JPH0666176A - Method and device for controlling engine and controller - Google Patents

Method and device for controlling engine and controller

Info

Publication number
JPH0666176A
JPH0666176A JP21783892A JP21783892A JPH0666176A JP H0666176 A JPH0666176 A JP H0666176A JP 21783892 A JP21783892 A JP 21783892A JP 21783892 A JP21783892 A JP 21783892A JP H0666176 A JPH0666176 A JP H0666176A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
vicinity
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21783892A
Other languages
Japanese (ja)
Other versions
JP3219164B2 (en
Inventor
Kazuya Yokota
和也 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP21783892A priority Critical patent/JP3219164B2/en
Publication of JPH0666176A publication Critical patent/JPH0666176A/en
Application granted granted Critical
Publication of JP3219164B2 publication Critical patent/JP3219164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To reduce the detection quantity of NOx by installing a means for distributing the rich mixed gas in the vicinity of a spark plug when the aimed air-fuel ratio is smaller than a specified value, while distributes the lean mixed gas in other parts. CONSTITUTION:At the intake port 4 of an engine 1, a throttle valve 9, surge tank 10, and an air mixture injector 11 for injection-supplying fuel are arranged in succession. Further, one edge of the air mixture injector 11 is connected with the upstream side of the throttle valve 9 through a passage 41 having an air mixing control valve 42. Further, the air mixing control valve 42 is controlled by an engine control unit 30 on the basis of a variety of detection signals supplied from a variety of sensors 20, 25, and 26 for detecting the operation state of the engine 1. In this case, if the aimed air-fuel ratio is smaller than a specified value, the rich mixed air is distributed in the vicinity of a spark plug, while the lean mixed gas is distributed in other parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジンの制御方法およ
び制御装置に関し、特に、窒素酸化物の排出量を低減す
るエンジンの制御方法および制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine control method and control apparatus, and more particularly to an engine control method and control apparatus that reduces the amount of nitrogen oxide emissions.

【0002】[0002]

【従来の技術】従来、ポート形状,インジエクタ設置場
所,噴射方向,噴射時期などによつて、筒内混合気配置
を層状化する概念は広く知られている。この技術のメリ
ツトは、点火プラグ近傍の空燃比を、混合気全体の平均
よりリツチに設定することで、図7に101で示す一般
的なエンジンに比べて、同図に102で示すように、リ
ーン側の燃焼領域を拡大、すなわち、失火限界をより高
めるられることにある。
2. Description of the Related Art Conventionally, the concept of stratifying the in-cylinder air-fuel mixture arrangement is widely known depending on the port shape, the location of the injector, the injection direction, the injection timing, and the like. The merit of this technique is to set the air-fuel ratio in the vicinity of the spark plug to a richer than the average of the entire air-fuel mixture, and as shown by 102 in FIG. 7, compared with a general engine shown by 101 in FIG. The combustion area on the lean side can be expanded, that is, the misfire limit can be further increased.

【0003】また、従来、噴霧の霧化状態改善技術とし
てエアミツクスインジエクタ(以下「AMI」という)
があり、そのエア量制御法に関して特開平2−2338
67がある。これは、リーン運転時にアシストエアを導
入することによつて、燃焼安定性を改善しようとするも
のである。この技術のメリツトは、リーン運転時の安定
性や失火限界の改善を、比較的簡便に行えることがあげ
られる。
Further, conventionally, as a technology for improving the atomization state of spray, an air mix injector (hereinafter referred to as "AMI")
JP-A-2-2338 regarding the air amount control method.
There is 67. This is intended to improve combustion stability by introducing assist air during lean operation. The merit of this technology is that the stability during lean operation and the improvement of the misfire limit can be improved relatively easily.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来例に
は、図7に示すように、次のような問題点があつた。す
なわち、図7は空燃比に対する窒素酸化物NOxの排出
量および燃料消費率beを示した特性図である。燃料消
費率beの特性線101a〜103aによると、一般の
燃焼101aに比べて層状化102aおよび均一化10
3aの燃焼の方が、燃料消費率beが小さくて燃費がよ
い。しかし、前述の筒内混合気配置を層状化する技術に
おいては、層状化の特性線102に示すように、中間的
な空燃比使用時、例えば空燃比A/F=18〜20にお
いては、一般的なエンジンの燃焼による特性線101に
比べて、窒素酸化物NOx排出量が増加する欠点があつ
た。
However, the above conventional example has the following problems as shown in FIG. That is, FIG. 7 is a characteristic diagram showing the emission amount of nitrogen oxide NOx and the fuel consumption rate be with respect to the air-fuel ratio. According to the characteristic curves 101a to 103a of the fuel consumption rate be, stratification 102a and homogenization 10 compared to general combustion 101a.
Combustion 3a has a smaller fuel consumption rate be and better fuel efficiency. However, in the above-described technique for stratifying the in-cylinder air-fuel mixture arrangement, as shown by the stratification characteristic line 102, when an intermediate air-fuel ratio is used, for example, when the air-fuel ratio A / F = 18 to 20, in general, Compared with the characteristic curve 101 due to the combustion of a typical engine, there is a drawback that the nitrogen oxide NOx emission amount increases.

【0005】また、前述の噴霧の霧化状態改善技術にお
いては、均一化燃焼の特性線103に示すように、失火
限界の改善は層状化燃焼の場合より比較的小さくて、リ
ーン燃焼のメリツトを充分に引出せない欠点があつた。
Further, in the above-mentioned atomization state improving technique of the spray, as shown by the characteristic line 103 of uniformized combustion, the improvement of the misfire limit is relatively smaller than that in the case of stratified combustion, and the merit of lean combustion is obtained. There was a drawback that it could not be pulled out sufficiently.

【0006】[0006]

【課題を解決するための手段】本発明は、前記の課題を
解決することを目的としたもので、前記の課題を解決す
る一手段として、以下の構成を備える。すなわち、設定
された目標空燃比が第1の所定値よりも小さい場合は点
火プラグ近傍にリツチ混合気を分布させ前記点火プラグ
近傍以外の燃焼室には該リツチ混合気よりもリーンなリ
ーン混合気を分布させ、設定された目標空燃比が前記第
1の所定値よりも大きい場合は前記燃焼室内全体に略均
一な空燃比の混合気を存在させるエンジンの制御方法と
する。
SUMMARY OF THE INVENTION The present invention is intended to solve the above problems, and has the following structure as one means for solving the above problems. That is, when the set target air-fuel ratio is smaller than the first predetermined value, the rich air-fuel mixture is distributed in the vicinity of the spark plug, and the lean air-fuel mixture leaner than the rich air-fuel mixture is provided in the combustion chambers other than the vicinity of the spark plug. When the set target air-fuel ratio is larger than the first predetermined value, the engine control method is such that an air-fuel mixture having a substantially uniform air-fuel ratio is present in the entire combustion chamber.

【0007】また、点火プラグ近傍にリツチ混合気を分
布させ前記点火プラグ近傍以外の燃焼室には該リツチ混
合気よりリーンなリーン混合気を分布させる層状化供給
手段と、前記燃焼室内全体に略均一な空燃比の混合気を
存在させる均一供給手段と、目標空燃比を設定する目標
空燃比設定手段と、前記目標空燃比設定手段によつて設
定された目標空燃比が第1の所定値よりも小さい場合は
前記層状化供給手段を選択し前記目標空燃比設定手段に
よつて設定された目標空燃比が前記第1の所定値よりも
大きい場合は前記均一供給手段を選択する制御手段とを
備えたエンジンの制御装置とする。
Further, a stratified supply means for distributing a rich air-fuel mixture in the vicinity of the spark plug and a lean air-fuel mixture leaner than the rich air-fuel mixture in the combustion chamber other than the vicinity of the spark plug, and a stratified supply means for the entire combustion chamber. The uniform supply means for allowing the air-fuel mixture having a uniform air-fuel ratio to exist, the target air-fuel ratio setting means for setting the target air-fuel ratio, and the target air-fuel ratio set by the target air-fuel ratio setting means are smaller than the first predetermined value. Control means for selecting the stratified supply means, and for selecting the uniform supply means when the target air-fuel ratio set by the target air-fuel ratio setting means is larger than the first predetermined value. It shall be the engine control device equipped.

【0008】[0008]

【作用】以上の構成によつて、NOxの排出量が少ない
エンジンの制御方法および制御装置を提供できる。
With the above-described structure, it is possible to provide an engine control method and a control device for reducing the amount of NOx emitted.

【0009】[0009]

【実施例】以下、本発明に係る一実施例のエンジンの制
御装置を図面を参照して詳細に説明する。図2は本実施
例の全体構成例を示す図である。図2において、エンジ
ン本体1の燃焼室3内にはピストン2が摺動していて、
燃焼室3には吸気ポート4および排気ポート6が連結さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An engine control device according to an embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a diagram showing an example of the overall configuration of this embodiment. In FIG. 2, the piston 2 slides in the combustion chamber 3 of the engine body 1,
An intake port 4 and an exhaust port 6 are connected to the combustion chamber 3.

【0010】また、吸気ポート4と燃焼室3の間には吸
気弁7が、排気ポート6と燃焼室3との間には排気弁8
がそれぞれ配設されている。吸気ポート4の上流側に
は、吸入空気量を制御するスロツトル弁9が、その下流
側には吸気拡大室としてのサージタンク10が設けら
れ、さらにその下流には、燃料を噴射供給するエアミク
スチヤインジエクタ(以下「AMI」という)11が配
設されている。
An intake valve 7 is provided between the intake port 4 and the combustion chamber 3, and an exhaust valve 8 is provided between the exhaust port 6 and the combustion chamber 3.
Are arranged respectively. A throttle valve 9 for controlling the intake air amount is provided on the upstream side of the intake port 4, a surge tank 10 as an intake expansion chamber is provided on the downstream side thereof, and an air mix for injecting and supplying fuel further downstream thereof. A chain ejector (hereinafter referred to as “AMI”) 11 is provided.

【0011】図3はAMI11の一例を示す要部断面図
である。図3に示すように、AMI11には、燃料を微
粒化するためのアシストエアを供給するエアミクスチヤ
通路41a,41bが連結されている。エアミクスチヤ
通路41a,41bは、図2に示すエアミクスチヤ通路
41へ連結され、該通路41の途中には、該通路41の
開閉を制御するエアミクス制御弁42が配設され、該通
路41の他端は、吸気ポート4のスロツトル弁9の上流
側へ連結されている。
FIG. 3 is a sectional view of an essential part showing an example of the AMI 11. As shown in FIG. 3, the AMI 11 is connected to air mixture passages 41a and 41b for supplying assist air for atomizing the fuel. The air mixing passages 41a, 41b are connected to the air mixing passage 41 shown in FIG. 2, an air mixing control valve 42 for controlling the opening and closing of the passage 41 is disposed in the middle of the passage 41, and the other end of the passage 41 is The intake port 4 is connected to the upstream side of the throttle valve 9.

【0012】また、図2において、エアフローメータ
(以下「AFM」という)20内に設けられたエアフロ
ーセンサ(以下「AFS」という)20aは、吸気ポー
ト4への吸入空気量を検出して空気量信号を出力し、ク
ランク角センサ25は、エンジン回転速度信号を出力
し、排気ポート6に配設されたO2センサ26は、A/
F信号を出力する。
Further, in FIG. 2, an air flow sensor (hereinafter referred to as "AFS") 20a provided in an air flow meter (hereinafter referred to as "AFM") 20a detects an intake air amount to the intake port 4 and detects the air amount. The crank angle sensor 25 outputs an engine rotation speed signal, and the O2 sensor 26 disposed in the exhaust port 6 outputs A /
Output F signal.

【0013】なお、O2センサ26の下流側には、触媒
装置(不図示)が配設されている。また、エンジン制御
ユニツト(以下「ECU」という)30は、上記の各セ
ンサなどからの信号を受信するとともに、デイストリビ
ユータ(不図示)へ点火時期制御信号(不図示)、AM
I11へ燃料噴射量を調整するための噴射信号、エアミ
クス制御弁42を制御してAMI11へアシストエアを
供給するためのエアアシスト信号、後述するスワール弁
13の開閉を制御するスワール信号などを送出する。ま
た、ECU30は、内蔵するメモリ(不図示)に、後述
するマツプを格納する。
A catalyst device (not shown) is arranged downstream of the O 2 sensor 26. Further, an engine control unit (hereinafter referred to as “ECU”) 30 receives signals from the above-mentioned sensors and the like, and sends an ignition timing control signal (not shown), AM to a distributor (not shown).
An injection signal for adjusting the fuel injection amount to I11, an air assist signal for controlling the air control valve 42 to supply assist air to the AMI 11, a swirl signal for controlling the opening and closing of the swirl valve 13, which will be described later, etc. are sent out. . The ECU 30 also stores a map described later in a built-in memory (not shown).

【0014】図4は燃焼室3の吸排気の関係を示す概念
図で、燃焼室3の吸排気弁側(以下「上面側」という)
から視た図である。図4において、吸入ポート4に導か
れた吸入空気は、吸気行程で燃焼室3内へ導入される。
なお、燃焼室3内へ導入される吸入空気には、所定のタ
イミングで、AMI11によつて燃料が混合される。
FIG. 4 is a conceptual view showing the relationship between intake and exhaust of the combustion chamber 3, and the intake and exhaust valve side of the combustion chamber 3 (hereinafter referred to as "upper surface side").
FIG. In FIG. 4, the intake air guided to the intake port 4 is introduced into the combustion chamber 3 in the intake stroke.
The intake air introduced into the combustion chamber 3 is mixed with fuel by the AMI 11 at a predetermined timing.

【0015】また、燃焼室3へはスワール通路12が連
結されていて、スワール通路12の途中には、該通路の
開閉を制御するスワール弁13が配設されている。吸気
行程において、スワール弁13を開くと、燃焼室3の周
辺部位に矢印Sで示すスワールが発生する。さらに、燃
焼室3上面側の略中央部位には、電気的にデイストリビ
ユータ(不図示)へ接続された点火プラグ5が設けられ
ていて、圧縮行程で圧縮された混合気は、所定のタイミ
ングで点火プラグ5によつて点火され燃焼した後、排気
行程において、燃焼室3内の空気は、排気ポート6に導
かれて排気される。
A swirl passage 12 is connected to the combustion chamber 3, and a swirl valve 13 for controlling the opening and closing of the passage is arranged in the middle of the swirl passage 12. When the swirl valve 13 is opened during the intake stroke, a swirl indicated by an arrow S is generated in the peripheral portion of the combustion chamber 3. Further, a spark plug 5 electrically connected to a distributor (not shown) is provided at a substantially central portion on the upper surface side of the combustion chamber 3, and the air-fuel mixture compressed in the compression stroke has a predetermined timing. After being ignited by the spark plug 5 and burning, the air in the combustion chamber 3 is guided to the exhaust port 6 and exhausted in the exhaust stroke.

【0016】次に、本実施例における燃焼制御について
詳細に説明する。図5はエンジンの空燃比とNOx排出
量との一般的な関係を示す図で、横軸は空燃比A/F
を、縦軸はNOx排出量を表している。図5において、
カーブAは、燃焼室3内全体に略均一な空燃比A/Fの
混合気を存在させて燃焼させる均一燃焼の場合の空燃比
A/FとNOx排出量の関係である。同図に示すよう
に、均一燃焼は、空燃比A/F=16付近にNOx排出
量のピークが存在し、その前後の空燃比A/FではNO
x排出量が漸減する特性を示し、空燃比A/F=20〜
25のリーン燃焼において失火限界を迎える。
Next, the combustion control in this embodiment will be described in detail. FIG. 5 is a diagram showing a general relationship between the engine air-fuel ratio and the NOx emission amount, and the horizontal axis shows the air-fuel ratio A / F.
And the vertical axis represents the NOx emission amount. In FIG.
A curve A shows the relationship between the air-fuel ratio A / F and the NOx emission amount in the case of uniform combustion in which the air-fuel mixture having a substantially uniform air-fuel ratio A / F is present in the entire combustion chamber 3 and burned. As shown in the figure, in the uniform combustion, there is a peak of NOx emission amount near the air-fuel ratio A / F = 16, and the NOx emission amount before and after that peak is
x Indicates that the emission amount gradually decreases, and the air-fuel ratio A / F = 20-
The lean burn limit of 25 is reached.

【0017】また、カーブBは、点火プラグ5の近傍に
リツチ混合気を、燃焼室3の周辺部位にリーン混合気を
それぞれ分布させて燃焼させる層状燃焼の場合の空燃比
A/FとNOx排出量の関係である。同図に示すよう
に、層状燃焼は、空燃比A/F=18〜20の比較的リ
ーン側にNOx排出量のピークが存在し、その前後の空
燃比A/FではNOx排出量が漸減する特性を示し、均
一燃焼における失火限界の空燃比A/F=20〜25を
超える燃焼領域を有している。
Curve B shows the air-fuel ratio A / F and NOx emission in the case of stratified combustion in which the rich mixture is distributed in the vicinity of the spark plug 5 and the lean mixture is distributed in the peripheral portion of the combustion chamber 3. It is a relationship of quantity. As shown in the figure, in the stratified combustion, there is a peak of NOx emission amount on the relatively lean side of the air-fuel ratio A / F = 18 to 20, and the NOx emission amount gradually decreases at the air-fuel ratio A / F before and after that. It has characteristics and has a combustion region in which the air-fuel ratio A / F of the misfire limit in uniform combustion exceeds 20 to 25.

【0018】なお、図5に示した特性は、エンジン型式
によつて異なり、具体的に特性を得る場合は、対象のエ
ンジンを作動させた上で実験的に測定する。本実施例
は、図5に示す空燃比A/FとNOx排出量の関係か
ら、NOx排出量を低く抑えるために、空燃比A/Fが
リツチ側では、吸気行程後半に燃料噴射タイミングを設
定し、かつスワール弁13を開いて、点火プラグ5の近
傍にリツチ混合気を、燃焼室3の周辺部位にリーン混合
気をそれぞれ分布させて、層状燃焼になるようにエンジ
ンを制御する。
The characteristics shown in FIG. 5 differ depending on the engine type, and when the characteristics are specifically obtained, the target engine is operated and then measured experimentally. In the present embodiment, from the relationship between the air-fuel ratio A / F and the NOx emission amount shown in FIG. 5, in order to keep the NOx emission amount low, the fuel injection timing is set in the latter half of the intake stroke when the air-fuel ratio A / F is on the latch side. Then, the swirl valve 13 is opened to distribute the rich mixture in the vicinity of the spark plug 5 and the lean mixture in the peripheral portion of the combustion chamber 3 to control the engine so that stratified combustion is achieved.

【0019】また、本実施例は、NOx排出量を低く抑
えるために、カーブAとBが交差する空燃比Cよりリー
ン側では、例えば吸気行程前半に燃料噴射タイミングを
設定し、かつスワール弁13を閉じ、さらにエアミクス
制御弁42を開いてAMI11へアシストエアを供給す
ることで、燃焼室3内全体に略均一な空燃比A/Fの混
合気を存在させて、均一燃焼になるようにエンジンを制
御する。
Further, in the present embodiment, in order to keep the NOx emission amount low, on the lean side of the air-fuel ratio C where the curves A and B intersect, the fuel injection timing is set, for example, in the first half of the intake stroke, and the swirl valve 13 is used. Is closed, and the air-mix control valve 42 is opened to supply assist air to the AMI 11, so that the air-fuel mixture having a substantially uniform air-fuel ratio A is present in the entire combustion chamber 3 so that uniform combustion is achieved. To control.

【0020】さらに、本実施例は、極リーン側で燃焼を
維持するために、均一燃焼の失火限界よりもリーン側で
は、層状燃焼になるようにエンジンを制御する。図6は
本実施例の燃焼制御手順の一例を示すフローチヤート
で、ECU30内部のメモリに格納されたプログラムに
基づいて、ECU30によつて実行される。
Further, in this embodiment, in order to maintain combustion on the extremely lean side, the engine is controlled so that stratified combustion occurs on the lean side of the misfire limit of uniform combustion. FIG. 6 is a flow chart showing an example of the combustion control procedure of this embodiment, which is executed by the ECU 30 based on the program stored in the memory inside the ECU 30.

【0021】図6において、ECU30は、ステツプS
1で、クランク角センサ25からのエンジン回転速度信
号が表すエンジン回転数nと、AFS20aからの空気
量信号が表す吸入空気量Qと、O2センサ26からのA
/F信号が表す空燃比A/Fに対応する測定値A/Fm
とを読込む。続いて、ECU30は、ステツプS2で、
次式によつて、充填量Ceを求める。
In FIG. 6, the ECU 30 has a step S.
1, the engine speed n represented by the engine speed signal from the crank angle sensor 25, the intake air amount Q represented by the air amount signal from the AFS 20a, and the A2 from the O2 sensor 26.
/ Fm corresponding to the air-fuel ratio A / F represented by the / F signal
Read and. Subsequently, the ECU 30 proceeds to step S2,
The filling amount Ce is calculated by the following equation.

【0022】Ce=Ka・Q/n ・・・(1) ただし、Ka:定数 続いて、ECU30は、ステツプS3で、内部のメモリ
に格納した目標噴射量マツプfbmによつて、エンジン回
転数nと充填量Ceから、目標噴射量Tbを得る。
Ce = Ka.multidot.Q / n (1) However, Ka: constant Next, in step S3, the ECU 30 determines the engine speed n based on the target injection amount map fbm stored in the internal memory. Then, the target injection amount Tb is obtained from the filling amount Ce.

【0023】続いて、ECU30は、ステツプS4で、
内部のメモリに格納した空燃比変換マツプftによつ
て、空燃比A/Fに対応する測定値A/Fmから、実噴
射量Tjを得る。続いて、ECU30は、ステツプS5
で、実噴射量Tjと目標噴射量Tbとを比較して、Tj>
TbであればステツプS6でリーン補正を、Tj<Tbで
あればステツプS7でリツチ補正を実行した後ステツプ
S8へ進み、また、Tj=Tbであれば補正を実行せずに
ステツプS8へ進む。なお、ECU30は、ステツプS
6では、現在の空燃比補正値CFBから空燃比補正幅Kを
減算した結果をCFBへ代入し、また、ステツプS7で
は、現在の空燃比補正値CFBに空燃比補正幅Kを加算し
た結果をCFBへ代入する。
Subsequently, the ECU 30 proceeds to step S4,
The actual injection amount Tj is obtained from the measured value A / Fm corresponding to the air-fuel ratio A / F by the air-fuel ratio conversion map ft stored in the internal memory. Subsequently, the ECU 30 causes the step S5
Then, the actual injection amount Tj and the target injection amount Tb are compared, and Tj>
If Tb, lean correction is performed in step S6, and if Tj <Tb, rich correction is performed in step S7, and then step S8 is performed. If Tj = Tb, correction is not performed and step S8 is performed. It should be noted that the ECU 30 uses the step S
In 6, the result of subtracting the air-fuel ratio correction width K from the current air-fuel ratio correction value CFB is substituted into CFB, and in step S7, the result of adding the air-fuel ratio correction width K to the current air-fuel ratio correction value CFB is obtained. Substitute in CFB.

【0024】続いて、ECU30は、ステツプS8で
(2)式によつて最終噴射量Tを決定し、ステツプS9
で(3)式によつて目標噴射量Tbに対応する空燃比A
/Fbを求める。 T=Tb+CFB ・・・(2) A/Fb=fAF(Tb) ・・・(3) ただし、fAF:内部のメモリに格納した空燃比変換マツ
プ 続いて、ECU30は、ステツプS10で、目標噴射量
Tbに対応する空燃比A/Fbとアシストエアの使用範囲
とを比較して、次式の範囲に空燃比A/Fbがあればス
テツプS11へ進み、また、次式の範囲外に空燃比A/
FbがあればステツプS12へ進む。
Subsequently, the ECU 30 determines the final injection amount T according to the equation (2) at step S8, and then at step S9.
Then, according to the equation (3), the air-fuel ratio A corresponding to the target injection amount Tb
Find / Fb. T = Tb + CFB (2) A / Fb = fAF (Tb) (3) However, fAF: Air-fuel ratio conversion map stored in the internal memory. The air-fuel ratio A / Fb corresponding to Tb is compared with the use range of the assist air, and if the air-fuel ratio A / Fb is within the range of the following equation, the process proceeds to step S11. /
If Fb is present, the process proceeds to step S12.

【0025】KAA-<A/Fb<KAA+ ・・・(4) ただし、KAA-:アシストエア使用下限空燃比 KAA+:アシストエア使用上限空燃比 なお、ステツプS10において、KAA-は図5に示した
カーブAとBが交差する空燃比Cに相当し、また、KAA
+は図5に示した空燃比20〜25の均一燃焼の失火限
界に相当する。
KAA- <A / Fb <KAA + (4) However, KAA-: Assist air lower limit air-fuel ratio KAA +: Assist air upper limit air-fuel ratio Note that in step S10, KAA- is shown in FIG. Corresponds to the air-fuel ratio C where curves A and B intersect, and also KAA
+ Corresponds to the misfire limit of uniform combustion at the air-fuel ratio of 20 to 25 shown in FIG.

【0026】ECU30は、ステツプS11ではアシス
トエアON/OFFを示すフラグFAAに‘1’をセツト
し、また、ステツプS12ではFAAに‘0’をセツトし
た後、ステツプS1へ戻る。ECU30は、上述の燃焼
制御手順によつて設定した噴射量Tに応じて、噴射信号
をAMI11へ送つて、噴射量Tに応じた燃料を吸入空
気に混合する。すなわち、ECU30は、エンジン回点
数nと充填量Ceに応じて、適切な空燃比A/Fになる
ように、噴射量Tを制御する。
The ECU 30 sets a flag FAA indicating ON / OFF of the assist air to "1" in step S11, sets "0" to FAA in step S12, and then returns to step S1. The ECU 30 sends an injection signal to the AMI 11 according to the injection amount T set by the above-mentioned combustion control procedure, and mixes the fuel according to the injection amount T with the intake air. That is, the ECU 30 controls the injection amount T so that the air-fuel ratio A / F becomes appropriate according to the engine speed n and the filling amount Ce.

【0027】また、ECU30は、上述の燃焼制御手順
によつて設定したフラグFAAに応じて、エアミクス制御
弁42とスワール弁13を制御して、FAA=‘0’であ
れば、エアアシスト信号によつてエアミクス制御弁42
を閉じて、スワール信号によつてスワール弁13を開
く、また、FAA=‘1’であれば、エアアシスト信号に
よつてエアミクス制御弁42を開き、スワール信号によ
つてスワール弁13を閉じる。すなわち、ECU30
は、FAA=‘0’であれば層状燃焼になるように、FAA
=‘1’であれば均一燃焼になるように、それぞれエン
ジンを制御する。
Further, the ECU 30 controls the air mix control valve 42 and the swirl valve 13 in accordance with the flag FAA set by the above combustion control procedure, and if FAA = '0', the air assist signal is given. Yotsute air control valve 42
Is closed and the swirl valve 13 is opened by the swirl signal. Further, if FAA = '1', the air mix control valve 42 is opened by the air assist signal and the swirl valve 13 is closed by the swirl signal. That is, the ECU 30
Is FAA = '0', so that stratified combustion is achieved.
If = '1', the engine is controlled so that uniform combustion is achieved.

【0028】以上説明したように、本実施例によれば、
空燃比A/Fが所定値よりもリツチ側で層状燃焼に、空
燃比A/Fが所定値よりもリーン側で均一燃焼になるよ
うにエンジンを制御するので、広い空燃比範囲にわたつ
て、NOx排出量の少ない燃焼制御を実現できるので、
排気を浄化する触媒装置の大型化を防止でき、さらに、
空燃比A/Fが均一燃焼の失火限界を超える極リーン側
では層状燃焼になるようにエンジンを制御するので、失
火限界を充分に改善して、リーン燃焼のメリツトを充分
に引出す燃焼制御が実現できる。
As described above, according to this embodiment,
Since the engine is controlled so that the air-fuel ratio A / F becomes stratified combustion on the side closer to the predetermined value and the air-fuel ratio A / F becomes uniform combustion on the side leaner than the predetermined value, over a wide range of the air-fuel ratio, Since it is possible to realize combustion control with a small amount of NOx emissions,
It is possible to prevent the catalyst device that purifies exhaust gas from increasing in size, and
The engine is controlled so that stratified charge combustion is performed on the extremely lean side where the air-fuel ratio A / F exceeds the misfire limit for uniform combustion. Therefore, the misfire limit is sufficiently improved and combustion control that brings out the full advantage of lean combustion is realized. it can.

【0029】[0029]

【発明の効果】以上、本発明によれば、NOxの排出量
が少ないエンジンの制御方法および制御装置を提供で
き、排気を浄化する触媒装置の大型化も防止できる。
As described above, according to the present invention, it is possible to provide a control method and control device for an engine that emits a small amount of NOx, and it is possible to prevent an increase in size of a catalyst device that purifies exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本概念図である。FIG. 1 is a basic conceptual diagram of the present invention.

【図2】本発明に係る一実施例の燃焼制御装置全体の構
成例を示す図である。
FIG. 2 is a diagram showing a configuration example of the entire combustion control device of one embodiment according to the present invention.

【図3】本実施例のエアミツクスインジエクタAMIの
一例を示す要部断面図である。
FIG. 3 is a cross-sectional view of essential parts showing an example of an air mix indicator AMI of the present embodiment.

【図4】本実施例の燃焼室の吸排気の関係を示す概念図
である。
FIG. 4 is a conceptual diagram showing a relationship between intake and exhaust of a combustion chamber of the present embodiment.

【図5】エンジンの空燃比A/FとNOx排出量との一
般的な関係を示す図である。
FIG. 5 is a diagram showing a general relationship between an engine air-fuel ratio A / F and NOx emission amount.

【図6】本実施例の燃焼制御手順の一例を示すフローチ
ヤートである。
FIG. 6 is a flow chart showing an example of a combustion control procedure of the present embodiment.

【図7】従来の燃焼制御の問題点を説明する図である。FIG. 7 is a diagram illustrating a problem of conventional combustion control.

【符号の説明】[Explanation of symbols]

1 エンジン本体 2 ピストン 3 燃焼室 4 吸気ポート 5 点火プラグ 6 排気ポート 7 吸気弁 8 排気弁 9 スロツトル弁 10 サージタンク 11 エアミクスチヤインジエクタAMI 12 スワール通路 13 スワール弁 15 クランク角センサ 20 エアフローメータAFM 20a エアフローセンサAFS 26 O2センサ 30 エンジン制御ユニツトECU 41 エアミクスチヤ通路 42 エアミクス制御弁 1 Engine Body 2 Piston 3 Combustion Chamber 4 Intake Port 5 Spark Plug 6 Exhaust Port 7 Intake Valve 8 Exhaust Valve 9 Slottle Valve 10 Surge Tank 11 Air Mixer Injector AMI 12 Swirl Passage 13 Swirl Valve 15 Crank Angle Sensor 20 Air Flow Meter AFM 20a Air flow sensor AFS 26 O2 sensor 30 Engine control unit ECU 41 Air mix passage 42 Air mix control valve

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 43/00 U 7536−3G F02M 69/00 310 E 7825−3G Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 43/00 U 7536-3G F02M 69/00 310 E 7825-3G

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 設定された目標空燃比が第1の所定値よ
りも小さい場合は点火プラグ近傍にリツチ混合気を分布
させ前記点火プラグ近傍以外の燃焼室には該リツチ混合
気よりもリーンなリーン混合気を分布させ、 設定された目標空燃比が前記第1の所定値よりも大きい
場合は前記燃焼室内全体に略均一な空燃比の混合気を存
在させること特徴とするエンジンの制御方法。
1. When the set target air-fuel ratio is smaller than a first predetermined value, a rich mixture is distributed in the vicinity of the spark plug, and a combustion chamber other than the vicinity of the spark plug is leaner than the rich mixture. A method of controlling an engine, wherein a lean air-fuel mixture is distributed, and when the set target air-fuel ratio is larger than the first predetermined value, an air-fuel mixture having a substantially uniform air-fuel ratio is present in the entire combustion chamber.
【請求項2】 設定された目標空燃比が前記第1の所定
値より大きい第2の所定値を超える場合は前記点火プラ
グ近傍にリツチ混合気を分布させ前記点火プラグ近傍以
外の前記燃焼室には該リツチ混合気よりリーンなリーン
混合気を分布させることを特徴とする請求項1記載のエ
ンジンの制御方法。
2. When the set target air-fuel ratio exceeds a second predetermined value that is larger than the first predetermined value, a rich mixture is distributed in the vicinity of the spark plug, and in the combustion chamber other than the vicinity of the spark plug. The engine control method according to claim 1, wherein the lean air-fuel mixture is distributed leaner than the rich air-fuel mixture.
【請求項3】 点火プラグ近傍にリツチ混合気を分布さ
せ前記点火プラグ近傍以外の燃焼室には該リツチ混合気
よりリーンなリーン混合気を分布させる層状化供給手段
と、 前記燃焼室内全体に略均一な空燃比の混合気を存在させ
る均一供給手段と、 目標空燃比を設定する目標空燃比設定手段と、 前記目標空燃比設定手段によつて設定された目標空燃比
が第1の所定値よりも小さい場合は前記層状化供給手段
を選択し前記目標空燃比設定手段によつて設定された目
標空燃比が前記第1の所定値よりも大きい場合は前記均
一供給手段を選択する制御手段とを有することを特徴と
するエンジンの制御装置。
3. A stratified supply means for distributing a rich air-fuel mixture in the vicinity of the spark plug and a lean air-fuel mixture leaner than the rich air-fuel mixture in a combustion chamber other than the vicinity of the spark plug; A uniform supply means for allowing an air-fuel mixture having a uniform air-fuel ratio to exist, a target air-fuel ratio setting means for setting a target air-fuel ratio, and a target air-fuel ratio set by the target air-fuel ratio setting means is more than a first predetermined value. Control means for selecting the stratified supply means, and for selecting the uniform supply means when the target air-fuel ratio set by the target air-fuel ratio setting means is larger than the first predetermined value. An engine control device characterized by having.
【請求項4】 前記制御手段は前記目標空燃比設定手段
によつて設定された目標空燃比が前記第1の所定値より
大きい第2の所定値を超える場合は前記層状化供給手段
を選択することを特徴とする請求項2記載のエンジンの
制御装置。
4. The control means selects the stratified supply means when the target air-fuel ratio set by the target air-fuel ratio setting means exceeds a second predetermined value larger than the first predetermined value. The engine control device according to claim 2, wherein the control device is an engine.
【請求項5】 前記均一供給手段は燃料噴射弁噴口近傍
に供給されるアシストエアによつて前記燃焼室内全体に
略均一な空燃比の混合気を存在させるアシストエア制御
手段であることを特徴とする請求項3記載のエンジンの
制御装置。
5. The uniform supply means is an assist air control means for causing an air-fuel mixture having a substantially uniform air-fuel ratio to exist throughout the combustion chamber by means of assist air supplied in the vicinity of a fuel injection valve injection port. The engine control device according to claim 3.
【請求項6】 前記層状化供給手段は、 前記燃焼室周辺部位に吸気スワールを供給するスワール
供給手段と、 吸気行程の後半に燃料を供給する燃料噴射タイミング制
御手段とであることを特徴とする請求項3または請求項
4記載のエンジンの制御装置。
6. The stratified supply means is a swirl supply means for supplying intake swirl to the peripheral portion of the combustion chamber, and a fuel injection timing control means for supplying fuel in the latter half of the intake stroke. The engine control device according to claim 3 or 4.
【請求項7】 空燃比を理論空燃比よりもリーン側に制
御することを特徴とする請求項3から請求項6記載のエ
ンジンの制御装置。
7. The engine control device according to claim 3, wherein the air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio.
JP21783892A 1992-08-17 1992-08-17 Engine control method and control device Expired - Fee Related JP3219164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21783892A JP3219164B2 (en) 1992-08-17 1992-08-17 Engine control method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21783892A JP3219164B2 (en) 1992-08-17 1992-08-17 Engine control method and control device

Publications (2)

Publication Number Publication Date
JPH0666176A true JPH0666176A (en) 1994-03-08
JP3219164B2 JP3219164B2 (en) 2001-10-15

Family

ID=16710552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21783892A Expired - Fee Related JP3219164B2 (en) 1992-08-17 1992-08-17 Engine control method and control device

Country Status (1)

Country Link
JP (1) JP3219164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254137A (en) * 1995-03-27 1996-10-01 Mazda Motor Corp Lean-burn engine for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254137A (en) * 1995-03-27 1996-10-01 Mazda Motor Corp Lean-burn engine for automobile

Also Published As

Publication number Publication date
JP3219164B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
JP3325232B2 (en) In-cylinder injection engine
JP3562016B2 (en) Car lean burn engine
US7168409B2 (en) Controller for direct injection internal combustion engine
US6314940B1 (en) Fuel feed system for a spark-ignition internal combustion engine and a method of operating such an internal combustion engine
JPH09158810A (en) Diesel engine
JP2003049691A (en) Control system for self-ignition type engine
JPH0735726B2 (en) Internal combustion engine and operating method thereof
US4811231A (en) Apparatus for controlling fuel injection and swirl motion of air in internal combustion engine
JP2003525389A (en) Internal combustion engine and control
JP2002526711A (en) Control method of spark ignition engine
JP2002180881A (en) Combustion controller for diesel engine
JP3812292B2 (en) Internal combustion engine
JP2000008913A (en) Variable mixture concentration distribution control method for spark-ignition engine
US5970948A (en) Intake control system for engine
US6363908B1 (en) Method for ensuring combustion of evaporative fuel in a stratified charge engine using multiple fuel injection pulses
JP3219164B2 (en) Engine control method and control device
JP2001207890A (en) Combustion control device of internal combustion engine
JP2002038953A (en) Cylinder injection type engine
JPH0670368B2 (en) Spark ignition engine
JP3030226B2 (en) Car lean burn engine
JP3826294B2 (en) Premixed compression ignition internal combustion engine
JPH05321795A (en) Fuel supplying device for engine
JP2774779B2 (en) Car lean burn engine
JP2002332886A (en) Fuel injection controller of internal combustion engine
JP2607540Y2 (en) Gas engine ignition control device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010706

LAPS Cancellation because of no payment of annual fees