JPH0666527A - Three-dimensional measurement method - Google Patents

Three-dimensional measurement method

Info

Publication number
JPH0666527A
JPH0666527A JP22118692A JP22118692A JPH0666527A JP H0666527 A JPH0666527 A JP H0666527A JP 22118692 A JP22118692 A JP 22118692A JP 22118692 A JP22118692 A JP 22118692A JP H0666527 A JPH0666527 A JP H0666527A
Authority
JP
Japan
Prior art keywords
measurement
period
condition
patterns
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22118692A
Other languages
Japanese (ja)
Inventor
Yutaka Iwata
裕 岩田
Yuichi Yamamoto
裕一 山本
Yoshitake Shigeyama
吉偉 重山
Kengo Nishigaki
賢吾 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP22118692A priority Critical patent/JPH0666527A/en
Publication of JPH0666527A publication Critical patent/JPH0666527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make a method for measurement highly precise and to make a range of measurement wide by a method wherein a slippage of a period of a result of measurement by a measuring means of which the period of a lattice pattern is small is corrected by a result of measurement by a measuring means of which the period is large. CONSTITUTION:A combination of an open pattern 7 with a close pattern 8 of a liquid crystal shutter is made to be of 2 open patterns and two close patterns, for instance. An offset is given to the focus of projection of a measurement reference surface 1 by moving an axial stage 4, patterns of which the distribution of lightness is sinusoidal are projected 3, and the height of an object surface is measured 6 with these measures set as a condition A. Next, the combination of the liquid crystal shutter is made to be of 8 open patterns with 8 close patterns, the lattice patterns of which the period is large are projected 3 by moving the stage 4, and the height of the object surface is measured 3 with these measures set as a condition B. Although the precision of this measurement is lower than that under the condition A, the period of the lattice patterns is four times as large as that under the condition A, the allowance of displacement of the height of the object is four times as wide as the latter and thus accurate correction of the period can be executed. Although the result of measurement under the condition A is highly precise, a measuring point at which the correction of the period fails exists, and therefore the correction is executed by using the result of measurement under the condition B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3次元計測方法で、特に
縞操作を用いた格子パターン投影法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional measuring method, and more particularly to a grid pattern projection method using a stripe operation.

【0002】[0002]

【従来の技術】物体の高さ変位及び、3次元形状を非接
触で計測する手法の1つとして、従来より縞操作を用い
た格子パターン投影法が考えられている。
2. Description of the Related Art As one of the methods for measuring the height displacement of an object and a three-dimensional shape in a non-contact manner, a grid pattern projection method using a stripe operation has been conventionally considered.

【0003】この方法は照度分布が正弦波状態の格子パ
ターン(以後格子パターンと記す)を物体に投影し、こ
れを1/4周期ずつ4段階の縞操作を行った時の高さ計
測点の明度値を投影方法とは別の角度から測定し、各明
度値より投影された格子パターンの位相値を計算する。
計測点の高さ、変位に応じ格子パターンの位相が変調す
るため、この位相の変調量を計算し、光学装置の幾何関
係式に代入することにより、物体の高さ変位量を計測
し、3次元形状を求める方法である。
In this method, a grid pattern (hereinafter referred to as a grid pattern) whose illuminance distribution is a sine wave is projected on an object, and this is measured at a height measurement point when a four-step stripe operation is performed for each ¼ cycle. The brightness value is measured from an angle different from the projection method, and the phase value of the projected grid pattern is calculated from each brightness value.
Since the phase of the grating pattern is modulated according to the height and displacement of the measurement point, the modulation amount of this phase is calculated and substituted into the geometrical relational expression of the optical device to measure the height displacement amount of the object. This is a method for obtaining a three-dimensional shape.

【0004】ここで位相値は一πから十πまでの値をと
るので、物体の高さ変位による格子パターンの位相変調
量がπを越える場合には、周期ずれをおこし、正確に位
相変調量を求めることができないので、隣合う計測点の
位相の差の絶対値が2πの80%以上変化した場合、格
子パターンの変調量が周期ずれをおこしたと判断して補
正を行う方法が行われている。
Here, since the phase value takes a value from 1π to 10π, when the phase modulation amount of the grating pattern due to the height displacement of the object exceeds π, a period shift occurs and the phase modulation amount is accurate. Therefore, when the absolute value of the phase difference between the adjacent measurement points changes by 80% or more of 2π, the method of performing the correction by determining that the modulation amount of the grating pattern has a period shift is performed. There is.

【0005】ここで図3の幾何関係図において、任意の
計測点xにおける物体の高さ変位量を用い計測する方法
の一例を次に述べる。
An example of a method of measuring the height displacement amount of an object at an arbitrary measurement point x in the geometrical relationship diagram of FIG. 3 will be described below.

【0006】縞操作を用いた格子パターン投影法では、
投影された格子パターンの位相φは φ=arc tan ((I3−I1)/(I0−I2))・・・・・(式1) より計算できる。この時、I0,I1,I2,I3は各
々投影格子パターンの位相を0,π/2,π,3π/2
だけシフトした時の画像の明度値である。
In the grid pattern projection method using the stripe operation,
The phase φ of the projected grating pattern can be calculated by φ = arc tan ((I3-I1) / (I0-I2)) (Equation 1). At this time, I0, I1, I2, and I3 respectively have the phases of the projection grating pattern of 0, π / 2, π, and 3π / 2.
It is the brightness value of the image when it is shifted by only.

【0007】格子パターンのシフトには、図4に示した
ような液晶シャッターを複数本組み合わせ、開/閉のパ
ターンを生成し、組み合わせを移動することにより、シ
フトを行う。また、液晶シャッターの組み合わせ本数を
変更することにより、格子パターンの周期を変更するこ
とができる。このときの組み合わせによる投影時の格子
パターンの周期をTとする。
To shift the grid pattern, a plurality of liquid crystal shutters as shown in FIG. 4 are combined to generate an open / closed pattern, and the combination is moved to perform the shift. Further, the period of the lattice pattern can be changed by changing the number of combinations of liquid crystal shutters. The period of the grid pattern at the time of projection by the combination at this time is T.

【0008】まず、計算基準面における投影格子パター
ンの位相量ФbをX座標上の全計測点について、式1を
用いて、あらかじめ求めておく。
First, the phase amount Φb of the projected grid pattern on the calculation reference plane is obtained in advance using Equation 1 for all measurement points on the X coordinate.

【0009】計測物体による計測点xにおける格子パタ
ーンの位相の変調量は、計測点xにおける格子パターン
の位相値Фxを式1により求めれば、 ΔФx=Фx−Фbx ・・・・・・・・(式2) であり、これによる格子パターンの変形量は、 Δx=(T/2π)×ΔФx ・・・・・(式3) となり、物体のx点における高さ変位は、 Z=Δx×tanα ・・・・・・・・・・ (式4) により求める事が出来る。
The phase modulation amount of the grating pattern at the measuring point x by the measuring object can be calculated by calculating the phase value Φx of the grating pattern at the measuring point x by the equation 1, ΔΦx = Фx−Фbx. Equation 2) and the amount of deformation of the lattice pattern due to this is Δx = (T / 2π) × ΔФx (Equation 3), and the height displacement at the point x of the object is Z = Δx × tan α・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (Equation 4) can be used to obtain the value.

【0010】以上で任意の計測点における物体の高さが
計測出来る。
As described above, the height of the object at any measurement point can be measured.

【0011】[0011]

【発明が解決しようとする課題】従来の方法では図5に
おいて隣合う計測点x,x’における位相の変調量の差
Δφxx’が、例えば+方向にπの41%変化している
として、このときxにおける位相値Δφxが十πの60
%とすると、x’における位相値Δφx’は+π越えて
しまい、負の位相値になる。このとき、隣合う計測点
x,x’において計測される位相の変調量の差Δφx
x’は一方向に2πの79%となり、従来の技術では、
2πの80%未満になるので周期補正はされず、物体の
高さ変位の方向はプラス方向なのに、計測値はマイナス
方向の高さ変位と計測される。従って、従来の隣合う計
測点の位相の差の絶対値が2πの80%以上変化した場
合、格子パターンの1周期を越えたと判断して補正を行
う方法では、隣合う計測点の位相の差の絶対値が2πの
20%を越えた場合、計測が正しく行われないという問
題があった。又、80%という数値は理論上50%迄変
化できるが、この場合であっても、隣合う計測点の位相
の差の絶対値は2πの50%までしか補正できないの
で、物体の計測可能段差が狭いという問題点があった。
According to the conventional method, it is assumed that the difference Δφxx ′ in the amount of phase modulation between adjacent measurement points x and x ′ in FIG. 5 changes by 41% of π in the + direction, for example. At this time, the phase value Δφx at x is 60, which is 10π.
%, The phase value Δφx ′ at x ′ exceeds + π, resulting in a negative phase value. At this time, the difference Δφx in the modulation amount of the phase measured at the adjacent measurement points x and x ′
x'is 79% of 2π in one direction, and in the conventional technology,
Since it is less than 80% of 2π, no period correction is performed, and although the height displacement direction of the object is the positive direction, the measured value is measured as the negative height displacement. Therefore, when the absolute value of the phase difference between adjacent measurement points changes by 80% or more of 2π in the conventional method, it is determined that the period exceeds one period of the lattice pattern and the correction is performed. When the absolute value of exceeds 20% of 2π, there is a problem that the measurement is not performed correctly. Also, the value of 80% can theoretically change to 50%, but even in this case, the absolute value of the phase difference between the adjacent measurement points can be corrected only up to 50% of 2π, and therefore the measurable step difference of the object can be obtained. There was a problem that was narrow.

【0012】また、計測可能段差を広げるためには、格
子パターンの周期を大きくすると計測精度が低下すると
いう関係があるため、格子パターンの周期を変更できな
いという問題点があった。
Further, in order to widen the measurable step, there is a problem that the period of the lattice pattern cannot be changed because the measurement accuracy is lowered if the period of the lattice pattern is increased.

【0013】本発明は上記の問題点を解決し、縞操作を
用いた格子パターン投影法による3次元計測法におい
て、3次元計測方法の高精度化かつ計測範囲の広範囲化
を目的とする。
An object of the present invention is to solve the above problems and to improve the accuracy of the three-dimensional measuring method and widen the measuring range in the three-dimensional measuring method by the grid pattern projection method using the stripe operation.

【0014】[0014]

【問題を解決する為の手段】縞操作を用いた格子パター
ン投影法による物体の高さ及び3次元計測方法におい
て、格子パターンの周期の違う2つの計測手段を用い、
周期の小さい計測手段で計測した結果の周期ずれを周期
の大きな計測手段で計測した結果を用いて補正すること
を特徴とする。
[Means for Solving the Problem] In an object height and three-dimensional measuring method by a grid pattern projection method using a stripe operation, two measuring means having different grid pattern periods are used.
It is characterized in that the period deviation of the result measured by the measuring unit having a small period is corrected by using the result measured by the measuring unit having a large period.

【0015】[0015]

【作用】格子パターンの周期の違う2つの計測手段を用
いることにより、計測対象物体の高さ、変位が大きな場
合であっても、格子パターンの位相変調量を正確に求め
ることができるので、計測可能範囲が広範囲で、かつ高
精度な3次元形状、高さ計測が可能となる。
By using two measuring means having different grating pattern periods, the phase modulation amount of the grating pattern can be accurately determined even when the height and displacement of the object to be measured are large. A wide range of possible and highly accurate three-dimensional shape and height can be measured.

【0016】[0016]

【実施例】図1に本発明による計測方法フローチャート
図を示す。図2は本発明を実施するための計測機器の構
成を示したもので、本発明の特徴である格子パターンの
周期を補正し、広範囲に高さを計測する方法について説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a flow chart of a measuring method according to the present invention. FIG. 2 shows the configuration of a measuring device for carrying out the present invention. A method of correcting the period of the lattice pattern and measuring the height over a wide range, which is a feature of the present invention, will be described.

【0017】図4に示した液晶シャッターの組み合わせ
を例えば2本開/2本閉とし、開/閉パターンを生成す
る。このときステージ4を移動し、投影焦点にオフセッ
トを加える事により、明度分布が正弦波状のパターンを
投影する。
The combination of the liquid crystal shutters shown in FIG. 4 is, for example, two open / two closed to generate an open / close pattern. At this time, the stage 4 is moved and an offset is applied to the projection focus to project a sine wave pattern of lightness distribution.

【0018】この投影条件を条件Aとし、まずこの条件
で縞操作を用いた格子パターン投影法を用い、物体面の
高さを計測し計測結果を記憶しておく。格子パターンの
周期が小さいので、この計測結果は、高い計測精度が得
られるが、隣合う計測点で物体の高さ変位が大きいと周
期補正に失敗する場合がある。このとき隣合う計測点で
の物体の高さ変位の許容量は、位相の変調量に換算して
最大π以内であるので式3,式4を用いると、物体の高
さ許容量は、 Zmax=(T/2π)×π×tanα ・・・・・(式5) 従って Zmax=T/2・tanα ・・・・・・・・・・ (式6) となる。格子パターンの周期はTなので、Tが小さい条
件では物体の高さ、変位の許容量は小さくなる。
With this projection condition as condition A, the height of the object plane is measured using the grid pattern projection method using stripe operation under this condition, and the measurement result is stored. Since the period of the grid pattern is small, this measurement result provides high measurement accuracy, but the period correction may fail if the height displacement of the object is large at the adjacent measurement points. At this time, the allowable amount of height displacement of the object at the adjacent measurement points is within a maximum of π in terms of the amount of phase modulation. Therefore, using Equations 3 and 4, the allowable height of the object is Zmax = (T / 2π) × π × tanα (Equation 5) Therefore, Zmax = T / 2 · tanα (Equation 6) Since the period of the lattice pattern is T, the height of the object and the allowable amount of displacement are small when T is small.

【0019】次に液晶シャッタの組み合わせを例えば8
本開/8本閉とし、ステージ4を移動し、明度分布が正
弦波状の周期の大きなパターンを生成する。
Next, a combination of liquid crystal shutters, for example, 8
Fully open / 8 closed, the stage 4 is moved to generate a sinusoidal pattern with a large brightness distribution.

【0020】この投影条件を条件Bとし、同様に物体面
の高さを計測する。この計測結果は、計測精度は条件A
の計測結果と比較して低くなるが、格子パターンの周期
が広く、式6のTが条件Aと比較して4倍になるので、
物体の高さ変位の許容量は4倍と広範囲となり、正確な
周期補正が行なえるので、計測精度の範囲内で正確な計
測ができる。このときの組み合わせ本数は、例では8本
開/8本閉であるが、物体の高さ変位量に応じて設定す
れば良い。
With this projection condition as condition B, the height of the object plane is similarly measured. This measurement result shows that the measurement accuracy is condition A.
Although it is lower than the measurement result of, the period of the lattice pattern is wide, and T of Expression 6 is four times as large as that of the condition A.
The allowable amount of height displacement of the object is as wide as four times, and accurate period correction can be performed, so that accurate measurement can be performed within the range of measurement accuracy. The number of combinations at this time is 8 open / 8 closed in the example, but may be set according to the height displacement amount of the object.

【0021】条件Aの計測結果には周期補正に失敗した
計測点もあるので、計測結果を、次に計測した条件Bの
計測結果を用い次の方法で補正する。
Since the measurement result of the condition A includes measurement points at which the cycle correction has failed, the measurement result is corrected by the following method using the measurement result of the condition B measured next.

【0022】計測点の物体の高さ変位を、条件Bの計測
結果より取り出し、条件Aで計測した結果と比較する。
このとき条件Bと条件Aとの差をΔZbaとし、ΔZb
aが条件AにおけるZmaxより大きければ、条件Aに
おける計測結果には、条件Bとの差分だけの周期ずれが
発生しているので誤判定した周波数kを式7で計算す
る。
The height displacement of the object at the measurement point is extracted from the measurement result of condition B and compared with the result of measurement under condition A.
At this time, the difference between condition B and condition A is ΔZba, and ΔZb
If a is larger than Zmax under the condition A, the measurement result under the condition A has a cycle shift corresponding to the difference from the condition B, and therefore the frequency k which is erroneously determined is calculated by the formula 7.

【0023】 k=ΔZba/(Zmax×2) ・・・・・(式7) このとき周波数kは整数値として端数は計測誤差なので
切り捨てる。条件Aにおける計測結果zaをkを用い式
8で補正し、最終的な物体の高さZを求める。
K = ΔZba / (Zmax × 2) (Equation 7) At this time, since the frequency k is an integer value and the fraction is a measurement error, it is discarded. The measurement result za under the condition A is corrected by the equation 8 using k, and the final height Z of the object is obtained.

【0024】 z=za+k×Zmax ・・・・・・・・・(式8) 以上の方法で正確な物体の高さ、3次元形状の計測が可
能となる。光学系の配置を、例では計測基準面1に対し
て斜めから投影し、垂直方向から撮像する構成で示した
が、この例に限らず、別の構成でも良い。
Z = za + k × Zmax (Equation 8) The height of the object and the three-dimensional shape can be accurately measured by the above method. In the example, the arrangement of the optical system is shown as a configuration in which it is projected obliquely to the measurement reference plane 1 and is imaged in the vertical direction, but the configuration is not limited to this example and another configuration may be used.

【0025】明度分布が正弦状の格子状のパターンを生
成する手段に、投影装置の位置を移動して投影焦点位置
を移動したが、投影装置内のレンズ等の光学系を用いて
投影焦点を移動しても良い。
The projection focus position was moved by moving the position of the projection device to the means for generating a grid pattern having a sine-shaped lightness distribution, but the projection focus was changed by using an optical system such as a lens in the projection device. You may move.

【0026】格子パターンの周期の違う2種類の投影手
段を、同一の投影装置を用い構成したが、格子パターン
の周期の大きな投影手段を、周期の小さい投影手段とは
別の角度から投影する2つの投影装置により構成しても
良い。又、格子パターンの実体格子に液晶シャッターを
用いた例で説明したが、正確な格子パターンの生成とシ
フトができれば、干渉縞や、格子状のパターンを金属膜
等で形成したガラス板を用いても良い。
The two types of projection means having different periods of the grid pattern are constructed by using the same projection device, but the projection means having the long cycle of the grid pattern is projected from a different angle from the projection means having the short cycle. It may be configured by one projection device. In addition, although an example of using a liquid crystal shutter as the actual lattice of the lattice pattern has been described, if an accurate lattice pattern can be generated and shifted, an interference fringe or a glass plate having a lattice-like pattern formed of a metal film or the like is used. Is also good.

【0027】[0027]

【発明の効果】以上のように本発明によれば、縞操作を
用いた格子パターン投影法において、計測範囲が広範囲
でかつ高精度な三次元形状の計測が可能となる。
As described above, according to the present invention, in the grid pattern projection method using the stripe operation, it is possible to measure a three-dimensional shape with a wide measurement range and high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の計測フローチャートを示す図である。FIG. 1 is a diagram showing a measurement flowchart of the present invention.

【図2】本発明の実施例の計測機器の構成を示した図で
ある。
FIG. 2 is a diagram showing a configuration of a measuring device according to an embodiment of the present invention.

【図3】本発明の実施例の光学系の幾何関係を示した図
である。
FIG. 3 is a diagram showing a geometrical relationship of an optical system according to an example of the present invention.

【図4】液晶シャッターの例を示す図である。FIG. 4 is a diagram showing an example of a liquid crystal shutter.

【図5】従来における問題点を説明するための図であ
る。
FIG. 5 is a diagram for explaining problems in the conventional art.

【符号の説明】[Explanation of symbols]

1 計測基準面 2 撮像カメラ 3 液晶シャッターを用いた格子パターン投影装置 4 軸ステージ 5 画像メモリ 6 計測制御装置 1 Measurement Reference Surface 2 Imaging Camera 3 Lattice Pattern Projector Using Liquid Crystal Shutter 4 Axis Stage 5 Image Memory 6 Measurement Control Device

フロントページの続き (72)発明者 西垣 賢吾 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内Front page continuation (72) Inventor Kengo Nishigaki 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 縞操作を用いた格子パターン投影法によ
る物体の高さ及び3次元計測方法において、格子パター
ンの周期の違う2つの計測手段を用い、周期の小さな計
測手段で計測した結果の周期ずれを、周期の大きな計測
手段で計測した結果を用いて補正することを特徴とする
高精度かつ、計測範囲の広範囲な3次元計測方法。
1. A height of an object and a three-dimensional measuring method by a grid pattern projection method using a stripe operation, wherein two measuring means having different grid pattern cycles are used and the cycle of the result measured by the measuring means having a small cycle. A three-dimensional measuring method with high accuracy and a wide measuring range, characterized in that the deviation is corrected by using a result measured by a measuring means having a large cycle.
JP22118692A 1992-08-20 1992-08-20 Three-dimensional measurement method Pending JPH0666527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22118692A JPH0666527A (en) 1992-08-20 1992-08-20 Three-dimensional measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22118692A JPH0666527A (en) 1992-08-20 1992-08-20 Three-dimensional measurement method

Publications (1)

Publication Number Publication Date
JPH0666527A true JPH0666527A (en) 1994-03-08

Family

ID=16762830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22118692A Pending JPH0666527A (en) 1992-08-20 1992-08-20 Three-dimensional measurement method

Country Status (1)

Country Link
JP (1) JPH0666527A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010679A1 (en) * 2000-07-28 2002-02-07 Yamatake Corporation Surface shape measuring system
JP2005201896A (en) * 2000-04-28 2005-07-28 Orametrix Inc Technique and system generating three-dimensional objects by scanning their surface
JP2007085862A (en) * 2005-09-21 2007-04-05 Omron Corp Patterned light irradiation apparatus, three-dimensional shape measuring apparatus, and patterned light irradiation method
JP2008145209A (en) * 2006-12-08 2008-06-26 Nec Engineering Ltd Device for measuring three-dimensional shape, and method for measuring three-dimensional shape
JP2008281491A (en) * 2007-05-11 2008-11-20 Wakayama Univ Shape measurement method and shape measuring device using a number of reference planes
JP2009075104A (en) * 2007-09-18 2009-04-09 Ncb Networks Co Ltd Apparatus and method for phase transition projection three-dimensional shape measurement with moire fringe generator
JP2009204373A (en) * 2008-02-27 2009-09-10 Hikari:Kk Light-projecting device and three-dimensional shaped measuring apparatus
JP2010151842A (en) * 2010-03-26 2010-07-08 Nec Engineering Ltd Three-dimensional shape measuring instrument and three-dimensional shape measurement method
JP2010169433A (en) * 2009-01-20 2010-08-05 Ckd Corp Three-dimensional measuring device
JP2010175554A (en) * 2010-03-26 2010-08-12 Nec Engineering Ltd Device and method for measuring three-dimensional shape
JP2010230523A (en) * 2009-03-27 2010-10-14 Toppan Printing Co Ltd Phase connection method and device therefor
JP2012053015A (en) * 2010-09-03 2012-03-15 Saki Corp:Kk Visual inspection device and visual inspection method
JP2012211873A (en) * 2011-03-31 2012-11-01 Panasonic Corp Three-dimensional measurement apparatus
JP2014025782A (en) * 2012-07-26 2014-02-06 Toyota Central R&D Labs Inc Shape measuring device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201896A (en) * 2000-04-28 2005-07-28 Orametrix Inc Technique and system generating three-dimensional objects by scanning their surface
US6906809B2 (en) 2000-07-28 2005-06-14 Yamatake Corporation Surface shape measuring system
WO2002010679A1 (en) * 2000-07-28 2002-02-07 Yamatake Corporation Surface shape measuring system
JP4701948B2 (en) * 2005-09-21 2011-06-15 オムロン株式会社 Pattern light irradiation device, three-dimensional shape measurement device, and pattern light irradiation method
JP2007085862A (en) * 2005-09-21 2007-04-05 Omron Corp Patterned light irradiation apparatus, three-dimensional shape measuring apparatus, and patterned light irradiation method
JP2008145209A (en) * 2006-12-08 2008-06-26 Nec Engineering Ltd Device for measuring three-dimensional shape, and method for measuring three-dimensional shape
JP2008281491A (en) * 2007-05-11 2008-11-20 Wakayama Univ Shape measurement method and shape measuring device using a number of reference planes
JP2009075104A (en) * 2007-09-18 2009-04-09 Ncb Networks Co Ltd Apparatus and method for phase transition projection three-dimensional shape measurement with moire fringe generator
JP2009204373A (en) * 2008-02-27 2009-09-10 Hikari:Kk Light-projecting device and three-dimensional shaped measuring apparatus
JP2010169433A (en) * 2009-01-20 2010-08-05 Ckd Corp Three-dimensional measuring device
US8224070B2 (en) 2009-01-20 2012-07-17 Ckd Corporation Three-dimensional measuring device
JP2010230523A (en) * 2009-03-27 2010-10-14 Toppan Printing Co Ltd Phase connection method and device therefor
JP2010151842A (en) * 2010-03-26 2010-07-08 Nec Engineering Ltd Three-dimensional shape measuring instrument and three-dimensional shape measurement method
JP2010175554A (en) * 2010-03-26 2010-08-12 Nec Engineering Ltd Device and method for measuring three-dimensional shape
JP2012053015A (en) * 2010-09-03 2012-03-15 Saki Corp:Kk Visual inspection device and visual inspection method
JP2012211873A (en) * 2011-03-31 2012-11-01 Panasonic Corp Three-dimensional measurement apparatus
JP2014025782A (en) * 2012-07-26 2014-02-06 Toyota Central R&D Labs Inc Shape measuring device

Similar Documents

Publication Publication Date Title
WO2020220707A1 (en) Image point source tracing-based error correction method for phase measurement of object grating image using phase shifting method
Guo et al. Least-squares calibration method for fringe projection profilometry
JP5123522B2 (en) 3D measurement method and 3D shape measurement apparatus using the same
JPH0666527A (en) Three-dimensional measurement method
US7480061B2 (en) 3D shape measurement apparatus and method using stereo moiré technique
JP5016520B2 (en) Three-dimensional shape measuring method and apparatus
WO2018040017A1 (en) Method and system for correcting distortion of projector lens based on adaptive fringes
KR20180003528A (en) Updating calibration of a three-dimensional measurement system
EP3594618B1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, and program
Wiora High-resolution measurement of phase-shift amplitude and numeric object phase calculation
CN112888913B (en) Three-dimensional sensor with column-to-column channels
CN110692084B (en) Apparatus and machine-readable storage medium for deriving topology information of a scene
Xiaoling et al. Calibration of a fringe projection profilometry system using virtual phase calibrating model planes
CN112097670B (en) Method and equipment for measuring three-dimensional surface shape of high-reflectivity object
JP4516949B2 (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
CN112504165A (en) Composite stereo phase unfolding method based on bilateral filtering optimization
Li et al. An improved 2+ 1 phase-shifting algorithm
JP4797109B2 (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
KR102218215B1 (en) Mutual reflection detection device, mutual reflection detection method and program
CN110375673A (en) A kind of big depth of field two-value defocus method for three-dimensional measurement based on multifocal optical projection system
KR101001894B1 (en) Apparatus and method for 3-D profilometry using color projection moire technique
JP2010175554A (en) Device and method for measuring three-dimensional shape
JPH04278406A (en) Three-dimensional measuring method
JP2006084286A (en) Three-dimensional measuring method and its measuring device
CN110132173A (en) High-precision three-dimensional structured light reconstruction method based on area modulation phase shift template