JPH066642B2 - Composition for rubber magnet - Google Patents

Composition for rubber magnet

Info

Publication number
JPH066642B2
JPH066642B2 JP24164985A JP24164985A JPH066642B2 JP H066642 B2 JPH066642 B2 JP H066642B2 JP 24164985 A JP24164985 A JP 24164985A JP 24164985 A JP24164985 A JP 24164985A JP H066642 B2 JPH066642 B2 JP H066642B2
Authority
JP
Japan
Prior art keywords
rubber
powder
weight
kneading
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24164985A
Other languages
Japanese (ja)
Other versions
JPS62101642A (en
Inventor
隆司 有吉
隆夫 林
靖弘 坂中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP24164985A priority Critical patent/JPH066642B2/en
Publication of JPS62101642A publication Critical patent/JPS62101642A/en
Publication of JPH066642B2 publication Critical patent/JPH066642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はゴム磁石用組成物に関する。詳しくは、粉末ゴ
ムと粉末状磁性材料を混合して成る組成物で、極めて優
れた混練性及び加圧成形性を有する。そして本発明の組
成物は加工され、ゴム磁石として電気分野をはじめとす
る広い範囲の分野に使用される。
TECHNICAL FIELD The present invention relates to a rubber magnet composition. Specifically, it is a composition obtained by mixing powdered rubber and a powdery magnetic material, and has extremely excellent kneadability and pressure moldability. The composition of the present invention is processed and used as a rubber magnet in a wide range of fields including the electric field.

(従来の技術) 従来、ゴム磁石の製造は従来からあるベール状ゴムある
いはチップ状ゴムに粉末状磁性材料を混練機、例えば練
りロール機、インターナルミキサー、双腕形ニーダー等
を用いて混練し、次に加圧成形、加硫及び着磁を行って
得る方法が採用されている。
(Prior Art) Conventionally, rubber magnets have been manufactured by kneading a conventional bale rubber or chip rubber with a powder magnetic material using a kneading machine such as a kneading roll machine, an internal mixer, or a double-arm kneader. Then, a method obtained by performing pressure molding, vulcanization and magnetization is adopted.

しかしながら、前記の混練においてゴム磁石製品を得る
には、ゴムに多量の磁性材料を混練するために混練に極
めて長い時間を要すし、またその磁性材料は硬く、混練
において混練機の摩耗が激しく、このためにしばしば混
練機の補修、定期検査、時には混練機自体を更新せねば
ならないなど製造経費の上昇を余儀なくされている。一
方において、混練中にゴムが硬い磁性材料により極めて
高いせん断力を受けて発熱し、ゴム自体が劣化し、得ら
れるゴム磁石の機械的性質が劣る場合がある。また混練
した混練物は硬くて多量の磁性材料をゴムに混練してい
るために混練物の粘度が高く、次の加圧成形、例えば、
ロール成形機、押出成形機、圧縮成形機、カレンダーロ
ール等での加圧成形に於いて混練物の流れが悪く、複雑
且つ満足する形状のゴム磁石は得られない。このため
に、これら複数の問題点を解決したゴム磁石用組成物の
出現が強く望まれているのが実状である。
However, in order to obtain a rubber magnet product in the above kneading, it takes a very long time to knead the rubber in order to knead a large amount of the magnetic material, and the magnetic material is hard, and the kneading machine is abraded greatly during the kneading. For this reason, the kneading machine is often repaired, regularly inspected, and sometimes the kneading machine itself needs to be renewed, so that the manufacturing cost is inevitably increased. On the other hand, during kneading, the rubber may be subjected to an extremely high shearing force due to a hard magnetic material to generate heat, and the rubber itself may deteriorate, resulting in poor mechanical properties of the obtained rubber magnet. Further, the kneaded mixture has a high viscosity because it is hard and a large amount of magnetic material is kneaded in rubber.
In pressure molding with a roll molding machine, an extrusion molding machine, a compression molding machine, a calender roll, etc., the flow of the kneaded material is poor, and a rubber magnet having a complicated and satisfactory shape cannot be obtained. For this reason, it is the actual situation that the emergence of a rubber magnet composition that solves these problems is strongly desired.

(発明が解決しようとする問題点) 本発明者らは、上記問題点の解消と要望に答えるべく、
鋭意研究の結果、本発明を完成したものである。
(Problems to be Solved by the Invention) In order to solve the above-mentioned problems and meet the demands, the present inventors have
As a result of earnest research, the present invention has been completed.

本発明は上述したゴムに多量の磁性材料を混練する場合
の問題点である製造経費の面を軽減し、得られるゴム磁
石の機械的性質を損なう事なく混練でき、優れた加圧成
形性を有し、複雑且つ満足する形状のゴム磁石製品を得
ることのできるゴム磁石用組成物にある。
The present invention reduces the manufacturing cost, which is a problem when kneading a large amount of magnetic material with the above-mentioned rubber, can knead without impairing the mechanical properties of the obtained rubber magnet, and has excellent pressure moldability. A rubber magnet composition having a complicated and satisfying shape.

(問題点を解決するための手段) 本発明のゴム磁石用組成物は、近年開発された化学的方
法により得られる100℃におけるムーニー粘度が5以
上30以下の粉末ゴムに粉末状の磁性材料を添加混合し
て得られることを特徴とする。そして得られたゴム磁石
用組成物は、ゴムの加工工程で、混練、加圧成形、加硫
及び着磁されゴム磁石製品として使用される。
(Means for Solving Problems) The rubber magnet composition of the present invention comprises a powdery magnetic material having a Mooney viscosity of 5 or more and 30 or less at 100 ° C., which is obtained by a recently developed chemical method, and a powdery magnetic material. It is characterized by being obtained by adding and mixing. The obtained composition for rubber magnet is kneaded, pressure-molded, vulcanized and magnetized in the rubber processing step to be used as a rubber magnet product.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明の組成物で特徴的なことは、100℃におけるム
ーニー粘度(以下、100℃におけるムーニー粘度をム
ーニー粘度と云う)が5以上30以下の化学的方法によ
り得られた粉末ゴムを使用することにある。
A characteristic of the composition of the present invention is to use a powdered rubber obtained by a chemical method having a Mooney viscosity at 100 ° C. (hereinafter, the Mooney viscosity at 100 ° C. is referred to as Mooney viscosity) of 5 or more and 30 or less. It is in.

一般に、粉末ゴムは物理的方法あるいは化学的方法によ
って製造される。物理的方法によって製造される粉末ゴ
ムとしては、ベール状ゴムあるいはチップ状ゴムを粉
砕、破砕により粉末化したゴム、ゴムラテックスをスプ
レー乾燥、フラッシュ乾燥、冷凍法等により粉末化した
ゴムがある。化学的方法によって製造される粉末ゴムと
しては、凝固、共沈、マイクロカプセル法あるいはポリ
マーイオンコンプレックス等により粉末化したゴムがあ
る。本発明で使用される粉末ゴムは化学的方法により製
造される粉末ゴムで、特に好ましくはポリマーイオンコ
ンプレクス法により粉末化したゴムで、そのムーニー粘
度が5以上30以下の粉末ゴムである。物理的方法によ
り粉末化したムーニー粘度が30以上の粉末ゴムは、粉
末化直後は粉末状であるが凝集を起すために粉末ゴムと
して使用し得ない。本発明の組成物に使用される粉末ゴ
ムの粒径は特に制限されるものではないが、好ましくは
3mm以下、更に好ましくは2mm以下であって、粒径が3
mmを越えると混練機による混練に長時間を要し好ましく
ない。
Generally, powdered rubber is produced by physical or chemical methods. Examples of the powdered rubber produced by the physical method include rubber obtained by pulverizing and crushing veil-shaped rubber or chip-shaped rubber, and rubber obtained by pulverizing rubber latex by spray drying, flash drying, freezing, or the like. The powdered rubber produced by the chemical method includes rubber powdered by coagulation, coprecipitation, microcapsule method, polymer ion complex or the like. The powder rubber used in the present invention is a powder rubber produced by a chemical method, particularly preferably a rubber powdered by a polymer ion complex method and having a Mooney viscosity of 5 or more and 30 or less. Powder rubber powdered by a physical method and having a Mooney viscosity of 30 or more is powdery immediately after powdering, but cannot be used as powder rubber because it causes agglomeration. The particle size of the rubber powder used in the composition of the present invention is not particularly limited, but is preferably 3 mm or less, more preferably 2 mm or less, and the particle size is 3 mm or less.
If it exceeds mm, it takes a long time for kneading by a kneading machine, which is not preferable.

本発明で云う化学的方法によって得られる粉末ゴムとし
ては、天然ゴム、ポリクロロプレンゴム、アクリロニト
リル−ブタジエン共重合ゴム、ポリイソプレンゴム、エ
チレン−プロピレン共重合ゴム、ポリブタジエンゴム、
スチレン−ブタジエン共重合ゴム、クロロスルホン化ポ
リエチレン、エピクロルヒドリンゴム等の粉末ゴムが挙
げられる。これらの化学的方法によって得られる粉末ゴ
ムの製法の一例は、例えば、特開昭53−73244号の粉
末ゴムの製法を挙げることができる。これはアニオン性
もしくはノニオン性のゴムラテックスにアニオン性水溶
性高分子を混合し、次に該アニオン性水溶性高分子とコ
アセルベーションを起生しうるカチオン性高分子、陽イ
オン界面活性剤等を混合し、ゴムラテックスからゴム粒
子を分離した後、合成樹脂エマルジョンを添加混合し、
脱水乾燥すれば粉末ゴムが得られる。
As the powder rubber obtained by the chemical method in the present invention, natural rubber, polychloroprene rubber, acrylonitrile-butadiene copolymer rubber, polyisoprene rubber, ethylene-propylene copolymer rubber, polybutadiene rubber,
Examples thereof include powder rubbers such as styrene-butadiene copolymer rubber, chlorosulfonated polyethylene, and epichlorohydrin rubber. An example of the method for producing powder rubber obtained by these chemical methods is, for example, the method for producing powder rubber described in JP-A-53-73244. This is a mixture of an anionic or nonionic rubber latex with an anionic water-soluble polymer, and then a cationic polymer capable of causing coacervation with the anionic water-soluble polymer, a cationic surfactant, etc. After separating the rubber particles from the rubber latex, the synthetic resin emulsion is added and mixed,
A powdery rubber is obtained by dehydration and drying.

本発明で云うムーニー粘度とは、日本工業規格、JIS
K 6300(未加硫ゴム物理試験方法)に規定され
る試験装置及び測定方法に基ずいて測定される粘度を指
す。そして本発明に使用される粉末ゴムのムーニー粘度
は5以上30以下、好ましくは10以上20以下の粉末
ゴムが使用される。ムーニー粘度が5未満の化学的方法
によって得られる粉末ゴムは、前述した物理的方法によ
って得られるムーニー粘度が30以下の粉末ゴムと同様
に粉末化直後は粉末状であるが、本発明の組成物を得る
前に凝集し本発明の組成物は得られない。またムーニー
粘度が30を越える粉末ゴムを使用して組成物を得た場
合、次の混練に於いて、混練物のムーニー粘度が高くな
り、ゴムが多量の磁性材料により高いせん断力を受けて
発熱するために、混練中は常時水で混練機を冷却しなけ
ればならず、また混練物の加圧成形において複雑且つ満
足する形状のゴム磁石製品は得られない。すなわち、化
学的方法によってのみ得られるムーニー粘度が5以上3
0以下の粉末ゴムを使用することによって本発明組成物
を得ることができる。
The Mooney viscosity referred to in the present invention refers to Japanese Industrial Standards, JIS
It refers to the viscosity measured based on the test equipment and measurement method specified in K 6300 (Unvulcanized Rubber Physical Test Method). The powdery rubber used in the present invention has a Mooney viscosity of 5 or more and 30 or less, preferably 10 or more and 20 or less. The powdery rubber obtained by a chemical method having a Mooney viscosity of less than 5 is powdery immediately after pulverization like the powdery rubber having a Mooney viscosity of 30 or less obtained by the physical method described above, but the composition of the present invention To obtain the composition of the present invention. Further, when a composition is obtained by using powdered rubber having a Mooney viscosity of more than 30, the Mooney viscosity of the kneaded product becomes high in the next kneading, and the rubber receives a high shearing force due to a large amount of magnetic material to generate heat. Therefore, the kneading machine must be constantly cooled with water during the kneading, and a rubber magnet product having a complicated and satisfactory shape cannot be obtained in the pressure molding of the kneaded product. That is, the Mooney viscosity obtained only by the chemical method is 5 or more and 3 or more.
The composition of the present invention can be obtained by using a rubber powder of 0 or less.

本発明で云う磁性材料とは、ゴム磁石に一般に配合され
る粉末状の磁性材料で、例えばBa−フェライト、Sr−フ
ェライト、Ca−フェライト、Zn−フェライト、Co−フェ
ライト、Mn−Znフェライト、Cu−Znフェライト、Ni−Zn
フェライト、アルニコ、γ−酸化鉄、Pt・Co,Pt・Fe,Mn
・Al・C、純鉄、サマリュウムコバルト等の希土類等が挙
げられる。これらは単独もしくは混合して使用すること
ができる。そして粉末ゴムに添加混合されるこれら磁性
材料の量は粉末ゴム100重量部当たり100〜200
0重量部、好ましくは400〜1500重量部、更に好
ましくは700〜1200重量部が添加混合される。1
00重量部未満では本発明の組成物が目的とするゴム磁
石製品は得られない。2000重量部を越えるとゴムの
結合剤としての結果が小さくなり、得られるゴム磁石製
品の機械的性質が劣り、工業的価値が小さくなる。
The magnetic material referred to in the present invention is a powdery magnetic material generally mixed in rubber magnets, for example, Ba-ferrite, Sr-ferrite, Ca-ferrite, Zn-ferrite, Co-ferrite, Mn-Zn ferrite, Cu. -Zn ferrite, Ni-Zn
Ferrite, Alnico, γ-iron oxide, Pt ・ Co, Pt ・ Fe, Mn
-Rare earths such as Al / C, pure iron, samarium cobalt, etc. can be mentioned. These can be used alone or in combination. The amount of these magnetic materials added to and mixed with the powder rubber is 100 to 200 per 100 parts by weight of the powder rubber.
0 parts by weight, preferably 400 to 1500 parts by weight, and more preferably 700 to 1200 parts by weight are added and mixed. 1
If the amount is less than 00 parts by weight, the rubber magnet product intended by the composition of the present invention cannot be obtained. If it exceeds 2000 parts by weight, the result of the rubber as a binder becomes small, the mechanical properties of the obtained rubber magnet product are deteriorated, and the industrial value becomes small.

本発明の組成物の特徴は、粒状もしくは粉状であって、
本発明の組成物を得る方法としては、パウダーミキサー
が使用される。パウダーミキサーとしてはパドルミキサ
ー、マラーミキサー、タンブルミキサー、リボンブレン
ダー、高速ミキサー、攪拌翼形混合機等が挙げられる。
或いはゴムの混練に使用するインターナルミキサー、双
腕形ニーダー等も使用される。そしてこれらのパウダー
ミキサーにより粉末ゴムと粉末状の磁性材料を混合する
ことによりえられる。また必要に応じてゴム用配合剤、
例えば、ゴム加硫剤、加硫促進剤、老化防止剤、粘着付
与剤、可塑剤、軟化剤等が適宜添加混合される。得られ
た本発明の組成物は、練りロール機、インターナルミキ
サー、双腕形ニーダー等で混練される。混練に於いて本
発明の組成物は極めて短時間に混練が出来、混練物の発
熱もなく、且つムーニー粘度の低い混練物が得られる。
この混練物を例えば押出成形機により紐状に加圧成形す
ると表面肌の美しい紐を得ることができる。また本発明
の組成物は混練機を使用せずそのまま加圧成形機により
加圧成形することもできる。
The composition of the present invention is characterized in that it is granular or powdery,
A powder mixer is used as a method for obtaining the composition of the present invention. Examples of the powder mixer include a paddle mixer, a muller mixer, a tumble mixer, a ribbon blender, a high speed mixer, and a stirring blade type mixer.
Alternatively, an internal mixer, a double-arm kneader or the like used for kneading rubber may also be used. And it is obtained by mixing powdered rubber and powdery magnetic material with these powder mixers. If necessary, a compounding agent for rubber,
For example, a rubber vulcanizing agent, a vulcanization accelerator, an antiaging agent, a tackifier, a plasticizer, a softening agent and the like are appropriately added and mixed. The obtained composition of the present invention is kneaded with a kneading roll machine, an internal mixer, a double-arm kneader, or the like. In kneading, the composition of the present invention can be kneaded in an extremely short time, does not generate heat in the kneaded product, and has a low Mooney viscosity.
When this kneaded product is pressure-molded into a string shape by, for example, an extruder, a string having a beautiful surface texture can be obtained. Further, the composition of the present invention can be directly pressure molded by a pressure molding machine without using a kneading machine.

(発明の効果) 以上の説明から明らかなように、本発明のゴム磁石用組
成物は、ゴム磁石製品を製造する場合の問題点であった
製造経費の面を軽減し、しかも加圧成形に於いて複雑且
つ満足する形状に加圧成形できることを特徴とする現在
まで類を見なかった組成物である。
(Effects of the Invention) As is clear from the above description, the rubber magnet composition of the present invention reduces the manufacturing cost, which was a problem when manufacturing a rubber magnet product, and is suitable for pressure molding. It is an unprecedented composition characterized in that it can be pressure-molded into a complex and satisfying shape.

(実施例) 以下実施例により本発明を説明するが、これら例示的な
ものであり、本発明の範囲を限定するものではない。
(Examples) The present invention will be described below with reference to Examples, but these are merely illustrative and do not limit the scope of the present invention.

なお、実施例1〜3で使用した粉末ゴムは、次に示す方
法により製造した。
The powder rubbers used in Examples 1 to 3 were manufactured by the following method.

窒素気流中でロジンカリ石けん4.0重量%、苛性ソーダ
0.4重量%、ホルムアルデヒド、ナフタレンスルホン酸
ソーダの縮合物0.4重量%を水100重量%に溶解し、
次いでn−ドデシルメルカプタン0.35重量%、2,6−ジ
−t−ブチル−p−クレゾール0.1重量%を溶解した
クロロプレン100重量%を加えて乳化し、40℃で過
硫酸カリウムの1%水溶液を滴下しながら重合を行っ
た。重合は70%転化率で停止させ、未反応クロロプレ
ンを留去して乾燥重量が35%のクロロプレン重合体ラ
テックスを得た。
Rosin potassium soap 4.0% by weight, caustic soda in nitrogen stream
0.4% by weight, 0.4% by weight of a condensate of formaldehyde and sodium naphthalene sulfonate are dissolved in 100% by weight of water,
Next, 100% by weight of chloroprene in which 0.35% by weight of n-dodecyl mercaptan and 0.1% by weight of 2,6-di-t-butyl-p-cresol were dissolved was added and emulsified, and a 1% aqueous solution of potassium persulfate was added at 40 ° C. Polymerization was carried out while dropping. Polymerization was stopped at 70% conversion, and unreacted chloroprene was distilled off to obtain a chloroprene polymer latex having a dry weight of 35%.

次にこのラテックスを用いて、特開昭53−73244
号の粉末ゴムの製法に従って、粉末ゴムを次に示す方法
により製造した。
Next, using this latex, JP-A-53-73244
According to the method for producing powder rubber of No. 3, a powder rubber was produced by the following method.

上記クロロプレン重合体ラテックス300gにアニオン
性水溶性高分子(カルボキシメチルセルローズナトリウ
ム)の1%水溶液1050gを加えて、均一溶液になる
まで混合し、10%の酢酸水溶液をゆっくり添加してPH
6.3に調節した。次いで、この混合溶液を高級アミン
(ポリオキシエチレン牛脂アルキルプロピレンジアミ
ン)の酢酸塩2重量%を含有する0.5%水溶液4200
g中に室温で攪拌しながら添加すると該重合体はただち
に粉末状に分離した。粉末分離後のPHは4.9であった。
次いで、綿布で別、洗浄後に遠心分離機で脱水すると
手で容易に粉末になる湿潤した重合体を得た。さらに流
動乾燥機で、粒径が1mmの粉末クロロプレンゴム(以下
粉末CRと云う)を得た。得られた粉末CRのムーニー
粘度は8であった。
To 300 g of the above chloroprene polymer latex, 1050 g of a 1% aqueous solution of an anionic water-soluble polymer (sodium carboxymethylcellulose) was added and mixed until a uniform solution was obtained, and 10% aqueous acetic acid solution was slowly added to obtain PH.
Adjusted to 6.3. Next, this mixed solution was added to a 0.5% aqueous solution 4200 containing 2% by weight of acetate of a higher amine (polyoxyethylene tallow alkyl propylene diamine).
The polymer immediately separated into a powder when it was added to gram with stirring at room temperature. The PH after the powder separation was 4.9.
Then, a wet polymer was obtained which was separated by a cotton cloth, washed, and then dehydrated by a centrifuge to easily become a powder by hand. Further, powder chloroprene rubber (hereinafter referred to as powder CR) having a particle diameter of 1 mm was obtained by a fluidized drier. The Mooney viscosity of the obtained powder CR was 8.

実施例4〜5及び比較例3に使用した粉末CRは実施例
1〜3に使用した粉末CRの上記粉末ゴムの製造におい
て、n−ドデシルメルカプタンの0.35重量%を0.30重量
%に変えた以内、上記と同様な操作により粉末CRを得
た。得られた粉末CRのムーニー粘度は20であった。
The powder CR used in Examples 4 to 5 and Comparative Example 3 was changed from 0.35 wt% of n-dodecyl mercaptan to 0.30 wt% in the production of the powder rubber of the powder CR used in Examples 1 to 3, Powder CR was obtained by the same operation as above. The Mooney viscosity of the obtained powder CR was 20.

また比較例2に使用した粉末CRは東洋曹達工業(株)
製、スカイプレンB−30のクロロプレンゴムラテック
スを乾燥重量が35%になるように調整し、次に上記に
示した特開昭53−73244号の粉末ゴムの製法と同
様な操作により粉末CRを得た。得られた粉末CRのム
ーニー粘度は53であった。
The powder CR used in Comparative Example 2 is Toyo Soda Industry Co., Ltd.
The chloroprene rubber latex of SKYPRENE B-30 was prepared so as to have a dry weight of 35%, and then powder CR was prepared by the same operation as the above-described method for producing powder rubber of JP-A-53-73244. Obtained. The Mooney viscosity of the obtained powder CR was 53.

実施例1〜3及び比較例1,2 実施例1は粉末CRを30の攪拌翼形混合機に入れ、
それに使用粉末CR100重量部当たり、磁性材料であ
るBa−フェライト(戸田工業(株)製 FEROTOP
GR−500)を500重量部、亜鉛華5重量部、酸
化マグネシウム4重量部、エチレンチオウレア0.8重量
部、ナフテン系オイル8重量部を添加し、常温で20秒
間、850r.p.m.で回転翼を回転し、ゴム磁石用組成物
を得た。次に(株)東洋精機製作所製 8インチロール
で、ゴム磁石用組成物ロールへ投入してから混練物が得
られるまでの時間の測定を行った。混練時間を表−1に
示す。次にその混練物を2mmシート成形用金型に充填
し、金型を180℃で25分間、50kg/cm2で加圧し、
加圧成形加硫を行った。得られた2mmシートの機械的性
質を知るために、JIS K6301に従って引張強さ
の測定を行った。測定結果を表−1に示す。一方に於い
て、得られた混練物の流動性を知るために、混練物のム
ーニー粘度の測定を行った。表−1に測定結果を示す。
Examples 1 to 3 and Comparative Examples 1 and 2 In Example 1, powder CR was placed in a stirring blade mixer of 30
In addition, 100 parts by weight of powder CR used, Ba-ferrite, which is a magnetic material (FEROTOP manufactured by Toda Kogyo KK)
GR-500), 500 parts by weight, 5 parts by weight of zinc, 4 parts by weight of magnesium oxide, 0.8 parts by weight of ethylenethiourea, and 8 parts by weight of naphthenic oil are added, and the rotor is rotated at 850 rpm for 20 seconds at room temperature. Then, a composition for a rubber magnet was obtained. Next, with an 8-inch roll manufactured by Toyo Seiki Seisaku-sho, Ltd., the time from when the mixture was put into the rubber magnet composition roll to when a kneaded product was obtained was measured. The kneading time is shown in Table-1. Next, the kneaded product was filled in a 2 mm sheet molding die, and the die was pressed at 180 ° C. for 25 minutes at 50 kg / cm 2 ,
Pressure molding vulcanization was performed. In order to know the mechanical properties of the obtained 2 mm sheet, the tensile strength was measured according to JIS K6301. The measurement results are shown in Table-1. On the other hand, in order to know the fluidity of the obtained kneaded product, the Mooney viscosity of the kneaded product was measured. Table 1 shows the measurement results.

実施例2は実施例1のBa−フェライト500重量部を1
000重量部に変えた以外実施例1と同様な方法に従っ
た。
In Example 2, 1 part by weight of 500 parts by weight of Ba-ferrite of Example 1 was used.
The same method as in Example 1 was followed except that the amount was changed to 000 parts by weight.

実施例3は実施例1のBa−フェライト500重量部を1
500重量部に変えた以外実施例1と同様な方法に従っ
た。
In Example 3, 1 part by weight of 500 parts by weight of Ba-ferrite of Example 1 was used.
The same method as in Example 1 was followed except that the amount was changed to 500 parts by weight.

比較例1は実施例1の粉末CRをムーニー粘度が52の
チップ状CR(東洋曹達工業(株)製スカイプレンB−
30)に変え、表−1に示す比較例1の組成物を8イン
チロールで混練して混練物を得た。混練に25分間を要
した。得られた混練物を実施例1と同様な方法によりム
ーニー粘度の測定と引張強さの測定を行った。
In Comparative Example 1, the powder CR of Example 1 was replaced with chip CR having a Mooney viscosity of 52 (Skyprene B- manufactured by Toyo Soda Kogyo Co., Ltd.).
30), and the composition of Comparative Example 1 shown in Table 1 was kneaded with an 8-inch roll to obtain a kneaded product. It took 25 minutes for kneading. The obtained kneaded product was subjected to measurement of Mooney viscosity and tensile strength in the same manner as in Example 1.

比較例2は粉末CRを用いて実施例2と同様な方法によ
り組成物を得て、次に8インチロールで混練を行った
が、混練物はロールへの巻き付きが悪く、また混練物は
素手では持てないほど高い発熱を示し混練出来なかった
ので、混練を中止した。
In Comparative Example 2, powder CR was used to obtain a composition in the same manner as in Example 2, and then kneading was performed with an 8-inch roll. The kneaded product was poorly wound around the roll, and the kneaded product was bare handed. However, the temperature was too high to hold and kneading could not be done, so kneading was stopped.

表−1から、実施例1〜3のゴム磁石用組成物は比較例
1に比べて、極めて短い時間で混練できることが分か
る。また実施例1〜3は比較例1に比べ著しく低いムー
ニー粘度を示しており、このことから加圧成形に於いて
極めて優れた流動性を示すことは明らかで、これは化学
的方法によってのみ得られるムーニー粘度が5以上30
以下の粉末CRが混練物の流動性を増すことによると考
えられる。そして実施例1〜3で得た2mmシートの引張
強さは比較例1に比べて明らかに高い値を示した。これ
は推測ではあるが、実施例1〜3のゴム磁石用組成物
は、ロールでの混練時間が短く、また混練物のムーニー
粘度が低いことにより、混練に於いて混練物の発熱が小
さく、ゴムの劣化が起こらなかったものと考えられる。
反面、比較例1は混練時間が長く、また混練物のムーニ
ー粘度が高いために混練中に混練物が高い発熱を起こし
ゴムが劣化し、低い引張強さを示したものと考えられ
る。
From Table-1, it can be seen that the rubber magnet compositions of Examples 1 to 3 can be kneaded in an extremely short time as compared with Comparative Example 1. In addition, Examples 1 to 3 have significantly lower Mooney viscosities than Comparative Example 1, and it is clear that they show extremely excellent fluidity in pressure molding, which is obtained only by a chemical method. Mooney viscosity of 5 or more 30
It is considered that the following powder CR increases the fluidity of the kneaded product. The tensile strength of the 2 mm sheets obtained in Examples 1 to 3 was obviously higher than that in Comparative Example 1. Although this is an estimate, the rubber magnet compositions of Examples 1 to 3 have a short kneading time on the rolls, and the low Mooney viscosity of the kneaded product causes a small heat generation of the kneaded product in the kneading. It is probable that the rubber did not deteriorate.
On the other hand, in Comparative Example 1, the kneading time is long and the Mooney viscosity of the kneaded product is high, so that the kneaded product generates a large amount of heat during the kneading, the rubber is deteriorated, and the tensile strength is considered to be low.

実施例4,5及び比較例3 実施例4は実施例1のBa−フェライト500重量部をSr
−フェライト(戸田工業(株)製 FEROTOP G
P−941)700重量部に変えた以外、実施例1と同
様な方法に従った。
Examples 4 and 5 and Comparative Example 3 In Example 4, 500 parts by weight of the Ba-ferrite of Example 1 was added to Sr.
-Ferrite (Feroto G manufactured by Toda Kogyo Co., Ltd.)
P-941) The same procedure as in Example 1 was repeated except that the amount was changed to 700 parts by weight.

実施例5は実施例4のSr−フェライト700重量部を1
200重量部に変えた以外、実施例4と同様な方法に従
った。
In Example 5, 1 part by weight of 700 parts by weight of Sr-ferrite of Example 4 was used.
The same method as in Example 4 was followed except that the amount was changed to 200 parts by weight.

比較例3は実施例4のSr−フェライト700重量部を2
500重量部に変えた以外、実施例4と同様な方法に従
って混練物を得ようとしたが、ロール混練に於いて混練
物の発熱が高く、また混練物のロールへの巻き付きが悪
く、ロール作業が困難であるため、混練を中止した。
In Comparative Example 3, 700 parts by weight of Sr-ferrite of Example 4 was added.
A kneaded product was tried to be obtained in the same manner as in Example 4 except that the amount was changed to 500 parts by weight. However, in the roll kneading, the heat of the kneaded product was high and the kneading of the kneaded product on the roll was poor, so that the roll work was performed. However, the kneading was stopped.

表1に示すように実施例4,5のゴム磁石用組成物は短時
間に混練でき、その混練物のムーニー粘度は低く、且
つ、得られる2mmシートは大きい引張強さを示した。比
較例3のロール混練で、混練物の発熱が高く、ロールへ
の巻き付きが悪い原因として、フェライト量が2000
重量部を越えると、混練物の流動性に与えるゴムの効果
が小さくなりムーニー粘度が異常に高くなること、およ
びフェライトに対するゴムのバインダーとしての効果が
小さくなること等が考えられる。
As shown in Table 1, the rubber magnet compositions of Examples 4 and 5 were able to be kneaded in a short time, the Mooney viscosity of the kneaded product was low, and the obtained 2 mm sheet exhibited high tensile strength. In the roll kneading of Comparative Example 3, the exothermic heat of the kneaded product was high, and the reason why the winding around the roll was poor was that the amount of ferrite was 2000.
If it exceeds the weight part, it is considered that the effect of the rubber on the fluidity of the kneaded product becomes small and the Mooney viscosity becomes abnormally high, and the effect of the rubber as a binder for ferrite becomes small.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】100℃におけるムーニー粘度が5以上3
0以下の化学的方法により得られた粉末ゴム100重量
部当たり粉末状磁性材料100〜2000重量部を添加
混合して成るゴム磁石用組成物。
1. A Mooney viscosity at 100 ° C. of 5 or more 3
A rubber magnet composition comprising 100 to 2000 parts by weight of a powdery magnetic material added and mixed with 100 parts by weight of a powdered rubber obtained by a chemical method of 0 or less.
JP24164985A 1985-10-30 1985-10-30 Composition for rubber magnet Expired - Lifetime JPH066642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24164985A JPH066642B2 (en) 1985-10-30 1985-10-30 Composition for rubber magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24164985A JPH066642B2 (en) 1985-10-30 1985-10-30 Composition for rubber magnet

Publications (2)

Publication Number Publication Date
JPS62101642A JPS62101642A (en) 1987-05-12
JPH066642B2 true JPH066642B2 (en) 1994-01-26

Family

ID=17077455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24164985A Expired - Lifetime JPH066642B2 (en) 1985-10-30 1985-10-30 Composition for rubber magnet

Country Status (1)

Country Link
JP (1) JPH066642B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819273B2 (en) * 1987-08-31 1996-02-28 藤倉ゴム工業株式会社 Aging resistance ferrite rubber mixture
CN105131382A (en) * 2015-09-17 2015-12-09 蚌埠市神龙笔业有限公司 Magnetic eraser head of pencil

Also Published As

Publication number Publication date
JPS62101642A (en) 1987-05-12

Similar Documents

Publication Publication Date Title
JP4633703B2 (en) Proteolytic natural rubber production method
US4194999A (en) Process for producing powdery rubber
KR920000377B1 (en) A process for the production of tack-free pourable fuller containing elastomer powder
JP2019052275A (en) Carbon nanotube/carbon black/rubber composite and production method of the same
CN107428883B (en) Composition comprising microgel based on NBR
JP5094135B2 (en) Method for producing natural rubber and / or synthetic isoprene rubber masterbatch using powder rubber and filler
JP2013022812A (en) Method for producing reinforcing filler and rubber composition
EP3572457B1 (en) Inorganic composite for rubber reinforcement, method for preparing the same, and rubber composition for tires comprising the same
JPS5827709A (en) Manufacture of powdery emulsion polymerization butadiene rubber
JPH066642B2 (en) Composition for rubber magnet
JP2007002176A (en) Rubber composition and method for producing the same
JP2019089901A (en) Method of producing master batch, method of producing rubber composition for tire, and method of manufacturing tire
WO2016002235A1 (en) Process for producing wet rubber masterbatch
US3926877A (en) Process for isolating polychloroprene
CN110028708A (en) A kind of preparation method of wet oxidation zinc predispersed masterbatch
JPH07116324B2 (en) High hardness rubber composition
US2834991A (en) Method of preparing compounding ingredients for rubber
JP2018090758A (en) Carbon nanotube/rubber composite body and method for producing the same
JPS6339938A (en) Highly filled rubber composition
JPS62138539A (en) Composition for electrically-conductive rubber
JP2019089900A (en) Method of producing master batch, method of producing rubber composition for tire, and method of manufacturing tire
CN111995802B (en) Raw material composition, rubber material, and preparation method and application thereof
JPS6341548A (en) Production of rubber composition
JPH083202A (en) Formed mastication agent that does not cause caking
JP7138022B2 (en) MASTERBATCH MANUFACTURING METHOD AND TIRE MANUFACTURING METHOD