casting step. Step of inserting the rotary shaft into the insert rotor core at a predetermined position and cooling, 5 is a step of turning the outer diameter surface of the aluminum cast rotor core to make a gear cup with the stator, 7 is the completed rotor In the steps of storing, arrows indicate the order of steps.

この工程による従来の製造方法は、第1工程において第
6図(a),(b)に示すように、電気鉄板に回転子軸
に嵌合させるための軸穴9及び回転子導体を収納するた
めのスロツト10をプレス機により打抜いて回転子抜板1
とし、これを所定枚数積んで回転子鉄心12とする。第2
工程としては、導体用アルミニウムを加熱し溶融する。
第3工程では、溶融されたアルミニウムをダイカスト機
へ導き、溶融アルミニウムに高圧を加え第1工程で組立
られた回転子鉄心12にダイカストし、第4工程では第7
図に示すようにスロツトバー13及び短絡環14,冷却用羽
根15を一体成形したアルミニウム鋳込かご形回転子鉄心
(以下鋳込回転子鉄心と称す)をダイカスト機から取り
出す。第5工程では鋳込回転子鉄心を回転軸が十分に焼
嵌できる温度200〜400℃に加熱した後、この鋳込回転子
鉄心の内径に回転軸を所定の位置に挿入して回転子とし
冷却する。更に第6工程では回転軸を焼嵌した回転子の
鉄心外径面12aを旋削加工して固定氏とのギヤツプを形
成する。第7工程は、完成された回転子を保管する工程
である。
In the conventional manufacturing method by this step, as shown in FIGS. 6 (a) and 6 (b) in the first step, the shaft hole 9 for fitting the rotor shaft to the electric iron plate and the rotor conductor are housed. The slot 10 for punching is punched with a press machine and the rotor punched 1
Then, a predetermined number of these are stacked to form the rotor core 12. Second
In the process, the conductor aluminum is heated and melted.
In the third step, the molten aluminum is introduced into a die casting machine, high pressure is applied to the molten aluminum to die cast the rotor core 12 assembled in the first step, and in the fourth step, the seventh step is performed.
As shown in the figure, an aluminum cast-in cage rotor core (hereinafter referred to as a cast rotor core) integrally formed with a slot bar 13, a short-circuit ring 14, and a cooling vane 15 is taken out from the die casting machine. In the fifth step, the casting rotor core is heated to a temperature of 200 to 400 ° C at which the rotating shaft can be sufficiently shrink-fitted, and then the rotating shaft is inserted into the inner diameter of the casting rotor core at a predetermined position to form a rotor. Cooling. Further, in the sixth step, the outer diameter surface 12a of the iron core of the rotor having the rotary shaft shrink-fitted is turned to form a gear cup with the fixed shaft. The seventh step is a step of storing the completed rotor.

以上の工程によつて得られる誘導電動機の回転子は、効
率やトルク特性の点から見た場合には次のような問題が
ある。即ち、積層した回転子抜板11からなる回転子鉄心
12を、回転子導体としてアルミダイカスト製造方法によ
りアルミニウムを鋳込み製作した場合、アルミニウムの
スロツトバー13と回転子鉄心12のスロツト10とは緊密な
接触状態を生ずる。このため、スロツトバー13と回転子
鉄心のスロツト10は電気的に導通状態であり、回転子の
回転に際してスロツトバー13に流れる二次電流が回転子
鉄心12を通してスロツトバー13相互間に短絡電流を生
じ、漂遊負荷損失を生じさせたり、漂遊トルクを発生さ
せたりする原因となり、その結果誘導電動機の運転時の
効率が悪化したり始動時における加速特性が悪化する。
The rotor of the induction motor obtained by the above steps has the following problems in terms of efficiency and torque characteristics. That is, a rotor core composed of laminated rotor blanks 11
When 12 is cast into aluminum as a rotor conductor by an aluminum die-casting manufacturing method, the aluminum slot bar 13 and the slot 10 of the rotor core 12 are in close contact with each other. Therefore, the slot bar 13 and the slot 10 of the rotor core are electrically connected to each other, and the secondary current flowing through the slot bar 13 during rotation of the rotor causes a short circuit current between the slot bars 13 through the rotor core 12 to cause stray. This causes load loss and stray torque, resulting in deterioration of the efficiency of the induction motor during operation and deterioration of acceleration characteristics at the time of starting.

このような理由から、現在よりすぐれた特性の誘導電動
機を得るために、第8図(a),(b)に示すように回
転子抜板11のスロツト10の内周部に水溶性無機質絶縁処
理液を付着後、乾燥固化することによつて回転子スロツ
ト絶縁被膜16を形成して、スロツトバー13と回転子鉄心
12のスロツト10とを電気的に絶縁し漂遊負荷損失や漂遊
トルクを減少する方法が実用化されている。(例えば、
東芝レビユー39巻2号P162〜P165に記載) しかし、第8図(a),(b)に示すように半閉スロツ
ト形状の回転子抜板11では、第6工程における回転子の
鉄心外径面12aを旋削加工して固定子とのギヤツプを形
成することによつて、鉄心外径面12aにおいてスロツト
バー13と回転子鉄心12の間に旋削加工によるブリツジ17
(短絡部)が生じ、スロツトバー13と回転子鉄心12が電
気的に接触することになり、上記した回転子スロツト絶
縁被膜16による方法では十分に誘導電動機の漂遊負荷損
失や漂遊トルクを減少することが出来ない。このよう
な、回転子の鉄心外径面12aを旋削加工することによつ
て生じる漂遊負荷損失や漂遊トルクを減少させる方法と
しては、回転子鉄心12に回転軸を焼嵌後、旋削加工した
回転子の鉄心外径面12a近傍をガスバーナ等によつて温
度約400℃まで加熱し、その後水冷する方法所謂ヒート
ショツク処理方法がある。第5図において説明したかご
形回転子の製造方法の代表的工程図に、ヒートショツク
工程8を加えた工程図を第9図に示す。ヒートショツク
工程8は、第7工程として回転子の鉄心外径面12aを旋
削加工し、固定子とのギヤツプを作る工程5の次工程と
して組み込まれているのが特徴である。この結果、第10
図の回転数N−トルクT特性図で示すように、第9図の
工程図に示すようにヒートショツク処理を実施したかご
形回転子を有する電動機の特性cは、第5図の工程図に
示すようにヒートショツク処理をされないかご形回転子
を有する電動機の特性bに比べ始動曲線が大幅に改善さ
れる。すなわち、ヒートショツク処理しないものでは加
速途中でトルクのたるみがあるのに対し、ヒートショツ
ク処理したものではこのたるみを低減することが出来
る。なお、第10図においてNsは同期回転数である。
For this reason, in order to obtain an induction motor with better characteristics than the current one, as shown in FIGS. 8 (a) and 8 (b), the inner peripheral portion of the slot 10 of the rotor blank 11 has a water-soluble inorganic insulating material. After the treatment liquid is adhered, it is dried and solidified to form the rotor slot insulating film 16, and the slot bar 13 and the rotor core.
A method of electrically insulating 12 slots 10 from each other and reducing stray load loss and stray torque has been put into practical use. (For example,
However, as shown in Figures 8 (a) and 8 (b), the semi-closed slot-shaped rotor blank 11 has an outer diameter of the iron core of the rotor in the sixth step. By turning the surface 12a to form a gear gap with the stator, the bridge 17 by turning is formed between the slot bar 13 and the rotor iron core 12 on the outer diameter surface 12a of the iron core.
(Short circuit part) occurs and the slot bar 13 and the rotor core 12 make electrical contact, and the above-mentioned method using the rotor slot insulating coating 16 can sufficiently reduce the stray load loss and stray torque of the induction motor. I can't. As a method of reducing the stray load loss and stray torque generated by turning the outer diameter surface 12a of the rotor iron core, the rotor core 12 is fitted with the rotating shaft, and then the turning process is performed. There is a so-called heat shock treatment method in which the vicinity of the iron core outer diameter surface 12a of the child is heated to a temperature of about 400 ° C. by a gas burner or the like and then water-cooled. FIG. 9 shows a process diagram in which the heat shock process 8 is added to the representative process diagram of the method for manufacturing the squirrel cage rotor described in FIG. The heat shock step 8 is characterized in that it is incorporated as a step subsequent to the step 5 of forming the gear with the stator by turning the iron core outer diameter surface 12a of the rotor as the seventh step. As a result, the tenth
As shown in the rotational speed N-torque T characteristic diagram in the figure, the characteristic c of the electric motor having the squirrel cage rotor subjected to the heat shock treatment as shown in the process chart in FIG. 9 is shown in the process chart in FIG. As shown, the starting curve is significantly improved as compared to the characteristic b of the electric motor having a cage rotor that is not heat-shocked. That is, in the case where the heat shock treatment is not performed, there is a slack in the torque during acceleration, whereas in the case where the heat shock treatment is performed, this slack can be reduced. In addition, in FIG. 10, Ns is a synchronous rotation speed.

(発明が解決しようとする問題点) 上記したヒートショツク処理工程を加える方法は、従来
の工程に加熱・冷却工程を追加するための余分の熱エネ
ルギーと、加熱・冷却のための時間並びにその工程に停
滞される製品の占有面積が増加するという不利がある。
しかも、ヒートショツク処理工程は、ガスバーナ等によ
りかご形回転子の外表面近傍だけを局部的に加熱するた
めに、融点の低いアルミニウムのスロツトバーが回転子
の鉄心外径面の部分で溶融し、誘導電動機の特性が悪化
する問題があつた。
(Problems to be Solved by the Invention) The method of adding the heat shock treatment step described above is the extra heat energy for adding the heating / cooling step to the conventional step, the heating / cooling time and the step thereof. There is a disadvantage that the occupied area of the product that is stagnant increases.
Moreover, in the heat shock treatment process, since only the outer surface of the squirrel cage rotor is locally heated by a gas burner or the like, the aluminum slot bar with a low melting point is melted at the outer diameter surface of the iron core of the rotor to induce the heat. There was a problem that the characteristics of the electric motor deteriorate.

本発明の目的は半閉スロツト形状の回転子抜板を有する
かご形回転子において、ヒートショツク処理を行うこと
なく極めて簡単な工程で誘導電動機の漂遊負荷損失や漂
遊トルクの増加を防ぎ、運転効率を向上し、始動時にお
ける加速特性を向上させることにある。
The object of the present invention is to prevent the stray load loss and the stray torque of the induction motor from increasing in a squirrel-cage rotor having a semi-closed slot-shaped rotor blank in an extremely simple process without performing heat shock treatment, thereby improving the operating efficiency. To improve acceleration characteristics at the time of starting.

[発明の構成] (問題点を解決するための手段) 上記目的を達成するために本発明においては、アルミニ
ウム鋳込後の鋳込回転子鉄心の外径面を旋削加工して規
程外径寸法とし、この鋳込回転子鉄心を温度200〜400℃
に加熱して回転軸を所定位置まで挿入後急冷した鋳込か
ご形回転子を提供する。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, in the present invention, the outer diameter surface of the cast rotor core after aluminum casting is turned to form a prescribed outer diameter dimension. The temperature of this cast rotor core is 200 to 400 ° C.
(EN) Provided is a squirrel-cage rotor which is heated to a certain position and the rotating shaft is inserted into a predetermined position and then rapidly cooled.

(作 用) このように構成されているので、第5工程で行う鋳込回
転子鉄心の外径面の旋削加工により発生するスロツトバ
ーと回転子鉄心とのブリツジが、次の第6工程での回転
軸を挿入後の急冷でアルミニウムと鉄の膨張係数の差に
よりスロツトバーのブリツジが回転子鉄心から剥離し、
空間の絶縁層が形成されスロツトバーから回転子鉄心へ
の電流の漏洩がなくなる。
(Working) Since it is configured in this way, the bridging between the slot bar and the rotor core generated by turning the outer diameter surface of the cast rotor core in the fifth step is Due to the difference in the expansion coefficient between aluminum and iron during the rapid cooling after inserting the rotary shaft, the bridging of the slot bar was separated from the rotor core.
An insulating layer is formed in the space to prevent current leakage from the slot bar to the rotor core.

(実施例) 以下、本発明の一実施例を図面によつて説明する。第1
図に製造工程図、第2図に回転数N−トルクT特性図を
示し、従来と同一部分は同一符号を使用して説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. First
A manufacturing process diagram is shown in the drawing, and a rotational speed N-torque T characteristic diagram is shown in FIG. 2, and the same parts as in the prior art will be described using the same reference numerals.

第1図において1は回転子抜板の組立工程、2はアルミ
ニウム導体の溶融工程、3はアルミダイカスト工程、4
はダイカスト機から鋳込回転子鉄心を取り出す工程、5
は鋳込回転子鉄心の外径面を旋削加工し固定子とのギヤ
ツプを作る工程、6は加熱された鋳込回転子鉄心に回転
軸を所定の位置に挿入し水冷する工程、7は完成した回
転子を保管する工程で矢印は工程の順序を示す。
In FIG. 1, 1 is a rotor blank assembling process, 2 is an aluminum conductor melting process, 3 is an aluminum die casting process, and 4 is a process.
Is the process of taking out the cast rotor core from the die casting machine, 5
Is a process of turning the outer diameter surface of the cast rotor core to make a gear with the stator, 6 is a process of inserting the rotary shaft into the heated cast rotor core at a predetermined position and water cooling, 7 is completed In the process of storing the rotor, the arrows indicate the order of the process.

この発明の製造方法において、第5図に示される従来例
と異なる点は次の通りである。まず第5工程において、
第7図に示すような鋳込回転子鉄心で回転軸が挿入され
ない状態の鋳込回転子鉄心の軸穴9を基準とし、回転子
鉄心12の外径面12aを旋削加工して固定子(図示しな
い)とのギヤツプを形成する。続いて第6工程におい
て、回転子鉄心12を回転軸が十分に焼嵌できる温度であ
る200〜400℃に加熱後、この回転子鉄心12を回転軸の所
定の位置に挿入して回転子とし直ちに水冷することにあ
る。
The manufacturing method of the present invention differs from the conventional example shown in FIG. 5 in the following points. First, in the fifth step,
With reference to the shaft hole 9 of the cast rotor core in a state in which the rotary shaft is not inserted in the cast rotor core as shown in FIG. 7, the outer diameter surface 12a of the rotor core 12 is turned and the stator ( (Not shown). Subsequently, in a sixth step, after heating the rotor core 12 to 200 to 400 ° C., which is a temperature at which the rotary shaft can be sufficiently shrink-fitted, the rotor core 12 is inserted into a predetermined position of the rotary shaft to form a rotor. Immediately water cooling.

前記第5工程で回転子鉄心12の外径面12aの旋削加工に
よつて生じた、回転子鉄心12の外径面12aにおけるアル
ミニウム導体のスロツトバー13と回転子鉄心12との間の
ブリツジ17による緊密な電気的接触は、第6工程におけ
る回転子を加熱後水冷する処理により解除される。即
ち、第6工程の加熱された鋳込回転子鉄心に回転軸を所
定の位置に挿入し水冷する工程を、第5工程鋳込回転子
鉄心の外径面を旋削加工工程よりも後工程とする。この
ことにより、第5工程で生じたアルミニウム導体のスロ
ツトバー13と回転子鉄心12との間の緊密な電気的接触
は、第6工程において回転子が高温に加熱されスロツト
バー13及び回転子鉄心12は何れも膨張するが、アルミニ
ウムと鉄板の膨張係数の差のため剥離され、その後直ち
に常温まで急冷されるので上記の剥離現象は更に促進さ
れる。
Due to the bridge 17 between the aluminum conductor slot bar 13 and the rotor core 12 on the outer diameter surface 12a of the rotor core 12, which is generated by turning the outer diameter surface 12a of the rotor core 12 in the fifth step. The close electrical contact is released by heating the rotor in the sixth step and then cooling it with water. That is, the step of inserting the rotary shaft into the heated casting rotor core at a predetermined position and water-cooling in the sixth step is a step subsequent to the turning step of the outer diameter surface of the casting rotor core in the fifth step. To do. As a result, the close electrical contact between the aluminum conductor slot bar 13 and the rotor core 12 produced in the fifth step is caused by the rotor being heated to a high temperature in the sixth step and the slot bar 13 and the rotor core 12 are Both of them expand, but they are peeled off due to the difference in expansion coefficient between the aluminum and the iron plate, and immediately thereafter are rapidly cooled to room temperature, so that the above peeling phenomenon is further promoted.

この結果、回転子鉄心12の外径面12aにおけるアルミ導
体のスロツトバー13と回転子鉄心12とは電気的に絶縁状
態となる。このため、回転子の回転に際してスロツトバ
ー13に流れる二次電流が回転子鉄心12を通してスロツト
バー13相互間に短絡電流を生じることがなくなり、誘導
電動機に漂遊負荷損失や漂遊負荷トルクが生じ運転時の
効率を悪化させたり始動時における加速特性が悪化する
ことはない。第2図の回転数N−トルクT特性図に示す
ように、工程による本実施例のかご形回転子を有する誘
導電動機の特性aは、従来の製造方法でヒートショツク
処理をしないかご形回転子を有する誘導電導機の特性b
に比べ始動曲線が大幅に改善される。即ち、第5図の製
造工程による特性bは、加速途中でトルクのたるみがあ
るのに対し、本実施例の製造工程による特性aではこの
たるみを低減することが出来る。しかも、本実施例の製
造方法である第1図の製造工程によるかご形回転子を有
する誘導電動機の特性aは第10図に示すように、第9図
の製造工程図によるヒートショツク処理をされた従来の
製造方法によるかご形回転子を有する誘導電動機の特性
cとほぼ同等或いはそれ以上に始動曲線を改善すること
ができた。
As a result, the rotor core 12 is electrically insulated from the aluminum conductor slot bar 13 on the outer diameter surface 12a of the rotor core 12. Therefore, the secondary current flowing through the slot bar 13 during the rotation of the rotor does not generate a short-circuit current between the slot bars 13 through the rotor iron core 12, and the stray load loss and stray load torque occur in the induction motor, resulting in the efficiency during operation. Does not deteriorate or the acceleration characteristic at the time of starting does not deteriorate. As shown in the rotational speed N-torque T characteristic diagram of FIG. 2, the characteristic a of the induction motor having the squirrel-cage rotor of the present embodiment by the process is the squirrel-cage rotor without heat shock treatment by the conventional manufacturing method. Characteristics b of induction machine with
The starting curve is greatly improved compared to. That is, the characteristic b by the manufacturing process of FIG. 5 has a slack in the torque during acceleration, whereas the characteristic a by the manufacturing process of this embodiment can reduce this slack. Moreover, as shown in FIG. 10, the characteristic a of the induction motor having the squirrel-cage rotor according to the manufacturing process of FIG. 1 which is the manufacturing method of the present embodiment is as shown in FIG. Further, the starting curve could be improved to be approximately equal to or higher than the characteristic c of the induction motor having the squirrel cage rotor by the conventional manufacturing method.

また、回転子の漂遊負荷損失の中で、回転子のアルミニ
ウム導体のスロツトバー13と回転子鉄心12との緊密な電
気的接触により生じる損失を評価する手段の1つとし
て、工程別の回転子の横流損を測定した結果の例が、第
3図と第4図である。第3図に示す本実施例である第1
図の製造工程による回転子の横流損は約5wの値になつて
いるのに対し、第4図に示す従来の製造工程による回転
子の横流損でヒートショツク工程8をしない時は約32w
と大きく、本実施例の製造工程により回転子の漂遊負荷
損失が低減している。なお第3図に示す本実施例の製造
工程による回転子の横流損は、第4図に示す従来の製造
工程による回転子の横流損でヒートショツク工程8をし
た時のものと同等であり、第1図に示す本実施例の製造
工程によつて第9図に示すヒートショツク処理された従
来の製造工程と同等程度に回転子の漂遊負荷損失を改善
できる。また、ヒートショツク工程8の追加がないので
従来の工程に加熱・冷却工程を追加するための余分の熱
エネルギーと、加熱・冷却のための時間並びにその工程
に停滞される製品の占有面積が減少する利益がある。
In addition, among the stray load losses of the rotor, one of the means for evaluating the loss caused by the close electrical contact between the rotor iron slot bar 13 of the rotor and the rotor core 12 Examples of the results of measuring the cross current loss are shown in FIGS. 3 and 4. This is the first embodiment shown in FIG.
The rotor cross current loss due to the manufacturing process shown in the figure is about 5w, while the rotor cross current loss due to the conventional manufacturing process shown in Fig. 4 is about 32w when the heat shock process 8 is not performed.
The stray load loss of the rotor is reduced by the manufacturing process of this embodiment. The cross current loss of the rotor by the manufacturing process of this embodiment shown in FIG. 3 is equivalent to that when the heat shock process 8 is performed by the cross current loss of the rotor by the conventional manufacturing process shown in FIG. By the manufacturing process of this embodiment shown in FIG. 1, the stray load loss of the rotor can be improved to the same extent as in the conventional heat-shocked manufacturing process shown in FIG. In addition, since the heat shock process 8 is not added, the extra heat energy for adding the heating / cooling process to the conventional process, the heating / cooling time, and the area occupied by the product stagnant in the process are reduced. There is a benefit to

更に、ヒートショツク工程8はガスバーナ等により回転
子の外径面12a近傍だけを局部的に加熱するために、融
点の低いアルミニウム導体のスロツトバー13が回転子の
外径面部で溶融して誘導電動機の特性が悪化する問題が
あるため、本実施例によりヒートショツク工程8をする
ことなく同等程度の特性が得られる効果がある。
Further, in the heat shock step 8, since only the vicinity of the outer diameter surface 12a of the rotor is locally heated by the gas burner or the like, the slot bar 13 of the aluminum conductor having a low melting point is melted at the outer diameter surface portion of the rotor and the induction motor Since there is a problem that the characteristics are deteriorated, the present embodiment has an effect that equivalent characteristics can be obtained without performing the heat shock step 8.

なお、第8図(a),(b)に示すように回転子抜板11
のスロツト10の円周部に回転子スロツト絶縁被膜16を形
成することによつて、上記した本発明の効果はさらに向
上する。
As shown in FIGS. 8 (a) and 8 (b), the rotor blank 11
By forming the rotor slot insulating coating 16 on the circumferential portion of the slot 10, the effects of the present invention described above are further improved.

[発明の効果] 以上述べたように本発明によれば、半閉スロツト形状の
回転子抜板を有するかご形回転子において、ヒートショ
ツク処理をすることなく極めて簡単な工程で誘導電動機
の漂遊負荷損失や漂遊トルクの増加を防ぎ、運転効率と
始動時における加速特性を向上することができる。
[Effects of the Invention] As described above, according to the present invention, in a squirrel-cage rotor having a semi-closed slot-shaped rotor blank, a stray load of an induction motor can be achieved by an extremely simple process without heat shock treatment. It is possible to prevent loss and increase in stray torque, and improve operating efficiency and acceleration characteristics at the time of starting.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による回転子の製造工程図、
第2図はその回転数−トルク特性図、第3図は第1図に
示す本発明の製造工程別横流損の変化図、第4図は従来
の製造工程別横流損の変化図、第5図は従来の第1図相
当図、第6図(a),(b)は半閉スロツトを有する回
転子抜板の正面図と断面図、第7図は従来のアルミニウ
ム鋳込かご形回転子の部分断面図、第8図(a)は従来
の半閉スロツトに絶縁被膜を形成させた正面図で第8図
(b)はその断面図、第9図は第5図に示す従来の製造
工程にヒートショツク工程を追加した製造工程図、第10
図はその回転数−トルク特性図である。 9……軸穴、10……スロツト、 11……回転子抜板、12……回転子鉄心、 12a……回転子鉄心の外径面、 13……スロツトバー。
FIG. 1 is a manufacturing process diagram of a rotor according to an embodiment of the present invention,
FIG. 2 is a rotational speed-torque characteristic diagram thereof, FIG. 3 is a change diagram of cross current loss according to the manufacturing process of the present invention shown in FIG. 1, FIG. 4 is a change diagram of conventional cross flow loss according to the manufacturing process, and FIG. The figure is equivalent to FIG. 1 of the prior art, FIGS. 6 (a) and 6 (b) are front and sectional views of a rotor blank having a half-closed slot, and FIG. 7 is a conventional cast aluminum cage rotor. FIG. 8 (a) is a front view of a conventional semi-closed slot having an insulating coating formed thereon, FIG. 8 (b) is its cross-sectional view, and FIG. 9 is a conventional manufacturing process shown in FIG. Manufacturing process diagram with heat shock process added to process, 10th
The figure is a rotational speed-torque characteristic diagram. 9 …… Shaft hole, 10 …… Slot, 11 …… Rotor blank, 12 …… Rotor core, 12a …… Outer surface of rotor core, 13 …… Slot bar.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半閉形のスロツトを有する回転子鉄心のス
ロツトに溶融金属を鋳込んで鋳込回転子鉄心とし、この
鋳込回転子鉄心の外径を旋削後200〜400℃の温度に加熱
して鋳込回転子鉄心の軸穴に回転軸を挿入後急冷したこ
とを特徴とするかご形鋳込回転子の製造方法。
Claim: What is claimed is: 1. A molten rotor is cast into a slot of a rotor core having a semi-closed slot to form a cast rotor core, and the outer diameter of the cast rotor core is turned and heated to a temperature of 200 to 400 ° C. A method for manufacturing a squirrel-cage cast rotor, characterized in that the rotary shaft is inserted into the shaft hole of the cast rotor core and then rapidly cooled.
JP61104815A 1986-05-09 1986-05-09 Method for manufacturing saw-shaped casting rotor Expired - Lifetime JPH0667158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61104815A JPH0667158B2 (en) 1986-05-09 1986-05-09 Method for manufacturing saw-shaped casting rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104815A JPH0667158B2 (en) 1986-05-09 1986-05-09 Method for manufacturing saw-shaped casting rotor

Publications (2)

Publication Number Publication Date
JPS62262639A JPS62262639A (en) 1987-11-14
JPH0667158B2 true JPH0667158B2 (en) 1994-08-24

Family

ID=14390904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104815A Expired - Lifetime JPH0667158B2 (en) 1986-05-09 1986-05-09 Method for manufacturing saw-shaped casting rotor

Country Status (1)

Country Link
JP (1) JPH0667158B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373788B2 (en) * 2015-03-31 2018-08-15 株式会社日立産機システム Rotating electrical machine and method for manufacturing the rotor
CN111082615B (en) * 2020-02-20 2023-01-17 沈阳新城石油机械制造有限公司 Machining method of linear motor rotor

Also Published As

Publication number Publication date
JPS62262639A (en) 1987-11-14

Similar Documents

Publication Publication Date Title
US3684906A (en) Castable rotor having radially venting laminations
JPH01133546A (en) Rotor structure of high-speed induction type motor
US20120217838A1 (en) Method and apparatus for producing an induction rotor
JPH10234166A (en) Rotor for induction motor
US2528154A (en) Shrunk rotor for squirrel-cage motors
JPS6260906B2 (en)
JP3075051B2 (en) Cage-type induction motor, fluid machine driven by the same and having square torque characteristics, and method of manufacturing squirrel-cage induction motor
JPH0667158B2 (en) Method for manufacturing saw-shaped casting rotor
EP3245711A1 (en) Rotary electric machine
JPH0974726A (en) Manufacture of induction motor
JP3658483B2 (en) Rotating machine rotor
JP3246240B2 (en) Manufacturing method of cage type rotating electric machine
JPH08214514A (en) Squirrel-cage induction motor, its stator casting mold, and method of manufacture
JPH01252144A (en) Rotor for squirrel-cage induction motor and manufacture thereof
JP2001224152A (en) Method of fabricating squirrel-case rotor
KR100402376B1 (en) A rotor for induction motor and the method thereof
KR100434289B1 (en) rotor of squirrel cage induction motor
JPH1098858A (en) Rotor for rotating electric machine
KR100337391B1 (en) Duct spacer and manufacturing process of the die casting rotor with separate space by radial direction using duct spacer
JPS5846847A (en) Manufacture of squirrel-cage rotor in induction motor
KR100528240B1 (en) For the manufacturing of the rotor including radial calling duct made by low melting point metal, centrifugal separation method of low melting point metal space from a rotor
JPH0736686B2 (en) Induction motor
JPH0715330Y2 (en) Induction motor
KR20020072626A (en) Manufacturing process of the die casting rotor with separate space by radial direction using duct spacer
JPH0865934A (en) Rotor of motor and its manufacture