JPH0666481B2 - Method for manufacturing superconducting thin film - Google Patents
Method for manufacturing superconducting thin filmInfo
- Publication number
- JPH0666481B2 JPH0666481B2 JP61050460A JP5046086A JPH0666481B2 JP H0666481 B2 JPH0666481 B2 JP H0666481B2 JP 61050460 A JP61050460 A JP 61050460A JP 5046086 A JP5046086 A JP 5046086A JP H0666481 B2 JPH0666481 B2 JP H0666481B2
- Authority
- JP
- Japan
- Prior art keywords
- beryllium
- thin film
- superconducting
- substrate
- based alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 144
- 238000004519 manufacturing process Methods 0.000 title claims description 42
- 238000000034 method Methods 0.000 title description 33
- 229910052790 beryllium Inorganic materials 0.000 claims description 163
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 162
- 239000000758 substrate Substances 0.000 claims description 64
- 229910045601 alloy Inorganic materials 0.000 claims description 53
- 239000000956 alloy Substances 0.000 claims description 53
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 23
- 238000010884 ion-beam technique Methods 0.000 claims description 22
- 230000007935 neutral effect Effects 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 229940058494 beryllium Drugs 0.000 description 152
- 230000007704 transition Effects 0.000 description 35
- 239000007789 gas Substances 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 21
- 238000007740 vapor deposition Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- 238000001771 vacuum deposition Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 10
- 239000001307 helium Substances 0.000 description 8
- 229910052734 helium Inorganic materials 0.000 description 8
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 8
- 229910000952 Be alloy Inorganic materials 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000001704 evaporation Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 150000001572 beryllium Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241000238366 Cephalopoda Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 <発明の属する技術分野> この発明は超伝導薄膜の製造方法の改良に関し、更に詳
しくは基板を極低温度に維持することなしに非晶質化お
よび/又は微結晶化したベリリウム又はベリリウム基合
金超伝導薄膜の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to an improvement in a method for producing a superconducting thin film, and more specifically, to amorphization and / or microcrystallization without maintaining the substrate at an extremely low temperature. And a method for producing a beryllium-based alloy superconducting thin film.
<発明の技術的背景> 超伝導薄膜は高速コンピュータ用ジョセフソン素子の超
伝導電極材料として、あるいは超伝導量子干渉素子(い
わゆるSQUID、すなわちSuper-Conducting Quantum
Inter-ference Device)などの薄膜素子材料として注
目されている。<Technical Background of the Invention> A superconducting thin film is used as a superconducting electrode material for a Josephson device for high-speed computers, or as a superconducting quantum interference device (so-called SQUID, that is, Super-Conducting Quantum).
It is drawing attention as a material for thin film devices such as inter-ference devices.
超伝導薄膜素子材料として、従来から鉛超伝導薄膜素子
材料、ニオブ超伝導薄膜素子材料、ベリリウム超伝導薄
膜素子材料が知られている。しかし鉛超伝導薄膜素子材
料は酸化されやすく、経時的な変化が大きい上、強度も
低い。また、ニオブ超伝導薄膜素子材料は酸化されやす
い上、酸化が内部まで進む性質がある。さらに、特性の
経時的変化が大きい欠点があった。Conventionally known lead superconducting thin film element materials, niobium superconducting thin film element materials, and beryllium superconducting thin film element materials are known as superconducting thin film element materials. However, the lead superconducting thin film element material is easily oxidized, its change over time is large, and its strength is low. In addition, the niobium superconducting thin film element material is easily oxidized and has the property that the oxidation proceeds to the inside. In addition, there is a drawback that the characteristics change with time.
これに反しベリリウム超伝導薄膜素子材料は、上述した
鉛超伝導薄膜素子材料やニオブ超伝導薄膜素子材料と比
べると酸化しにくく、経時的変化も少く、かつ誘電率が
ニオブの1/5にすぎないから高速スイッチング動作が可
能であり、超伝導薄膜素子として広く利用できる可能性
をもっている。Contrary to this, beryllium superconducting thin film element materials are less likely to be oxidized than the above-mentioned lead superconducting thin film element materials and niobium superconducting thin film element materials, have little change over time, and have a dielectric constant of only 1/5 that of niobium. Since it does not have a high speed switching operation, it has the potential of being widely used as a superconducting thin film element.
ところで、ベリリウム薄膜形成法として、ベリリウムを
不活性元素のイオンビーム又は中性粒子線でスパッタ
し、対向配置した基板面にベリリウム薄膜を被着させた
り、化学気相堆積法(いわゆるCVD法)で基板表面に
ベリリウム薄膜を堆積させる方法も考えられるが、薄膜
形成速度が遅く、経済性、量産性の点で不具合な点があ
る。このような理由により、ベリリウム超伝導薄膜を作
製するときは、従来は低温真空蒸着法を採用していた。By the way, as a method for forming a beryllium thin film, beryllium is sputtered with an ion beam of an inactive element or a neutral particle beam, and a beryllium thin film is deposited on the surface of a substrate which is arranged oppositely, or by a chemical vapor deposition method (so-called CVD method). A method of depositing a beryllium thin film on the surface of the substrate is also conceivable, but there is a problem in that the thin film formation rate is slow and the economy and mass productivity are poor. For this reason, the low-temperature vacuum deposition method has been conventionally used when producing a beryllium superconducting thin film.
従来の低温真空蒸着法は、米国物理学協会発行の学術雑
誌「フィジカル・レビュ・レターズ誌(Physical Revie
w Letters)」第19巻、第3号(1967年)pp.121〜125の
記載されているように、低温真空蒸着装置を用い、真空
槽1内に液体窒素2で熱シールドされた液体ヘリウム3
により、被着用基板4を液体ヘリウム温度に冷却すると
共に、基板4の下部に配置した加熱ヒータ(フィラメン
ト)5で蒸着物質6を加熱蒸着させ、熱シールドシヤッ
タ7および8の開口部を通し基板4下面に蒸着物質6の
薄膜を形成させておった(第3図および第4図参
照。)。The conventional low-temperature vacuum evaporation method is based on the physical review published by the American Physical Society, “Physical Revie Letters”.
w Letters) ", Vol. 19, No. 3 (1967) pp.121-125, liquid helium heat-shielded with liquid nitrogen 2 in a vacuum chamber 1 using a low-temperature vacuum deposition apparatus. Three
The substrate to be attached 4 is cooled to the temperature of liquid helium, and the vapor deposition material 6 is heated and vaporized by the heater (filament) 5 arranged below the substrate 4, and the substrate is passed through the openings of the heat shield shutters 7 and 8. A thin film of the vapor deposition material 6 was formed on the lower surface of 4 (see FIGS. 3 and 4).
そして、このような低温真空蒸着法で作製したベリリウ
ム超伝導薄膜の性質について、西ドイツ物理学会発行の
学術雑誌「ツアイトシュリフト・デア・フィジーク(独
文雑誌名:Zeitschrift der Physik)」第20巻(1975
年)、pp.13〜20において、ジー・ジー・グランクビィ
スト(G.G.Grangvist)氏他による報告「蒸着急冷した
ベリリウムおよびベリリウム基合金(原文題目:Superc
onduc-tivity of Vapour Quenched Beryllium and Bery
llium-based Alloys)」において、その超伝導転移温度
は8゜K−10゜Kであること。また、その超伝導特性は、極
低温(−270℃)に保持された基板にベリリウムを蒸着
させるために、被着したベリリウム薄膜が結晶成長でき
ず、非晶質化ないし微結晶化した状態になるためと説明
している。Regarding the properties of beryllium superconducting thin films prepared by such a low temperature vacuum deposition method, the 20th volume of the academic journal "Zeitschrift der Physik" published by the West German Physical Society (German name: Zeitschrift der Physik) 1975
, G. Grangvist et al., "Deposition-quenched beryllium and beryllium-based alloys (Original title: Superc
onduc-tivity of Vapour Quenched Beryllium and Bery
llium-based Alloys) ”, its superconducting transition temperature is 8 ° K-10 ° K. In addition, its superconducting property is that the deposited beryllium thin film cannot be crystal-grown because beryllium is vapor-deposited on the substrate kept at an extremely low temperature (-270 ° C), and the beryllium thin film is in an amorphous or microcrystallized state. It explains that it will be.
<発明が解決しようとする問題点> しかし、上述した低温真空蒸着法で作製したベリリウム
超伝導薄膜は、常温になるとベリリウム薄膜が六方晶系
(hexagonal)に変り超伝導特性が失われる欠点があっ
た。<Problems to be Solved by the Invention> However, the beryllium superconducting thin film prepared by the above-described low temperature vacuum deposition method has a drawback that the beryllium thin film changes to a hexagonal system at room temperature and loses its superconducting properties. It was
さらに、製造する場合に液体窒素および液体ヘリウムな
どで基板を冷却するための低温真空蒸着装置を使用しな
ければならず、製造コストおよび製造方法が高価で複雑
になる欠点があった。Further, when manufacturing, a low temperature vacuum deposition apparatus for cooling the substrate with liquid nitrogen, liquid helium or the like has to be used, which is disadvantageous in that the manufacturing cost and the manufacturing method are expensive and complicated.
この発明は、このような従来の低温真空蒸着法によるベ
リリウム超伝導薄膜の製造方法の欠点を除くためになさ
れたものであって、 イ基板表面に被着したベリリウム超伝導薄膜を室温に放
置しても、結晶状態が変化せず、超伝導転移温度以下に
降温させると超伝導特性が得られるベリリウム超伝導薄
膜の製造方法を提供しようとするものである。This invention was made in order to eliminate the drawbacks of the conventional method for producing a beryllium superconducting thin film by the low temperature vacuum deposition method. The beryllium superconducting thin film deposited on the substrate surface was left at room temperature. Even so, it is an object of the present invention to provide a method for producing a beryllium superconducting thin film in which the crystal state does not change and superconducting properties can be obtained by lowering the temperature below the superconducting transition temperature.
ロさらに上述した特性をもつベリリウム超伝導薄膜だけ
でなく、上述した特性をもつベリリウム基合金の製造方
法提供しようとするものである。(B) In addition to the beryllium superconducting thin film having the above-mentioned characteristics, the present invention aims to provide a method for producing a beryllium-based alloy having the above-mentioned characteristics.
ハまた、この発明はベリリウム超伝導薄膜作製時に、基
板温度を液体ヘリウム温度に保持しなくとも非晶質化又
は微結晶状態のベリリウム超伝導薄膜又はベリリウム基
合金超伝導薄膜を作製できるベリリウム超伝導薄膜およ
びベリリウム基合金超伝導薄膜の製造方法を提供しよう
とするものである。Further, the present invention is capable of producing a beryllium superconducting thin film or a beryllium-based alloy superconducting thin film in an amorphized or microcrystalline state even when the substrate temperature is not kept at the liquid helium temperature during the production of the beryllium superconducting thin film. An object of the present invention is to provide a method for manufacturing a thin film and a beryllium-based alloy superconducting thin film.
<問題点を解決するための手段> 上述の目的を達成するため、この発明はベリリウム超伝
導薄膜およびベリリウム基合金超伝導薄膜を製造するに
当り、真空中においてベリリウム又はベリリウム基合金
を加熱蒸発させて、対向配置した基板表面にベリリウム
薄膜を被着させると共に、当該基板表面のベリリウム薄
膜にイオンビーム又は中性粒子線を照射し、基板表面の
ベリリウム又はベリリウム基合金薄膜を非晶質化および
/又は微結晶化することを特徴とするものである。<Means for Solving the Problems> In order to achieve the above object, the present invention heats and evaporates beryllium or a beryllium-based alloy in a vacuum when producing a beryllium superconducting thin film and a beryllium-based alloy superconducting thin film. Then, a beryllium thin film is deposited on the surfaces of the substrates arranged to face each other, and the beryllium thin film on the substrate surface is irradiated with an ion beam or a neutral particle beam to amorphize the beryllium or beryllium-based alloy thin film on the substrate surface and / or Alternatively, it is characterized by being crystallized.
この発明のベリリウム超伝導薄膜およびベリリウム基合
金超伝導薄膜の製造方法において、基板表面のベリリウ
ム薄膜に照射するイオンビーム又は中性粒子線の種類は
アルゴン(Ar)、ヘリウム(He)、クリプトン(Kr)、キセノ
ン(Xe)などのベリリウムと不活性の周期律表の第0族元
素や同じベリリウム(Be)あるいは上記元素と炭素(C)、
窒素(N)、酸素などの元素との混合物のイオンビーム又
は中性化した粒子線、つまり原子線であってもよい。In the method for producing a beryllium superconducting thin film and a beryllium-based alloy superconducting thin film of the present invention, the type of ion beam or neutral particle beam with which the beryllium thin film on the substrate surface is irradiated is argon (Ar), helium (He), or krypton (Kr). ), Xenon (Xe) and other beryllium and inactive Group 0 elements of the periodic table, the same beryllium (Be) or the above elements and carbon (C),
It may be an ion beam of a mixture with an element such as nitrogen (N) or oxygen, or a neutralized particle beam, that is, an atomic beam.
また、上述したイオン又は中性粒子の運動エネルギーは
基板表面のベリリウム薄膜を衝撃することによって、基
板表面のベリリウム原子の格子位置を変えるに十分な大
きさのものでなければならず少なくとも10eV以上に加速
する必要があると考えられ、通常は1KeV程度の加速エ
ネルギーを与えている。また、作製するベリリウム超伝
導薄膜の特性と膜形成に当って照射すべきイオンビーム
又は中性粒子線との関係において、上述した条件の他
に、照射イオンビーム又は中性粒子線が薄膜中に残留し
て生成する超伝導薄膜の超伝導特性を劣化させる場合が
ある。これは、照射する粒子線、つまりイオンビーム又
は中性粒子線が活性元素を用いた場合に特に顕著にな
る。たとえば、超伝導薄膜中に1原子%以上の酸素を含
む場合は、酸素濃度の含有量の増加と共に超伝導転移温
度が低くなる。Also, the kinetic energy of the above-mentioned ions or neutral particles should be large enough to change the lattice position of beryllium atoms on the substrate surface by bombarding the beryllium thin film on the substrate surface, and at least 10 eV or more. It is thought that it is necessary to accelerate, and normally gives acceleration energy of about 1 KeV. In addition, in relation to the characteristics of the beryllium superconducting thin film to be produced and the ion beam or neutral particle beam to be irradiated for film formation, in addition to the above-mentioned conditions, the irradiation ion beam or neutral particle beam In some cases, the superconducting thin film produced by remaining may deteriorate the superconducting property. This is particularly remarkable when the particle beam to be irradiated, that is, the ion beam or the neutral particle beam uses the active element. For example, when the superconducting thin film contains 1 atomic% or more of oxygen, the superconducting transition temperature decreases as the oxygen concentration increases.
これに対し、希元素など周期律表の第0族元素の場合は
薄膜中に残留する確率が低い。したがって、ベリリウム
薄膜に照射するイオンビーム又は中性粒子線が超伝導薄
膜中に残留しても、超伝導特性を大幅に低下させること
のない元素、たとえば炭素、窒素などを用いるか、薄膜
中に残留する確率の低い第0族元素のイオンビーム又は
中性粒子線を用いた方がよい。On the other hand, in the case of a Group 0 element of the periodic table such as a rare element, the probability of remaining in the thin film is low. Therefore, even if the ion beam or neutral particle beam irradiating the beryllium thin film remains in the superconducting thin film, an element that does not significantly deteriorate the superconducting property, such as carbon or nitrogen, is used, or It is better to use an ion beam or neutral particle beam of a Group 0 element having a low probability of remaining.
さらに、この発明においてはベリリウムを加熱蒸着させ
る場合には、公知の電子線ビーム加熱法、抵抗加熱法が
適用される。Further, in the present invention, when evaporating beryllium by heating, a known electron beam heating method or resistance heating method is applied.
また、この発明においてベリリウム薄膜を被着させる基
板はシリカ(SiO2)、アルミナ(Al2O3)等の絶縁性基板や
他の導電性材料からなる基板でもよい。Further, in the present invention, the substrate on which the beryllium thin film is deposited may be an insulating substrate such as silica (SiO 2 ) or alumina (Al 2 O 3 ) or a substrate made of another conductive material.
また、この発明のベリリウム超伝導薄膜およびベリリウ
ム基合金超伝導薄膜の製造に際し常温で作製できること
はもちろんのことであるが、基板を液体窒素あるいは液
体ヘリウム等の低温度に保持しておいてベリリウムを加
熱蒸着して被着させることもできる。Further, it goes without saying that the beryllium superconducting thin film and the beryllium-based alloy superconducting thin film of the present invention can be produced at room temperature, but the beryllium is kept by holding the substrate at a low temperature such as liquid nitrogen or liquid helium. It can also be deposited by heating vapor deposition.
また、この発明のベリリウム基合金超伝導薄膜の製造方
法によって作製するベリリウム基合金薄膜はベリリウム
と周期律表の第0族元素又はベリリウムとホウ素、炭
素、窒素、酸素、ケイ素、アルミニウム、金のうちの少
くとも一種の物質との合金からなる。The beryllium-based alloy thin film produced by the method for producing a beryllium-based alloy superconducting thin film of the present invention includes beryllium and a Group 0 element of the periodic table or beryllium and boron, carbon, nitrogen, oxygen, silicon, aluminum, and gold. It consists of an alloy with at least one substance.
<作用> 以上のように、真空中でベリリウムを加熱蒸発し、対向
配置した基板表面にベリリウム薄膜を被着させると、そ
の成膜機構は必ずしも明らかではないが、 加熱蒸発したベリリウム原子若しくは分子は大きな運
動エネルギーをもって基板面に衝突し、基板に熱エネル
ギーを与えながら動き回り、他の蒸着粒子と原子対や原
子団を作り、基板表面の捕獲中心に捕獲されベリリウム
薄膜を形成するものと考えられる。<Operation> As described above, when beryllium is heated and evaporated in a vacuum, and a beryllium thin film is deposited on the surfaces of substrates facing each other, the film formation mechanism is not always clear. It is thought that it collides with the substrate surface with large kinetic energy, moves around while giving thermal energy to the substrate, forms atomic pairs and atomic groups with other vapor deposition particles, and is trapped at the trap center of the substrate surface to form a beryllium thin film.
しかし、同時にベリリウム薄膜面に照射された高速のイ
オンビーム又は中性粒子線はベリリウム薄膜に入射し、
ベリリウム薄膜の結晶方位が定まるのを抑制するはたら
きをするから、そのベリリウム薄膜は非晶質化ないし微
結晶化するものと考えられる。However, at the same time, the high-speed ion beam or neutral particle beam irradiated on the beryllium thin film surface is incident on the beryllium thin film,
The beryllium thin film is considered to be amorphous or microcrystallized because it serves to suppress the crystal orientation of the beryllium thin film from being determined.
したがって、基板表面に被着したベリリウム薄膜に
照射するイオンビーム又は中性粒子線の照射量あるいは
加速エネルギーを調節すつことにより生成するベリリウ
ム超伝導薄膜およびベリリウム基合金の超伝導特性、特
に超伝導転移温度を制御することができる。Therefore, the superconducting properties of beryllium superconducting thin films and beryllium-based alloys produced by adjusting the irradiation amount or acceleration energy of the ion beam or neutral particle beam irradiating the beryllium thin film deposited on the substrate surface, especially superconductivity The transition temperature can be controlled.
さらに、基板表面に被着したベリリウム又はベリ
リウム基合金薄膜に対し、メタン(CH4)、窒素、酸素な
どのガスと希ガスとを混合したガスをイオン化したビー
ム又は中性粒子線を照射することにより、Beの原子格子
内に、これら混合物質の元素が入り込み、より経時変化
の少ないベリリウム基合金超伝導薄膜を作製することが
できる。Further, the beryllium or beryllium-based alloy thin film deposited on the surface of the substrate is irradiated with a beam or neutral particle beam of an ionized gas of a mixture of a gas such as methane (CH 4 ), nitrogen, oxygen and a rare gas. As a result, the elements of these mixed substances enter the atomic lattice of Be, and a beryllium-based alloy superconducting thin film with less change over time can be manufactured.
<実施例> つぎに、実施例および比較例に基づいて、この発明を具
体的に説明する。<Example> Next, the present invention will be specifically described based on Examples and Comparative Examples.
実施例1 第1図は、この発明のベリリウム超伝導薄膜の製造方法
の実施に使用する真空蒸着装置20の概略構成を示す断面
図である。Example 1 FIG. 1 is a sectional view showing a schematic configuration of a vacuum vapor deposition apparatus 20 used for carrying out the method for producing a beryllium superconducting thin film of the present invention.
図示の真空蒸着装置20は真空槽11内を真空に減圧排気す
る排気装置12と、真空槽11内においてルツボ13内に入れ
られた加熱蒸発させるベリリウム14と、このベリリウム
14を加熱する抵抗加熱ヒータ15と、真空槽11内上部にお
いて蒸発したベリリウム粒子16を被着させるように配置
した基板17と、真空槽11外に配置されたガス供給ボンベ
19からガス供給管25を通して真空槽11内においてArイオ
ンビーム22を発生させ基板17下面に指向させるイオンビ
ーム発生器23と、基板17下面にベリリウム蒸発粒子を開
閉自在に設けたシヤッタ24とからなっている。The illustrated vacuum deposition apparatus 20 includes an exhaust apparatus 12 for decompressing and evacuating the inside of the vacuum chamber 11 to a vacuum, a beryllium 14 for heating and evaporation contained in a crucible 13 in the vacuum chamber 11, and this beryllium.
A resistance heater 15 for heating 14, a substrate 17 arranged to deposit the beryllium particles 16 evaporated in the upper part of the vacuum chamber 11, and a gas supply cylinder arranged outside the vacuum chamber 11.
An ion beam generator 23 for generating an Ar ion beam 22 in the vacuum chamber 11 through the gas supply pipe 25 and directing it to the lower surface of the substrate 17, and a shutter 24 having beryllium vaporized particles openably and closably provided on the lower surface of the substrate 17 are provided. ing.
また、ガス供給ボンベ19からイオンビーム発生器23に供
給するガス流量はバルブ21によって調節可能になってい
る。The flow rate of gas supplied from the gas supply cylinder 19 to the ion beam generator 23 can be adjusted by the valve 21.
真空蒸着装置20を使用し、基板17表面にベリリウム超伝
導薄膜を作製するときは、排気装置12を作動し真空槽11
内を一旦10-6〜10-7Torrに排気した後抵抗加熱ヒータ15
によりベリリウム14を加熱蒸発させ、基板17下面にベリ
リウム蒸発粒子を被着させる一方、バルブ21を操作しガ
ス供給ボンベ19内のArガスをイオンビーム発生器23から
高速のArイオンビーム(又はAr原子線)を基板17下面に
照射する。When a beryllium superconducting thin film is formed on the surface of the substrate 17 by using the vacuum vapor deposition device 20, the exhaust device 12 is operated and the vacuum chamber 11 is activated.
After exhausting the inside to 10 -6 to 10 -7 Torr, the resistance heater 15
The beryllium 14 is heated and vaporized by means of the above to deposit the beryllium vaporized particles on the lower surface of the substrate 17, while operating the valve 21 to move the Ar gas in the gas supply cylinder 19 from the ion beam generator 23 to the high-speed Ar ion beam (or Ar atom). Line) to the lower surface of the substrate 17.
次に、シヤッタ24を適当な時間間隔をおいて開閉するこ
とにより、基板17下面にベリリウムの超伝導薄膜を形成
することができた。Next, by opening and closing the shutter 24 at an appropriate time interval, a beryllium superconducting thin film could be formed on the lower surface of the substrate 17.
本実施例ではガス供給ボンベ19に入れるガスとして、純
度99.9995%のArガスを使用した。In this embodiment, Ar gas having a purity of 99.9995% was used as the gas to be put into the gas supply cylinder 19.
具体的な作製要領としては、ガス導入前に真空槽11内を
1×10-7Torrにまで排気し、次いでイオンビーム発生器
23にArガスを導入した。このときの真空槽11内の圧力は
5×10-5Torrであった。またベリリウム14と基板17との
間隔は25cmとし、基板17下面上のベリリウム膜の堆積速
度が3Å/sec(毎秒3オングストローム)程度となるよ
うに加熱ヒータ15の加熱温度を調整した。さらに、基板
17下面に同時照射されるArイオンもしくは原子の加速エ
ネルギーを1KeV,また基板17下面に対するArイオンビ
ームの照射量を4×1013個/cm2/秒とした。また基板を
ジャケット(図中符号Aで示す)で水冷することによ
り、基板温度を25±5℃の範囲内に保った。シヤッタ24
は5分間開放することにより、基板17下面上に厚さ900
Åのベリリウム膜を形成した。このベリリウム薄膜の超
伝導転移温度を測定するため、公知の四端子電気抵抗測
定法を用いて測定した結果を第2図に示した。得られた
特性は曲線aであった。この特性曲線aから実施例のベ
リリウム薄膜は超伝導転移温度が5.5Kであることが判っ
た。また、AESによりベリリウム膜中のアルゴン(Ar)量
を同定したところ、0.3原子%であった。As a concrete manufacturing procedure, the inside of the vacuum chamber 11 was evacuated to 1 × 10 −7 Torr before introducing the gas, and then the ion beam generator was used.
Ar gas was introduced into 23. The pressure in the vacuum chamber 11 at this time was 5 × 10 −5 Torr. The distance between the beryllium 14 and the substrate 17 was 25 cm, and the heating temperature of the heater 15 was adjusted so that the deposition rate of the beryllium film on the lower surface of the substrate 17 was about 3 Å / sec (3 angstroms per second). Furthermore, the substrate
The acceleration energy of Ar ions or atoms simultaneously irradiated to the lower surface of the substrate 17 was 1 KeV, and the irradiation amount of the Ar ion beam to the lower surface of the substrate 17 was 4 × 10 13 / cm 2 / sec. The substrate temperature was kept within the range of 25 ± 5 ° C. by water cooling the substrate with a jacket (denoted by reference symbol A in the figure). Shatter 24
Is opened for 5 minutes to allow a thickness of 900
A beryllium film of Å was formed. FIG. 2 shows the result of measurement using a known four-terminal electrical resistance measuring method for measuring the superconducting transition temperature of this beryllium thin film. The characteristic obtained was curve a. From this characteristic curve a, it was found that the beryllium thin film of the example had a superconducting transition temperature of 5.5K. Further, when the amount of argon (Ar) in the beryllium film was identified by AES, it was 0.3 atom%.
実施例2 実施例1のガス供給ボンベ19(第1図参照。)に充填し
た純度99.9995%のArガスの代りに、0.1%の酸素ガスを
含むArガスを含むものを用いる以外は実施例1と同様の
真空蒸着装置および作製方法に従ってベリリウム薄膜を
作製した。Example 2 Example 1 was repeated except that the gas supply cylinder 19 (see FIG. 1) of Example 1 was filled with Ar gas containing 0.1% oxygen gas instead of 99.9995% pure Ar gas. A beryllium thin film was produced according to the same vacuum evaporation apparatus and production method.
そして得られたベリリウム薄膜をオージェ電子分光法
(Auger Electron Spectroscopy,以下「AES」とい
う)で膜中の含有酸素量を同定したところ0.5原子%で
あった。The content of oxygen in the obtained beryllium thin film was identified by Auger Electron Spectroscopy (hereinafter referred to as "AES").
また、四端子電気抵抗法で測定した超伝導転移温度は5.
1゜Kであった。The superconducting transition temperature measured by the four-terminal electrical resistance method is 5.
It was 1 ° K.
実施例3 実施例1のガス供給ボンベ19(第1図参照。)に充填し
た純度99.9995%のArガスの代りに0.2%の酸素ガスを含
むArガスを用いる以外は、実施例1と同じ真空蒸着装置
20を用い、同じ作製方法で基板下面にベリリウム薄膜を
形成させた。得られたベリリウム薄膜をAESにより、膜
中の酸素量を同定したところ0.9原子%でった。Example 3 The same vacuum as in Example 1 except that Ar gas containing 0.2% oxygen gas was used instead of 99.9995% pure Ar gas filled in the gas supply cylinder 19 (see FIG. 1) of Example 1. Vapor deposition equipment
20 was used to form a beryllium thin film on the lower surface of the substrate by the same manufacturing method. When the amount of oxygen in the obtained beryllium thin film was identified by AES, it was 0.9 atom%.
また、四端子電気抵抗法で測定したところ、このベリリ
ウム薄膜の超伝導転移温度は5.0゜Kであることも判っ
た。It was also found that the beryllium thin film had a superconducting transition temperature of 5.0 ° K when measured by a four-terminal electrical resistance method.
実施例4 実施例1のガス供給ボンベ19(第1図に示す。)に充填
した純度99.9995%のArガスの代りに0.4%の酸素ガスを
含むArガスを用いる以外は、実施例1と同じ真空蒸着装
置20を用い、同一の作製方法により基板下面にベリリウ
ム薄膜を形成させた。Example 4 Same as Example 1 except that Ar gas containing 0.4% oxygen gas was used in place of Ar gas having a purity of 99.9995% filled in the gas supply cylinder 19 (shown in FIG. 1) of Example 1. A beryllium thin film was formed on the lower surface of the substrate by the same manufacturing method using the vacuum vapor deposition device 20.
得られたベリリウム薄膜をAESにより、膜中の酸素量を
同定したところ1.5原子%含まれていることが判った。
また、四端子電気抵抗法により測定した超伝導転移温度
は3.6゜Kであることが判った。When the amount of oxygen in the obtained beryllium thin film was identified by AES, it was found to contain 1.5 atom%.
It was also found that the superconducting transition temperature measured by the four-terminal electrical resistance method was 3.6 ° K.
実施例5 実施例1のガス供給ボンベ19(第1図に示す。)に充填
した純度99.9995%のArガスの代りに5%のCH4(メタ
ン)ガスを含むArガスを用いる以外は、実施例1と同じ
真空蒸着装置20を用い、同じ作製方法により基板下面に
ベリリウム薄膜を形成させた。Example 5 Example 5 was carried out except that Ar gas containing 5% CH 4 (methane) gas was used instead of Ar gas having a purity of 99.9995% filled in the gas supply cylinder 19 (shown in FIG. 1) of Example 1. A beryllium thin film was formed on the lower surface of the substrate by using the same vacuum deposition apparatus 20 as in Example 1 and the same manufacturing method.
得られたベリリウム薄膜をAESにより、膜中の炭素量を
同定したところ9.0原子%であった。また、四端子電気
抵抗法により測定したところ超伝導転移温度は5.7゜Kで
あった。When the amount of carbon in the obtained beryllium thin film was identified by AES, it was 9.0 atom%. The superconducting transition temperature was 5.7 ° K as measured by the four-terminal electrical resistance method.
実施例6 実施例1のガス供給ボンベ19(第1図に示す。)に充填
した純度99.5%のArガスの代りに5%のN2(窒素)ガス
を含むArガスを用いる以外は実施例1と同じ真空蒸着装
置20を用い、同一の作製方法により基板下面にベリリウ
ム薄膜を形成させた。得られたベリリウム薄膜中の窒素
量をAESにより同定したところ2.0原子%であった。また
四端子電気抵抗法により測定したところ、超伝導転移温
度は6.2゜Kであった。Example 6 Example 6 except that Ar gas containing 5% N 2 (nitrogen) gas was used instead of 99.5% pure Ar gas filled in the gas supply cylinder 19 (shown in FIG. 1) of Example 1. A beryllium thin film was formed on the lower surface of the substrate by using the same vacuum vapor deposition apparatus 20 as in No. 1 and the same manufacturing method. The nitrogen content in the obtained beryllium thin film was identified by AES and found to be 2.0 atomic%. The superconducting transition temperature was 6.2 ° K as measured by the four-terminal electrical resistance method.
実施例7 実施例1のベリリウム(原料)14の代りに10%のリチウ
ムを含有するベリリウム基合金を用いる以外は実施例1
と同じ真空蒸着装置20を用い、同じ作製方法により基板
下面にベリリウム薄膜を形成させた。得られたベリリウ
ム薄膜中のリチウム量をAESで同定したところ9.0原子%
であった。また四端子電気抵抗法により測定したとこ
ろ、超伝導転移温度は7.5゜Kであった。Example 7 Example 1 is replaced with the beryllium-based alloy containing 10% lithium instead of the beryllium (raw material) 14 of Example 1.
The beryllium thin film was formed on the lower surface of the substrate by the same production method using the same vacuum vapor deposition device 20 as described above. The amount of lithium in the obtained beryllium thin film was identified by AES to be 9.0 atom%.
Met. The superconducting transition temperature was 7.5 ° K as measured by the four-terminal electrical resistance method.
実施例8 実施例1のベリリウム(原料)14の代りに10%のホウ素
を含有するベリリウム基合金を用いる以外は実施例1と
同じ真空蒸着装置20を用い、同じ作製方法により基板下
面にベリリウム薄膜を形成させた。得られたベリリウム
薄膜中のホウ素量をAESで同定したところ10.原子%であ
った。また四端子電気抵抗法により測定したところ、超
伝導転移温度は7.3゜Kであった。Example 8 A beryllium thin film was formed on the lower surface of a substrate by the same production method as in Example 1 except that a beryllium-based alloy containing 10% boron was used instead of the beryllium (raw material) 14 in Example 1. Was formed. When the amount of boron in the obtained beryllium thin film was identified by AES, it was 10. atom%. The superconducting transition temperature was 7.3 ° K as measured by the four-terminal electrical resistance method.
実施例9 実施例1のベリリウム(原料)14の代りに8%のケイ素
を含有するベリリウム基合金を用いる以外は実施例1と
同じ真空蒸着装置20を用い、同じ作製方法により基板下
面にベリリウム薄膜を形成させた。得られたベリリウム
薄膜中のケイ素量をAESで同定したところ8原子%であ
った。また四端子電気抵抗法により測定したところ、超
伝導転移温度は7.1゜Kであった。Example 9 A beryllium thin film was formed on the lower surface of a substrate by the same production method as in Example 1 except that a beryllium-based alloy containing 8% silicon was used instead of beryllium (raw material) 14 in Example 1. Was formed. When the amount of silicon in the obtained beryllium thin film was identified by AES, it was 8 atom%. The superconducting transition temperature was 7.1 ° K as measured by the four-terminal electrical resistance method.
実施例10 実施例1のベリリウム(原料)14の代りに10%のアルミ
ニウムを含有するベリリウム基合金を用いる以外は実施
例1と同じ真空蒸着装置20を用い、同じ作製方法により
基板下面にベリリウム薄膜を形成させた。得られたベリ
リウム薄膜中のアルミニウム量をAESで同定したところ
8.0原子%であった。また四端子電気抵抗法により測定
したところ、超伝導転移温度は7.2゜Kであった。Example 10 A beryllium thin film was formed on the lower surface of a substrate by the same production method as in Example 1 except that a beryllium-based alloy containing 10% aluminum was used instead of beryllium (raw material) 14 in Example 1. Was formed. The amount of aluminum in the obtained beryllium thin film was identified by AES.
It was 8.0 atomic%. The superconducting transition temperature was 7.2 ° K as measured by the four-terminal electrical resistance method.
実施例11 実施例1のベリリウム(原料)14の代りに5%の金を含
有するベリリウム基合金を用いる以外は実施例1と同じ
真空蒸着装置20を用い、同じ作製方法により基板下面に
ベリリウム薄膜を形成させた。得られたベリリウム薄膜
中の金(Au)量をAESで同定したところ5.0原子%であっ
た。また四端子電気抵抗法により測定したところ、超伝
導転移温度は7.7゜Kであった。Example 11 A beryllium thin film was formed on the lower surface of a substrate by the same manufacturing method as in Example 1 except that a beryllium-based alloy containing 5% gold was used instead of the beryllium (raw material) 14 in Example 1. Was formed. When the amount of gold (Au) in the obtained beryllium thin film was identified by AES, it was 5.0 atom%. The superconducting transition temperature was 7.7 ° K as measured by the four-terminal electrical resistance method.
比較例1 実施例1の超伝導薄膜製造方法に使用した真空蒸着装置
20の代りに第3図および第4図に示す低温真空蒸着装置
10を用い、基板4を液体ヘリウムで冷却するとともに蒸
発ルツボ中のベリリウム原料(純度99.9%)を加熱蒸発
させることにより基板4の下面にベリリウム薄膜を被着
させた。得られたベリリウム薄膜を極低温度に保持した
まま、四端子電気抵抗法で測定したところ、その超伝導
転移温度は8.5゜Kであった。Comparative Example 1 Vacuum deposition apparatus used in the superconducting thin film manufacturing method of Example 1
Instead of 20, low temperature vacuum deposition equipment shown in FIGS. 3 and 4
10, the substrate 4 was cooled with liquid helium, and the beryllium raw material (purity 99.9%) in the evaporation crucible was heated and evaporated to deposit the beryllium thin film on the lower surface of the substrate 4. When the beryllium thin film thus obtained was kept at an extremely low temperature and measured by a four-terminal electrical resistance method, its superconducting transition temperature was 8.5 ° K.
比較例2 比較例1で用いたベリリウム原料4の代りに4%の酸素
を含有するベリリウム合金を用い、同じ作製方法により
基板下面にベリリウム基合金薄膜を被着させた。得られ
たベリリウム基合金薄膜を極低温度に保持したまま、四
端子電気抵抗法で測定したところ、その超伝導転移温度
は5.0゜Kであった。またAESにより同定したベリリウム基
合金薄膜中の酸素量は1.0原子%であった。Comparative Example 2 A beryllium alloy thin film containing 4% oxygen was used instead of the beryllium raw material 4 used in Comparative Example 1, and a beryllium-based alloy thin film was deposited on the lower surface of the substrate by the same manufacturing method. When the beryllium-based alloy thin film thus obtained was kept at an extremely low temperature and measured by a four-terminal electrical resistance method, its superconducting transition temperature was 5.0 ° K. The oxygen content in the beryllium-based alloy thin film identified by AES was 1.0 atom%.
比較例3 比較例1で用いたベリリウム原料4の代りに10%の炭素
を含有するベリリウム合金を用い、同じ作製方法により
基板下面にベリリウム基合金薄膜を被着させた。得られ
たベリリウム基合金薄膜を極低温度に保持したまま、四
端子電気抵抗法により測定したところ、その超伝導転移
温度は7.1゜Kであった。またAESにより同定したベリリウ
ム基合金薄膜中の炭素量は9.0原子%であった。Comparative Example 3 A beryllium alloy thin film containing 10% of carbon was used instead of the beryllium raw material 4 used in Comparative Example 1, and a beryllium-based alloy thin film was deposited on the lower surface of the substrate by the same manufacturing method. When the obtained beryllium-based alloy thin film was measured by a four-terminal electrical resistance method while keeping it at an extremely low temperature, its superconducting transition temperature was 7.1 ° K. The carbon content in the beryllium-based alloy thin film identified by AES was 9.0 atomic%.
比較例4 比較例1で用いたベリリウム原料4の代りに5%の窒素
を含有するベリリウム合金を用い、同じ作製方法により
基板下面にベリリウム基合金薄膜を被着させた。得られ
たベリリウム基合金薄膜を極低温度に保持したまま、四
端子電気抵抗法で測定したところ、その超伝導転移温度
は6.8゜Kであった。またAESにより同定したベリリウム基
合金薄膜中の窒素量は1.5原子%であった。Comparative Example 4 Instead of the beryllium raw material 4 used in Comparative Example 1, a beryllium alloy containing 5% nitrogen was used, and a beryllium-based alloy thin film was deposited on the lower surface of the substrate by the same manufacturing method. When the beryllium-based alloy thin film thus obtained was kept at an extremely low temperature and measured by a four-terminal electrical resistance method, its superconducting transition temperature was 6.8 ° K. The nitrogen content in the beryllium-based alloy thin film identified by AES was 1.5 atom%.
比較例5 比較例1で用いたベリリウム原料4の代りに20%のリチ
ウムを含有するベリリウム合金を用い、同じ作製方法に
より基板下面にベリリウム基合金薄膜を被着させた。得
られたベリリウム基合金薄膜を極低温度に保持したま
ま、四端子電気抵抗法により測定したところ、その超伝
導転移温度は6.0゜Kであった。またAESにより同定したベ
リリウム基合金薄膜中のリチウム量は14原子%であっ
た。Comparative Example 5 A beryllium-based alloy thin film containing 20% lithium was used in place of the beryllium raw material 4 used in Comparative Example 1, and a beryllium-based alloy thin film was deposited on the lower surface of the substrate by the same manufacturing method. When the beryllium-based alloy thin film thus obtained was measured by a four-terminal electrical resistance method while being kept at an extremely low temperature, its superconducting transition temperature was 6.0 ° K. The amount of lithium in the beryllium-based alloy thin film identified by AES was 14 atom%.
比較例6 比較例1で用いたベリリウム原料4の代りに10%のホウ
素を含有するベリリウム合金を用い、同じ作製方法によ
り基板下面にベリリウム基合金薄膜を被着させた。得ら
れたベリリウム基合金薄膜を極低温度に保持したまま、
四端子電気抵抗法により測定したところ、その超伝導転
移温度は6.5゜Kであった。またAESにより同定したベリリ
ウム基合金薄膜中のホウ素量は10原子%であった。Comparative Example 6 Instead of the beryllium raw material 4 used in Comparative Example 1, a beryllium alloy containing 10% boron was used, and a beryllium-based alloy thin film was deposited on the lower surface of the substrate by the same manufacturing method. While keeping the beryllium-based alloy thin film obtained at an extremely low temperature,
The superconducting transition temperature was 6.5 ° K as measured by the four-terminal electrical resistance method. The boron content in the beryllium-based alloy thin film identified by AES was 10 atom%.
比較例7 比較例1で用いたベリリウム原料4の代りに8%のケイ
素を含有するベリリウム合金を用い、同じ作製方法によ
り基板下面にベリリウム基合金薄膜を被着させた。得ら
れたベリリウム基合金薄膜を極低温度に保持したまま、
四端子電気抵抗法により測定したところ、その超伝導転
移温度は6.3゜Kであった。またAESにより同定したベリリ
ウム基合金薄膜中のケイ素量は8.0原子%であった。Comparative Example 7 A beryllium-based alloy thin film was deposited on the lower surface of the substrate by the same manufacturing method using a beryllium alloy containing 8% silicon instead of the beryllium raw material 4 used in Comparative Example 1. While keeping the beryllium-based alloy thin film obtained at an extremely low temperature,
The superconducting transition temperature was 6.3 ° K as measured by the four-terminal electrical resistance method. The amount of silicon in the beryllium-based alloy thin film identified by AES was 8.0 atom%.
比較例8 比較例1で用いたベリリウム原料4の代りに10%のアル
ミニウムを含有するベリリウム合金を用い、同じ作製方
法により基板下面にベリリウム基合金薄膜を被着させ
た。得られたベリリウム基合金薄膜を極低温度に保持し
たまま、四端子電気抵抗法により測定したところ、その
超伝導転移温度は7.0゜Kであった。またAESにより同定し
たベリリウム基合金薄膜中のアルミニウム量は8.0原子
%であった。Comparative Example 8 A beryllium-based alloy thin film was deposited on the lower surface of a substrate by the same manufacturing method using a beryllium alloy containing 10% aluminum instead of the beryllium raw material 4 used in Comparative Example 1. When the obtained beryllium-based alloy thin film was kept at an extremely low temperature and measured by a four-terminal electrical resistance method, its superconducting transition temperature was 7.0 ° K. The amount of aluminum in the beryllium-based alloy thin film identified by AES was 8.0 atom%.
比較例9 比較例1で用いたベリリウム原料4の代りに5%の金を
含有するベリリウム合金を用い、同じ作製方法により基
板下面にベリリウム基合金薄膜を被着させた。得られた
ベリリウム基合金薄膜を極低温度に保持したまま、四端
子電気抵抗法で測定したところ、その超伝導転移温度は
9.0゜Kであった。またAESにより同定したベリリウム基合
金薄膜中の金量は5.0原子%であった。Comparative Example 9 Instead of the beryllium raw material 4 used in Comparative Example 1, a beryllium alloy containing 5% gold was used, and a beryllium-based alloy thin film was deposited on the lower surface of the substrate by the same manufacturing method. When the obtained beryllium-based alloy thin film was measured by a four-terminal electrical resistance method while keeping it at an extremely low temperature, its superconducting transition temperature was
It was 9.0 ° K. The amount of gold in the beryllium-based alloy thin film identified by AES was 5.0 atom%.
上述した実施例1ないし11および比較例1ないし9にお
いて作製したベリリウム薄膜およびベリリウム基合金薄
膜について作製完了時から1週間経過ごとの超伝導転移
温度の変化を追跡した結果を、下記の表−1に示した。Regarding the beryllium thin film and the beryllium-based alloy thin film produced in Examples 1 to 11 and Comparative Examples 1 to 9 described above, the results of tracing the change in the superconducting transition temperature every one week after the completion of the production are shown in Table 1 below. It was shown to.
ただし、表−1中の「転移温度」とは、超伝導転移温度
の略称である。また、表−1中の太枠内の転移温度値
(比較例1〜9の1週間経過時の超伝導転移温度値)は
極低温状態で測定した値である。それ以外の転移温度値
は、すべて室温で掲示期間経過後の値を示すものであ
る。However, “transition temperature” in Table 1 is an abbreviation for superconducting transition temperature. Further, the transition temperature values in the bold frame in Table 1 (superconducting transition temperature values of Comparative Examples 1 to 9 after one week has elapsed) are values measured in an extremely low temperature state. All other transition temperature values are values after the lapse of the posting period at room temperature.
表−1から、実施例1ないし実施例5で得られたベリリ
ウム薄膜では超伝導転移温度の経時変化は測定精度約±
0.1゜Kの範囲内では認められなかった。 From Table-1, in the beryllium thin films obtained in Examples 1 to 5, the change with time of the superconducting transition temperature is about ±±.
It was not observed within the range of 0.1 ° K.
また、実施例6ないし11により得られたベリリウム薄膜
では超伝導転移温度の経時変化は約1゜Kの範囲内にとど
まった。In the beryllium thin films obtained in Examples 6 to 11, the change in superconducting transition temperature with time remained within the range of about 1 ° K.
これに反し、比較例1ないし9により得られた試料で
は、室温保存2週間以内の期間において、そのほとんど
の試料において超伝導特性が失われ(超伝導転移温度
が、測定限界の1.5゜Kよりも低下したことと同義であ
る。)た。また、一部超伝導性の残存した試料において
も、その超伝導転移温度は約2゜K〜3゜K程度にまで低下
していた。On the contrary, in the samples obtained in Comparative Examples 1 to 9, the superconducting properties were lost in most of the samples within 2 weeks of storage at room temperature (superconducting transition temperature was higher than the measurement limit of 1.5 ° K). Is also synonymous with the decline.) In addition, the superconducting transition temperature of the sample in which some superconductivity remained was lowered to about 2 ° K to 3 ° K.
<発明の効果> 以上の説明から明らかなように、この発明の超伝導薄膜
の製造方法により作製した超伝導薄膜は、従来の低温真
空蒸着法により作製する方法に比べて、基板を液体ヘリ
ウム温度に冷却するわずらわしさや、大げさな装置を必
要とせず、極めて簡単に超伝導薄膜を作製できる。<Effects of the Invention> As is clear from the above description, the superconducting thin film produced by the method for producing a superconducting thin film of the present invention has a substrate with a liquid helium temperature higher than that produced by the conventional low temperature vacuum deposition method. The superconducting thin film can be manufactured very easily without the need for complicated cooling or an expensive device.
また、この発明の製造方法によって作製された超伝導薄
膜は、室温で保持しても超伝導特性が変化しないから、
各種超伝導素子の材料として利用できる。Further, since the superconducting thin film produced by the manufacturing method of the present invention does not change in superconducting properties even when kept at room temperature,
It can be used as a material for various superconducting devices.
また、スパッタ蒸着法や化学気相堆積法など他の気相堆
積法で作製した超伝導薄膜作製法と比べても、装置構成
が極めて簡単であり、薄膜形成速度が大きく、実用性の
点で極めて優れている。In addition, compared to other vapor deposition methods such as sputter vapor deposition and chemical vapor deposition, the structure of the superconducting thin film is extremely simple, the thin film formation rate is high, and it is practical. Very good.
第1図はこの発明の超伝導薄膜の製造方法の実施に使用
する真空蒸着装置の概略構成を示す断面図、第2図は第
1図の装置で得られた超伝導薄膜の試料温度対電気抵抗
の関係を示す特性図、第3図は従来の超伝導薄膜の製造
に使用した低温真空蒸着装置の概略構成を示す断面図、
第4図は第3図の低温真空蒸着装置の基板装置部の概略
構成を示す拡大斜視図である。 図面中、 1、11…真空槽、 4、17…基板、 5、15…加熱ヒータ、 6…蒸発材、 10…低温真空蒸発装置、 14…ベリリウム、 16…蒸発粒子、 19…ガス供給ボンベ、 20…本発明で使用する真空蒸着装置、 22…イオンビーム粒子、 23…イオンビーム発生器、 24…シヤッタ。FIG. 1 is a sectional view showing a schematic structure of a vacuum vapor deposition apparatus used for carrying out the method for producing a superconducting thin film of the present invention, and FIG. 2 is a sample temperature of a superconducting thin film obtained by the apparatus of FIG. FIG. 3 is a characteristic diagram showing a relation of resistance, FIG. 3 is a sectional view showing a schematic configuration of a low temperature vacuum vapor deposition apparatus used for manufacturing a conventional superconducting thin film,
FIG. 4 is an enlarged perspective view showing a schematic configuration of a substrate device unit of the low temperature vacuum vapor deposition apparatus of FIG. In the drawings, 1, 11 ... Vacuum tank, 4, 17 ... Substrate, 5, 15 ... Heater, 6 ... Evaporating material, 10 ... Low temperature vacuum evaporator, 14 ... Beryllium, 16 ... Evaporating particles, 19 ... Gas supply cylinder, 20 ... Vacuum deposition apparatus used in the present invention, 22 ... Ion beam particles, 23 ... Ion beam generator, 24 ... Shutter.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 貴幸 茨城県那珂郡東海村大字白方字白根162番 地 日本電信電話株式会社茨城電気通信研 究所内 (72)発明者 前田 安 茨城県那珂郡東海村大字白方字白根162番 地 日本電信電話株式会社茨城電気通信研 究所内 (56)参考文献 特開 昭61−39588(JP,A) 特開 昭60−25225(JP,A) 特開 昭61−163265(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Nakamura Tokai-mura, Ibaraki Prefecture Tokai-mura, Shirahoji 162 Shirane, Nippon Telegraph and Telephone Corporation Ibaraki Telecommunications Research Laboratories (72) Inventor Yasushi Maeda Naka-gun, Ibaraki Prefecture Tokai-mura, Oita, Shirahoji, Shirane 162, Nippon Telegraph and Telephone Corporation, Ibaraki Telecommunications Research Laboratories (56) References JP 61-39588 (JP, A) JP 60-25225 (JP, A) JP Sho 61-163265 (JP, A)
Claims (3)
基合金を加熱蒸発させて、対向配置した基板表面にベリ
リウム薄膜を被着させると共に、当該ベリリウム又はベ
リリウム基合金薄膜にイオンビーム又は中性粒子線を照
射し、ベリリウム又はベリリウム基合金薄膜を非晶質化
および/又は微結晶化することを特徴とする超伝導薄膜
の製造方法。1. A beryllium or beryllium-based alloy is heated and vaporized in a vacuum to deposit a beryllium thin film on the surface of a substrate facing each other, and the beryllium or beryllium-based alloy thin film is irradiated with an ion beam or a neutral particle beam. Then, a method for producing a superconducting thin film, which comprises amorphizing and / or microcrystallizing a beryllium or beryllium-based alloy thin film.
金薄膜に照射するイオンビーム又は中性粒子線をベリリ
ウムもしくは周期律表の第0族元素又はこれら元素と窒
素、酸素、炭素からなる混合物からなるイオン又は中性
粒子のビームとすることを特徴とする特許請求の範囲第
(1)項記載の超伝導薄膜の製造方法。2. An ion beam or neutral particle beam for irradiating a beryllium or beryllium-based alloy thin film on a substrate surface with beryllium or a group 0 element of the periodic table or an ion of a mixture of nitrogen, oxygen and carbon. Or a beam of neutral particles.
The method for producing a superconducting thin film according to item (1).
超伝導薄膜は、ベリリウムと周期律表の第0族元素又は
リチウムとホウ素、炭素、窒素、酸素、ケイ素、アルミ
ニウムおよび金のうちの少くとも一種とからなる合金の
超伝導薄膜であることを特徴とする特許請求の範囲第
(1)項記載の超伝導薄膜の製造方法。3. The superconducting thin film produced by the method for producing a superconducting thin film comprises beryllium and a Group 0 element of the periodic table, or lithium and boron, carbon, nitrogen, oxygen, silicon, aluminum and gold. Claims characterized in that it is a superconducting thin film of an alloy consisting of
The method for producing a superconducting thin film according to item (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61050460A JPH0666481B2 (en) | 1986-03-10 | 1986-03-10 | Method for manufacturing superconducting thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61050460A JPH0666481B2 (en) | 1986-03-10 | 1986-03-10 | Method for manufacturing superconducting thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62208678A JPS62208678A (en) | 1987-09-12 |
JPH0666481B2 true JPH0666481B2 (en) | 1994-08-24 |
Family
ID=12859482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61050460A Expired - Fee Related JPH0666481B2 (en) | 1986-03-10 | 1986-03-10 | Method for manufacturing superconducting thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0666481B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2521950B2 (en) * | 1987-04-20 | 1996-08-07 | 日新電機株式会社 | Manufacturing method of superconducting thin film |
-
1986
- 1986-03-10 JP JP61050460A patent/JPH0666481B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS62208678A (en) | 1987-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jansen et al. | The effects of hydrogenation on the properties of ion beam sputter deposited amorphous carbon | |
Oura et al. | LEED-AES study of the Au Si (100) system | |
Canali et al. | Phase diagrams and metal‐rich silicide formation | |
US6440276B2 (en) | Process for producing thin film gas sensors with dual ion beam sputtering | |
Zhang et al. | Transparent conducting ZnO films deposited by ion-beam-assisted reactive deposition | |
Takagi | Ionized cluster beam technique | |
Marton et al. | Synthesis of carbon-nitride films using a fast-switched dual-source low energy ion beam deposition system | |
JPH06184738A (en) | Formation of carbon thin film, its modifying method, electronic device formed by using this modifying method as well as x-ray multilayer film mirror and its production | |
JPS61274314A (en) | Boosting of evaporation from laser heating target | |
Honda et al. | Oxygen content of indium tin oxide films fabricated by reactive sputtering | |
Gerlach et al. | Biaxial alignment of TiN films prepared by ion beam assisted deposition | |
JPH0666481B2 (en) | Method for manufacturing superconducting thin film | |
Qiu et al. | Effect of heat treatment on electrodeposited CuInSe2 films | |
Neugebauer | Thin films of niobium tin by codeposition | |
US4925700A (en) | Process for fabricating high density disc storage device | |
Nakamura et al. | Synthesis of aluminium nitride thin films by ion-vapour deposition method | |
Setsuhara et al. | Synthesis of Ti-Al alloys by ion-beam-enhanced deposition | |
JP2985472B2 (en) | Method of forming silicon film | |
US3988178A (en) | Method for preparing superconductors | |
KR19990048866A (en) | Fabrication of SNO2 Thin Films for Gas Sensors from SN Taeget using Dual-ion Beam Sputtering | |
JPH04346651A (en) | Metallizing method | |
JPS62232180A (en) | Superconducting material | |
Mallik et al. | Inelastic electron tunneling spectroscopy of amorphous SiO x barriers | |
Majni et al. | Substrate effects in Si-Al solid phase epitaxial growth | |
JPS58153775A (en) | Preparation of thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |