JPH0665292A - Insecticidal protein against larva of coleopteran insect and new dna encoding the same - Google Patents

Insecticidal protein against larva of coleopteran insect and new dna encoding the same

Info

Publication number
JPH0665292A
JPH0665292A JP4213886A JP21388692A JPH0665292A JP H0665292 A JPH0665292 A JP H0665292A JP 4213886 A JP4213886 A JP 4213886A JP 21388692 A JP21388692 A JP 21388692A JP H0665292 A JPH0665292 A JP H0665292A
Authority
JP
Japan
Prior art keywords
ser
leu
asn
dna
thr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4213886A
Other languages
Japanese (ja)
Other versions
JP2609786B2 (en
Inventor
Katsutoshi Ogiwara
克俊 荻原
Masayoshi Minami
政慶 南
Nobukazu Suzuki
伸和 鈴木
Hidetaka Hori
秀隆 堀
Masashi Asano
昌司 浅野
Tadaaki Kawasugi
忠昭 河杉
Reiichi Sato
令一 佐藤
Michio Oba
道夫 大庭
Shiyuusuke Iwahana
秀典 岩花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4213886A priority Critical patent/JP2609786B2/en
Publication of JPH0665292A publication Critical patent/JPH0665292A/en
Application granted granted Critical
Publication of JP2609786B2 publication Critical patent/JP2609786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain a new protein capable of controlling insect pests such as Anomala cuprea Hope, showing insecticidal activity against larvae of coleopteran insect, harmless to human body, comprising a plant such as turf, taro, sweet potato, peanut, etc., having a specific amino acid sequence. CONSTITUTION:The whole DNA encoding an amino acid sequence of an insecticidal protein is isolated from Bacillus thuringiensis serovar japonensis strain Buibu, cleft with a restriction enzyme and the DNA fragment is integrated into a plasmid. Escherichia coli is transformed with the recombinant plasmid. Escherichia coli containing a DNA encoding the insecticidal protein is examined by colony hybridization, a protein produced by the Escherichia coli is detected by immunoassay and the insecticidal activity of the protein is examined by biological assay. Totally positive Escherichia coli is selected and cultured to give the objective insecticidal protein against larvae of coleopteran insect, having a specific amino acid sequence.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、甲虫目昆虫の幼虫に対
する殺虫性タンパク質、及びその殺虫性タンパク質をコ
ードする新規DNAに関する。
TECHNICAL FIELD The present invention relates to an insecticidal protein for larvae of Coleoptera insects and a novel DNA encoding the insecticidal protein.

【0002】[0002]

【従来の技術】従来、バチルス・チューリンゲンシス・
セロバー・ヤポネンシス属で知られている菌株は、鱗翅
目昆虫の幼虫に対する殺虫性タンパク質を産生するもの
が知られている。また、バチルス・チューリンゲンシス
・サンディエゴ、バチルス・チューリンゲンシス・テネ
ブリオニスの様に、ハムシの仲間、コロラドポテトビー
トルやゴミムシダマシの仲間チャイロコメノゴミムシダ
マシを殺すバチルス・チューリンゲンシス菌が知られて
いる〔例えば(Biotechnology 4, 305-308(1986);J. App
l. Ent. 104(1987),417-424) 参照〕。
2. Description of the Related Art Conventionally, Bacillus thuringiensis
Strains known to the genus Serovar japonensis are known to produce an insecticidal protein for larvae of Lepidoptera insects. In addition, Bacillus thuringiensis bacteria such as Bacillus thuringiensis San Diego and Bacillus thuringiensis tenebrionis that kill the beetle companion, Colorado potato beetle, and the beetle companion, the beetle Thalassium thuringiensis are known (for example, (Biotechnology 4, 305-308 (1986); J. App
l. Ent. 104 (1987), 417-424)].

【0003】[0003]

【発明が解決しようとする課題】しかし、ヤポネンシス
属の菌株では鱗翅目昆虫の幼虫にたいする殺虫性タンパ
ク質以外の毒素タンパク質を産生するものが知られてい
なかったために、鱗翅目以外の他の昆虫に対する殺虫剤
には利用できなかった。また、バチルス・チューリンゲ
ンシス・サンディエゴ、バチルス・チューリンゲンシス
・テネブリオニスなどは、シバ、サトイモ、サツマイ
モ、ラッカセイ等の大害虫であるドウガネブイブイの幼
虫には殺虫効果がなく、結局、特にハムシ類、ゴミムシ
ダマシ類以外の甲虫目昆虫の幼虫に対する有効な殺虫性
タンパク質は、知られておらず、そのバイオ農薬を提供
するのが困難であった。そこで、本発明の目的は甲虫目
昆虫の幼虫に対する殺虫性タンパク質及びそのタンパク
質をコードするDNAを提供することにある。
However, since a strain of the genus Japonensis that produces a toxin protein other than an insecticidal protein for larvae of Lepidoptera insects has not been known, an insecticide against insects other than Lepidoptera is not known. It was not available as a drug. In addition, Bacillus thuringiensis san diego, Bacillus thuringiensis tenebrionis, etc. have no insecticidal effect on the larvae of Rhododendron buoy, which is a major pest of turfgrass, taro, sweet potato, peanut, etc. An effective insecticidal protein for the larvae of Coleoptera insects is unknown and it was difficult to provide its biopesticides. Then, the objective of this invention is to provide the insecticidal protein with respect to the larva of Coleoptera insects, and the DNA which codes the protein.

【0004】[0004]

【課題を解決するための手段】本発明の新規DNAの塩
基配列、及び、新規DNAによってコードされた殺虫性
タンパク質のアミノ酸配列は、配列番号1に示されるも
のであり、前記DNAの塩基配列の一部を欠失させてな
る改変された変異体DNAの塩基配列、及び、その変異
体DNAによってコードされる変異体タンパク質のアミ
ノ酸配列は、配列番号2に示されるものである。
The nucleotide sequence of the novel DNA of the present invention and the amino acid sequence of the insecticidal protein encoded by the novel DNA are shown in SEQ ID NO: 1, and the nucleotide sequence of the DNA is The nucleotide sequence of the modified mutant DNA obtained by partially deleting it and the amino acid sequence of the mutant protein encoded by the mutant DNA are shown in SEQ ID NO: 2.

【0005】[0005]

【作用】本発明の新規殺虫性タンパク質は、本新規殺虫
性タンパク質のアミノ酸配列をコードする塩基配列を有
するDNAを単離し、それを用いて宿主菌内で生産する
物である。即ち前記塩基配列を有するDNAをプラスミ
ドに組み込み、このプラスミドにより宿主菌を形質転換
し、形質転換菌を培養する事により殺虫性タンパク質を
生産する物である。コロニーハイブリダイゼーションに
より前記DNAの宿主内での増殖を、イムノアッセイに
より前記タンパク質の生産を、生物検定により殺虫活性
を、それぞれ調べる事により、生産されるタンパク質の
諸性質を調査し、DNA及びタンパク質を特定すること
ができる。
The novel insecticidal protein of the present invention is a product produced by isolating a DNA having a nucleotide sequence encoding the amino acid sequence of the novel insecticidal protein and using the isolated DNA in a host bacterium. That is, it is a product which produces an insecticidal protein by incorporating a DNA having the above-mentioned nucleotide sequence into a plasmid, transforming a host bacterium with this plasmid, and culturing the transformed bacterium. By examining the growth of the DNA in the host by colony hybridization, the production of the protein by immunoassay, and the insecticidal activity by bioassay, the properties of the produced protein are investigated to identify the DNA and the protein. can do.

【0006】従って、バチルス・チューリンゲンシス・
セロバー・ヤポネンシス・ストレイン・ブイブイ(Baci
llus thuringiensis serovar japonensis strain Buibu
i )(以下ブイブイ菌と略称する)によらず、前記殺虫
性タンパク質を、培養の容易な宿主において、生産出来
るようになった。尚、前記ブイブイ菌は、微工研条寄第
3465号(FERM BP−3465)として工業技
術院微生物工業技術研究所に寄託されている。
Therefore, Bacillus thuringiensis
Serobar Japonensis strain buoy (Baci
llus thuringiensis serovar japonensis strain Buibu
i) (hereinafter, referred to as buoy bacterium), the insecticidal protein can be produced in a host that is easily cultivated. The buoy buoy bacterium has been deposited with the Institute of Microbial Science and Technology, the Agency of Industrial Science and Technology, as Micro-Technology Research Institute No. 3465 (FERM BP-3465).

【0007】また、前記殺虫性タンパク質を生産可能な
DNAは、その塩基配列の一部(配列番号1記載のアミ
ノ酸配列におけるN末端から第54番目のアミノ酸から
第709番目までのアミノ酸をコードする塩基配列以外
の部分)を欠失させる改変を行うことにより、変異体D
NAをつくることが出来る。その改変された変異体DN
Aは、単離し、前記変異体DNAをプラスミドに組み込
み、大腸菌等の宿主にクローニングして、発現させると
により、前記殺虫性タンパク質よりも分子量の小さな変
異体殺虫性タンパク質を生産することが可能になるもの
であり、かつ、この変異体DNAは、前記DNAよりも
分子量の小さいものであり、一般的に形質転換に用いる
DNAは、分子量が適当に小さい程、形質転換が容易で
あるので、より容易に、甲虫目昆虫に対する殺虫性をも
つタンパク質を、生産することが可能になった。然し、
709番目のアミノ酸より更にN末端側のアミノ酸を欠
失する事は可能であり、前記54〜709番目のアミノ
酸からなるタンパク質が最小活性単位である訳ではな
い。
The DNA capable of producing the insecticidal protein has a part of its base sequence (bases encoding the 54th to 709th amino acids from the N-terminal in the amino acid sequence of SEQ ID NO: 1). Mutant D)
You can make NA. The modified mutant DN
A is capable of producing a mutant insecticidal protein having a smaller molecular weight than the insecticidal protein by isolating, incorporating the mutant DNA into a plasmid, cloning it into a host such as Escherichia coli, and expressing it. In addition, this mutant DNA has a smaller molecular weight than that of the above-mentioned DNA, and generally, the DNA used for transformation has a smaller molecular weight, so that it is easier to transform. It has become possible to easily produce a protein having insecticidal activity against Coleoptera insects. However,
It is possible to delete an amino acid further on the N-terminal side than the 709th amino acid, and the protein consisting of the 54th to 709th amino acids is not the minimum activity unit.

【0008】さらに、上述の殺虫性タンパク質のアミノ
酸配列をコードする塩基配列を有するDNAと、そのD
NAを改変してなる変異体DNAは、様々な宿主細胞に
組み込むことにより、殺虫性の微生物や、殺虫性の植物
を作ることが出来るものであり、且つ、前記DNA及び
変異体DNAの生産する殺虫性タンパク質は、様々な形
態で殺虫剤として用いることの出来るものである。結
局、従来の微生物農薬では殺すことの出来なかったドウ
ガネブイブイ等の甲虫目昆虫の幼虫を殺すことができる
ようになった。
Further, a DNA having a nucleotide sequence encoding the amino acid sequence of the above insecticidal protein and its D
The mutant DNA obtained by modifying NA is capable of producing an insecticidal microorganism or an insecticidal plant by incorporating it into various host cells, and produces the DNA and the mutant DNA. The insecticidal protein can be used as an insecticide in various forms. Eventually, it became possible to kill the larvae of Coleoptera insects such as Douganebuibui that could not be killed by conventional microbial pesticides.

【0009】[0009]

【発明の効果】従って、本発明によるDNA、及び殺虫
性タンパク質を用いることにより、シバ、サトイモ、サ
ツマイモ、ラッカセイ等の植物から害虫を除虫する際
に、化学農薬を使用する場合に比し、人体に害を及ぼし
にくい、バイオ農薬を提供できるようになった。
Therefore, by using the DNA according to the present invention and the insecticidal protein, when pests are removed from plants such as grass, taro, sweet potato, peanut, etc., as compared with the case of using chemical pesticides, It is now possible to provide biopesticides that are less harmful to the human body.

【0010】また、前記DNAをクローニングして、前
記殺虫性タンパク質を生産することにより、その生産性
は向上し、さらに変異体DNA、及び変異体殺虫性タン
パク質を単離したことにより、尚一層前記変異体DNA
のクローニングのしやすさ、及び前記変異体殺虫性タン
パク質の生産性を高めることができた。
The productivity of the insecticidal protein is improved by cloning the DNA to produce the insecticidal protein. Further, the mutant DNA and the mutant insecticidal protein are isolated to further improve the productivity. Mutant DNA
It was possible to enhance the easiness of cloning and the productivity of the mutant insecticidal protein.

【0011】[0011]

【実施例】先ずブイブイ菌より殺虫性タンパク質のアミ
ノ酸配列をコードする塩基配列を含む全DNAを単離
し、そのDNAを制限酵素で切断してDNAを断片と
し、前記DNA断片をプラスミドに組み込み、このDN
A断片を組み込んだ組換えプラスミドを用いて大腸菌を
形質転換するいわゆるショットガンクローニングを行な
う。次に、形質転換された組換え体大腸菌により生産さ
れたDNAの内、殺虫性タンパク質をコードする塩基配
列を含んでいる大腸菌を、コロニーハイブリダイゼーシ
ョンで検査する。更に、コロニーハイブリダイゼーショ
ンに陽性のDNAを持つ大腸菌の生産するタンパク質
を、イムノアッセイにより検出する。更に、そのタンパ
ク質の殺虫活性を、生物検定により検査する。その後
に、前述のコロニーハイブリダイゼーション、イムノア
ッセイ、生物検定の全てに陽性であったDNAの塩基配
列を決定する事により、新規殺虫性タンパク質をコード
するDNAを特定し、このDNAを用いて前記タンパク
質を作る事が可能になった。尚、塩基配列の決定に際し
ては、最初に用いた制限酵素によるショットガンクロー
ニングでは、3'末端の一部が欠失した遺伝子が得られた
ため、制限酵素を変え、更に、完全長の塩基配列を読み
とるための操作を行った。また、上記DNAをエキソヌ
クレアーゼを用いて3'末端を欠失させる事により、変異
体DNAを合成し、更に前記変異体DNAを用いて変異
体殺虫性タンパク質を得た。
[Examples] First, total DNA containing a nucleotide sequence encoding the amino acid sequence of insecticidal protein was isolated from V. buibui, and the DNA was cleaved with a restriction enzyme to prepare a fragment of the DNA. DN
So-called shotgun cloning is carried out in which E. coli is transformed with the recombinant plasmid incorporating the A fragment. Next, among the DNAs produced by the transformed recombinant Escherichia coli, Escherichia coli containing a nucleotide sequence encoding an insecticidal protein is examined by colony hybridization. Furthermore, the protein produced by Escherichia coli having positive DNA for colony hybridization is detected by immunoassay. In addition, the insecticidal activity of the protein is tested by bioassay. After that, by determining the nucleotide sequence of the DNA that was positive in all of the above-mentioned colony hybridization, immunoassay, and bioassay, the DNA encoding the novel insecticidal protein was identified, and this DNA was used to It is possible to make. In addition, in determining the base sequence, shotgun cloning using the first restriction enzyme yielded a gene in which a part of the 3'end was deleted.Therefore, the restriction enzyme was changed, and the full-length base sequence was changed. The operation for reading was performed. Further, a mutant DNA was synthesized by deleting the 3 ′ end of the above DNA using exonuclease, and a mutant insecticidal protein was obtained using the mutant DNA.

【0012】さらに、前記DNA及び前記変異体DNA
による組換えを容易にするためのカセット化DNAの合
成、形質転換植物の作成、殺虫製剤作成を、夫々行っ
た。
Further, the DNA and the mutant DNA
The synthesis of cassette DNA for facilitating the recombination by Escherichia coli, the production of transformed plants, and the production of insecticidal preparations were carried out.

【0013】実施例1においては、本発明の新規DNA
及び新規殺虫性タンパク質を、DNAのクローニング、
タンパク質のN末端の決定、コロニーハイブリダイゼー
ション、イムノアッセイ、生物検定、塩基配列の決定の
順で説明する。実施例2においては変異体DNA及び変
異体殺虫性タンパク質についての説明を行う。実施例3
においてはのカセット化DNAの合成、実施例4におい
ては形質転換植物の作成の説明を行う。さらに実施例5
においては実施例1〜4記載の微生物、DNA、及びタ
ンパク質を用いた殺虫製剤についての説明を行う。
In Example 1, the novel DNA of the present invention
And a new insecticidal protein, DNA cloning,
It will be described in the order of determination of N-terminal of protein, colony hybridization, immunoassay, bioassay, and determination of nucleotide sequence. In Example 2, mutant DNA and mutant insecticidal protein will be described. Example 3
In Example 4, the synthesis of the cassette DNA is described, and in Example 4, the production of the transformed plant is described. Further Example 5
Describes an insecticidal preparation using the microorganism, DNA, and protein described in Examples 1 to 4.

【0014】〔実施例1〕:新規DNA、及び、新規殺
虫性タンパク質 〈DNAの単離及び大腸菌JM109へのクローニン
グ〉ブイブイ菌をNYS寒天培地〔例えば、(Biologica
l control 2 (1992) [Insecticidal spectrum of a nov
el isolate of Bacillus thuringiensis serovar japon
ensis], Journal of Invertebrate Pathology (1992)
[Processing of delta endotoxin from Bacillus thuri
ngiensis subst.urstaki HD-1 and HD-73 bygut juices
of various insect larvae]) 参照〕に塗末して、30
℃で一晩培養し、単一コロニーをかきとり、ルリア液体
培地で30℃で一晩培養する。この時600nmに於け
る菌培養物の光学的吸収は約OD1.5〜0.7であ
る。一般の成書、例えば(A manual for genetic engen
eering: Advanced bacterial genetics eds R.W.Davis,
D.Botstein, J.R.Roth, 1980 Cold Spring Harbour La
boratories, MOlecular cloning 2nd ed Sambrook, J.,
Fritsch,E.F., Maniatics, T.)等に記載の方法により
ブイブイ菌から全DNAを単離する
Example 1 Novel DNA and Novel Insecticidal Protein <Isolation of DNA and Cloning in Escherichia coli JM109> V. buoy was cultivated on NYS agar medium [eg (Biologica
l control 2 (1992) [Insecticidal spectrum of a nov
el isolate of Bacillus thuringiensis serovar japon
ensis], Journal of Invertebrate Pathology (1992)
[Processing of delta endotoxin from Bacillus thuri
ngiensis subst.urstaki HD-1 and HD-73 bygut juices
of various insect larvae])
Incubate overnight at 0 ° C, scrape a single colony, and incubate at 30 ° C overnight in Luria liquid medium. At this time, the optical absorption of the bacterial culture at 600 nm is about OD1.5-0.7. General books, eg (A manual for genetic engen
eering: Advanced bacterial genetics eds RWDavis,
D.Botstein, JRRoth, 1980 Cold Spring Harbor La
boratories, MOlecular cloning 2nd ed Sambrook, J.,
Fritsch, EF, Maniatics, T.) etc. to isolate total DNA from buoy buoy.

【0015】得られたDNAは、制限酵素EcoRIで切断
して、EcoRIDNA切断とし、予め発現プラスミドBlue
scriptIIKS(+)を制限酵素EcoRIで切断した切断部
位に、T4DNAリガーゼを用いて前記EcoRIDNA断
片を連結し、組み換えプラスミドとした。このようにし
て得られた組換えプラスミドのうち、約6.3kb付近
に泳動する物を、組換えプラスミドの候補として用いて
大腸菌JM109株を形質転換した。組換えプラスミド
によって形質転換を行なった前記大腸菌JM109株
は、常法に従いアンピシリン(50μg/ml)、IP
TG(イソプロピルチオガラクトピラノシド)、X−G
al(5−ブロモ−4−クロロ−3−インドリル−D−
ガラクトピラノシド)を含んだルリアブロス固体平板培
地で一晩培養した、これらの大腸菌JM109株の内、
EcoRIDNA断片を含むものはガラクトシダーゼを生産
出来ないのでX−Galを代謝できず、白色コロニーを
生ずる。青変するコロニーは、EcoRI組み換えプラスミ
ドを持たないとして、白色のコロニーのみを、EcoRI組
み換えプラスミドを持った形質転換された組み換え体大
腸菌JM109のコロニーとして、およそ10,000
個得た。こうして得られた組み換え体大腸菌JM109
は、アンピシリン(50μg/ml)を含むルリア寒天
培地を用いてコロニーの直径が2−3mm位になるまで
37℃で培養した
The obtained DNA is cleaved with the restriction enzyme EcoRI to obtain EcoRI DNA cleaved, and the expression plasmid Blue is previously prepared.
The EcoRI DNA fragment was ligated to the cleavage site of scriptIIKS (+) with the restriction enzyme EcoRI using T4 DNA ligase to prepare a recombinant plasmid. Escherichia coli JM109 strain was transformed by using the recombinant plasmid thus obtained, which migrates at about 6.3 kb, as a candidate for the recombinant plasmid. The E. coli JM109 strain transformed with the recombinant plasmid was treated with ampicillin (50 μg / ml), IP according to a conventional method.
TG (Isopropylthiogalactopyranoside), X-G
al (5-bromo-4-chloro-3-indolyl-D-
Of these Escherichia coli JM109 strains cultured overnight in a Luria broth solid plate medium containing galactopyranoside)
Those containing the EcoRI DNA fragment cannot produce galactosidase and therefore cannot metabolize X-Gal, resulting in white colonies. The blue-colored colonies were assumed to have no EcoRI recombinant plasmid, and only white colonies were transformed into recombinant Escherichia coli JM109 carrying the EcoRI recombinant plasmid to obtain about 10,000 colonies.
I got it. Recombinant Escherichia coli JM109 thus obtained
Were cultivated at 37 ° C. using a Luria agar medium containing ampicillin (50 μg / ml) until the colony diameter became about 2-3 mm.

【0016】〈タンパク質の精製及びN末端の決定〉ブ
イブイ菌の生産する殺虫性タンパクを〔Appl. Ent Zool
vol.26 p485〜492(1991)〕記載の方法でブイブイ菌培
養物中から単離精製した。湿重量1gの殺虫性結晶体を
pH12の水酸化ナトリウム溶液で溶解し、50mMト
リス塩酸緩衝液でpH8に調整の後、pH8の50mM
トリス塩酸緩衝液に対して透析する。可溶性画分を1
0,000xGの遠心分離により回収して、DEAE
(ジエチルアミノエチル)セファロースイオン交換体カ
ラムを用いて分離した。遠心分離した可溶性画分をカラ
ム(2cm直径x25cm長さ)に充填し、十分量の5
0mMトリス塩酸緩衝液(pH8.0)で洗浄した後、
200mlの50mMトリス塩酸緩衝液(pH8.0)
を用いて0〜0.7MのNaClの濃度勾配を作成し、
連続的にイオン交換カラムに吸着したタンパク質を溶出
した(図1)。これらを、更に再クロマトグラフィーで
精製した(図2)。上述の操作により、前記殺虫性タン
パク質は塩化ナトリウム濃度0.2M付近に溶出した
(図1のP2、及び図2Bに示す)。こうして得られた
前記殺虫性タンパク質をドデシル硫酸ナトリウム(SD
S)−ポリアクリルアミド電気泳動(PAGE)(SD
S1%)により分離し、ブロムフェノールブルーで染色
してPVDF膜に転写した。こうして得られた130k
Daのタンパク質部分を切りとり、ABI社製自動アミ
ノ酸配列決定機を用いて分析を行ったところ、前記殺虫
性タンパク質のアミノ酸配列のN末端は化1に示すよう
になっていることが判った。尚、SDS−PAGEの方
法はどこにでもある方法、例えば、Appl. Ent. Zool. 2
6 485-492 1991の方法などを用いる。PVDF膜への転
写はミリポア社のイモビロンを用いてABI、ミリポア
社などの奨める方法に従った。
<Purification of Protein and Determination of N-Terminus> The insecticidal protein produced by V. buibui is [Appl. Ent Zool
vol.26 p485-492 (1991)], and isolated and purified from the culture of buoy buoy. A wet weight of 1 g of the insecticidal crystal was dissolved in a sodium hydroxide solution of pH 12, adjusted to pH 8 with 50 mM Tris-HCl buffer, and then adjusted to 50 mM of pH 8.
Dialyze against Tris-HCl buffer. 1 soluble fraction
Recovered by centrifugation at 50,000 x G
Separation was performed using a (diethylaminoethyl) sepharose ion exchanger column. The soluble fraction obtained by centrifugation was packed in a column (2 cm diameter x 25 cm length), and a sufficient amount of 5
After washing with 0 mM Tris-HCl buffer (pH 8.0),
200 ml of 50 mM Tris-HCl buffer (pH 8.0)
To create a gradient of 0-0.7 M NaCl,
The protein adsorbed on the ion exchange column was continuously eluted (FIG. 1). These were further purified by rechromatography (Figure 2). By the above-mentioned operation, the insecticidal protein was eluted at a sodium chloride concentration of around 0.2 M (shown in P2 of FIG. 1 and FIG. 2B). The insecticidal protein thus obtained was treated with sodium dodecyl sulfate (SD
S) -Polyacrylamide electrophoresis (PAGE) (SD
S1%), stained with bromphenol blue and transferred to a PVDF membrane. 130k thus obtained
When the protein portion of Da was cut out and analyzed using an automatic amino acid sequencer manufactured by ABI, it was found that the N-terminal of the amino acid sequence of the insecticidal protein was as shown in Chemical formula 1. In addition, the method of SDS-PAGE is ubiquitous, for example, Appl. Ent. Zool. 2
6 Use the method of 485-492 1991. The transfer to the PVDF membrane was carried out according to a method recommended by ABI, Millipore, etc. using Immobilon manufactured by Millipore.

【0017】[0017]

【化1】 Xaa Xaa Pro Asn Asn Gln Asn Glu Ile Ile Asp Ala Leu[Chemical 1] Xaa Xaa Pro Asn Asn Gln Asn Glu Ile Ile Asp Ala Leu

【0018】〈コロニーハイブリダイゼーション〉上述
の操作において明らかになったアミノ酸配列とブイブイ
菌に含まれることの多いコドンとを組み合わせて、化2
に示すような塩基配列を、コロニーハイブリダイゼーシ
ョンに用いるプローブとして合成した。尚、ベーリンガ
ーマンハイム社のDIGを、前記プローブに末端標識と
して付加した。尚DIGとはディゴキシゲニンの事で、
化学発光する物質でウリジンヌクレオチドとスペーサー
によって結合し、酸素反応を用いて合成したプライマー
の中に取り込むことができる。方法は、供給もとである
ベーリンガーマンハイムビオケミカ社の方法に従った。
<Colony Hybridization> By combining the amino acid sequence clarified in the above operation with the codons often contained in buoy bacillus,
The nucleotide sequence shown in was synthesized as a probe used for colony hybridization. DIG from Boehringer Mannheim was added to the probe as an end label. DIG is digoxigenin,
It is a substance that emits chemiluminescence and can be bound to a uridine nucleotide by a spacer and incorporated into a primer synthesized by using an oxygen reaction. The method was according to the method of Boehringer Mannheim Biochemica, which is the supplier.

【0019】[0019]

【化2】CCAAATAATCAAAATGAATATGAAAT[Chemical 2] CCAAATAATCAAAATGAATATGAAAT

【0020】前述において培養した形質転換された大腸
菌JM109株は、そのコロニーをニトロセルロース膜
に転写した後、その転写された前記大腸菌を、常法によ
ってアルカリ可溶化し、そのアルカリ可溶化した前記大
腸菌と上述において合成したハイブリダイゼーション用
プローブとのハイブリダイゼーションを行った。検出
は、プローブによる化学発光を、X線フィルムに露光す
ることによって行った。その結果、前述の形質転換され
た組み換え体大腸菌コロニーのうち、5個がハイブリダ
イゼーションした。これら5株の大腸菌は、ショットガ
ンクローニングによってブイブイ且つの全DNAの一部
が組み込まれたものであるが、その組み込まれたDNA
に目的とするトキシン遺伝子が存在している可能性が高
い。
The transformed Escherichia coli JM109 strain cultivated in the above was transferred to a nitrocellulose membrane from the colony, and the transferred E. coli was alkali-solubilized by a conventional method to obtain the alkali-solubilized E. coli. Was hybridized with the hybridization probe synthesized above. The detection was performed by exposing the X-ray film to chemiluminescence from the probe. As a result, 5 of the transformed recombinant Escherichia coli colonies hybridized. These 5 strains of Escherichia coli had a buoy and a part of the total DNA integrated by shotgun cloning.
It is highly possible that the target toxin gene is present in.

【0021】〈イムノアッセイ〉ブイブイ株培養物から
二相分配法などにより殺虫性タンパク質結晶体を精製し
た(Goodman, N.S., R.J.Gottfried and M.H.Rogoff (1
967) J.Bacteriol. 94 485)。前述のようにアルカリ溶
液で可溶化し、抗原としてウサギに免疫して抗血清を作
製した。大腸菌を磨砕し、遠心分離の後、上清に回収さ
れる可溶性分画に含まれる全物質を抗原として、前記の
ように作製した抗血清を吸収したのち、イムノアッセイ
に用いる抗体とした。尚、抗血清は、免疫グロブリンク
ラスまで精製し、パーオキシダーゼを結合した物を用い
た。前述のコロニーハイブリダイゼーション試験に陽性
であった組み換え体大腸菌のコロニーを、ニトロセルロ
ース膜に写しとり、さらに、それを50μg/mlのア
ンピシリンを含むルリア寒天培地上に置き、37℃で一
晩培養した。さらに前記ニトロセルロース膜をはがして
転写された前記組み換え体大腸菌を常法に従い、SDS
及びアルカリ処理を行い溶菌、固定を行った。次に前述
の処理を行った大腸菌に対し、前記イムノアッセイ用プ
ローブを用いて抗原抗体反応を行った。抗原抗体反応の
検出は、抗体が酵素反応により生産する色素によって行
った。この結果コロニーハイブリダイゼーションによっ
て陽性であった5株の大腸菌は皆、イムノアッセイでも
陽性であり、タンパク質、特にトキシンタンパク質を生
産している可能性が確認された。プローブの検出は、コ
ニカ社のイムノステインシステムを用いて行なったが、
感度の良い物であれば、ビオチン等を用いた物でも全く
同様に用いる事が出来る。
<Immunoassay> An insecticidal protein crystal was purified from a buoy buoy strain culture by a two-phase partition method or the like (Goodman, NS, RJ Gottfried and MHRogoff (1
967) J. Bacteriol. 94 485). As described above, the antiserum was prepared by solubilizing it with an alkaline solution and immunizing a rabbit as an antigen. Escherichia coli was ground, and after centrifugation, all the substances contained in the soluble fraction collected in the supernatant were used as an antigen, and the antiserum prepared as described above was absorbed, and then used as an antibody for immunoassay. The antiserum used was purified to the immunoglobulin class and bound with peroxidase. A colony of recombinant Escherichia coli that was positive in the above-mentioned colony hybridization test was transferred onto a nitrocellulose membrane, which was then placed on a Luria agar medium containing 50 μg / ml of ampicillin, and cultured at 37 ° C. overnight. . Further, the recombinant Escherichia coli transferred by peeling off the nitrocellulose membrane was subjected to SDS by a conventional method.
Then, alkali treatment was performed to lyse and fix. Next, an antigen-antibody reaction was performed on the E. coli treated as described above using the immunoassay probe. The detection of the antigen-antibody reaction was carried out by the dye produced by the antibody by the enzyme reaction. As a result, all 5 strains of E. coli that were positive by colony hybridization were also positive in the immunoassay, confirming the possibility of producing proteins, particularly toxin proteins. Detection of the probe was performed using the Konica Immunostain system,
A substance using biotin or the like can be used in the same manner as long as it has a high sensitivity.

【0022】〈生物検定〉イムノアッセイで陽性であっ
た組み換え体大腸菌のコロニーを、ルリア液体培地で培
養、集菌し、その組み換え体大腸菌を乾燥腐葉土に混入
して、一齢のドウガネブイブイに与えた。前記集菌した
大腸菌の混入及びその殺虫性の評価の方法は以下のとお
りである。 1.混入割合……幼虫一頭当たり、乾燥腐葉土1gに前
記大腸菌を含んだ懸濁液1mlを加える。大腸菌は50
ml三角フラスコで50μgのアンピシリンを含むL−
ブロス10mlで2日間培養し、菌を遠心回収の後5m
lの蒸留水に懸濁しそれを1ml用いた。この時回収さ
れる大腸菌は、湿重量0.3g前後である。 2.殺虫性の評価……前記組み換え大腸菌を混入した前
記乾燥腐葉土を入れたプラスチックカップに、一頭づつ
幼虫を入れて、所定時間飼育し、死亡幼虫数を全幼虫数
で除した値である死亡率により評価を行う。 その結果、ハイブリダイゼーション及びイムノアッセイ
で陽性であった5個の前記組み換え大腸菌コロニーのう
ち3個が殺虫活性を示すことがわかった。
<Bioassay> Colonies of recombinant Escherichia coli which were positive in the immunoassay were cultured in Luria liquid medium and the cells were collected. The recombinant Escherichia coli was mixed with dry humus and fed to the first-year Dougane buoy. The method for evaluating the contamination of the collected Escherichia coli and its insecticidal activity is as follows. 1. Percentage of mixture: Add 1 ml of the above suspension containing E. coli to 1 g of dried mulch per larva. E. coli is 50
L-containing 50 μg ampicillin in a ml Erlenmeyer flask
Incubate with 10 ml of broth for 2 days, collect the bacteria by centrifugation, and 5 m
It was suspended in 1 l of distilled water and 1 ml thereof was used. Escherichia coli recovered at this time has a wet weight of about 0.3 g. 2. Evaluation of insecticidal property: One larva was placed in each of the plastic cups containing the dried mulch containing the recombinant Escherichia coli, and the larvae were bred for a predetermined period of time. The number of dead larvae was divided by the total number of larvae. Make an evaluation. As a result, it was found that 3 out of the 5 recombinant E. coli colonies that were positive in the hybridization and immunoassay showed insecticidal activity.

【0023】〈ウエスタンブロッティング〉生物検定で
陽性の菌株を培養し、全タンパク質をアルカリ抽出して
SDS−PAGE分析を行なった。泳動されたタンパク
質をニトロセルロース膜に写し取り、前述した大腸菌の
可溶性画分に含まれる抗原性物質で吸収した抗体を用い
てウエスタンブロッティングを行なった。ハイブリダイ
ゼーションしたタンパク質はおよそ130kDaの辺に
泳動していた。
<Western blotting> Strains positive in the bioassay were cultured, all proteins were extracted with alkali, and SDS-PAGE analysis was performed. The electrophoresed protein was transferred onto a nitrocellulose membrane and subjected to Western blotting using the antibody absorbed with the antigenic substance contained in the soluble fraction of Escherichia coli. The hybridized protein migrated around 130 kDa.

【0024】〈遺伝子の塩基配列〉コロニーハイブリダ
イゼーション、イムノアッセイ、及び生物検定の全ての
検査に陽性であった3個の大腸菌コロニーを。ルリアブ
ロス液体培地を用いて大量培養した。これらの大腸菌コ
ロニーからそれぞれ組み換えプラスミドを分離し、EcoR
I制限酵素で切断した後、この切断されたプラスミドを
アガロースゲル電気泳動で調べると、2本のDNAのバ
ンドが検出できた。これらのうち、1本は開環状のBlue
scriptIISK(+)とそのサイズが一致し、他方は、約
3400bpで殺虫性タンパク質をコードする塩基配列
を含むDNAであると考えられるものであった。
<Nucleotide Sequence of Gene> Three Escherichia coli colonies that were positive in all tests of colony hybridization, immunoassay, and bioassay. Mass culture was performed using Luria broth liquid medium. Recombinant plasmids were isolated from each of these E. coli colonies and EcoR
After cutting with the I restriction enzyme, when the cut plasmid was examined by agarose gel electrophoresis, two DNA bands could be detected. Of these, one is an open-ring Blue
The size was identical to that of scriptIISK (+), and the other was considered to be DNA containing a nucleotide sequence encoding an insecticidal protein at about 3400 bp.

【0025】得られた約3400bpの前記DNAを鋳
型に蛍光標識したプライマーを合成し、前記合成プライ
マーをアニールし、常法に従いT7−DNAポリメラー
ゼ、及びダイデオキシNTPを用いるダイデオキシヌク
レオチド法により各種中間体を合成した。塩基配列の読
み取りは、ファルマシPLKB社製の自動読取装置を用
いた。この結果読み取ることのできた塩基配列は336
6塩基であった。しかし、前記3366塩基の配列の中
には、終止コドンが見出されなかったため、前記336
6塩基が目的とするDNAの全塩基配列を、含んでいな
いことがわかった。
Fluorescently labeled primers were synthesized using the obtained DNA of about 3400 bp as a template, the synthetic primers were annealed, and various intermediates were prepared by the dideoxynucleotide method using T7-DNA polymerase and dideoxy NTP according to a conventional method. The body was synthesized. The base sequence was read using an automatic reader manufactured by Pharmasi PLKB. As a result, the nucleotide sequence that could be read is 336.
It was 6 bases. However, since a stop codon was not found in the 3366-base sequence, the 336
It was found that 6 bases did not contain the entire base sequence of the target DNA.

【0026】そこでブイブイ菌から分離したDNAを、
制限酵素ClaIで切断して、ClaIDNA断片とし、この
ClaIDNA断片を、アガロースゲル電気泳動により分
離した。
Therefore, the DNA isolated from the buoy bacterium was
ClaI DNA fragment was obtained by digesting with the restriction enzyme ClaI.
ClaI DNA fragments were separated by agarose gel electrophoresis.

【0027】先にEcoRIを用いて塩基配列を読み取るこ
とのできたEcoRIDNA断片をEcoRVで切断し、約1k
bのEcoRV断片としたものをサザン解析用プローブと
し、サザン解析を行った。(このサザン解析用プローブ
は、ブイブイ菌の遺伝子の中央よりやや5'末端側の部分
に相当する。)サザン解析を行ったところ、前記サザン
解析用プローブは、前述のアガロースゲル電気泳動によ
り分離したCla IDNA断片の約6.5kbのものとハ
イブリダイゼーションした。
The EcoRI DNA fragment whose base sequence could be read using EcoRI was cleaved with EcoRV to obtain about 1 k.
Southern analysis was performed using the EcoRV fragment of b as a probe for Southern analysis. (This Southern analysis probe corresponds to a portion slightly 5'-terminal side from the center of the gene of buoy buoy.) When Southern analysis was performed, the Southern analysis probe was separated by the agarose gel electrophoresis described above. It hybridized with a Cla I DNA fragment of about 6.5 kb.

【0028】そこで前記ClaIDNA断片のうちハイブ
リダイゼーションした部分をとり出し、予め発現プラス
ミドBluescriptIISK(+)を制限酵素ClaIで切断し
た切断部位に、前記ClaIDNA断片を連結してClaI組
み換えプラスミドを合成した。このClaI組み換えプラ
スミドを用いて大腸菌XLIブルーを形質転換する。こ
の形質転換された大腸菌XLIブルーは、常法に従って
培養した。この中からコロニーハイブリダイゼーショ
ン、イムノアッセイ、生物検定ともに陽性の株を選抜
し、前述の大腸菌JM109株を用いた場合と同様の方
法で、殺虫性タンパク質のアミノ酸配列をコードする塩
基配列を含むClaIDNA断片の塩基配列を決定した。
殺虫性タンパク質のアミノ酸配列をコードする塩基配列
は、配列番号1記載のように3797塩基よるなる塩基
配列からなり、このうちオープンリーディングフレーム
(ORF)は1149アミノ酸をコードしていることが
わかった。また、前記塩基配列によりコードされるアミ
ノ酸配列も推定でき、推定分子量は129186である
ことがわかった。尚、この配列番号1記載の塩基配列を
含有する微生物およびプラスミドは平成4年7月13
日、微工研条寄第3929号で通産省工業技術院微生物
工業技術研究所に寄託した。
Then, the hybridized portion of the ClaI DNA fragment was taken out, and the ClaI DNA fragment was ligated to the cleavage site obtained by previously cutting the expression plasmid BluescriptIISK (+) with the restriction enzyme ClaI to synthesize a ClaI recombinant plasmid. E. coli XLI blue is transformed with this ClaI recombinant plasmid. The transformed Escherichia coli XLI blue was cultured according to a conventional method. A colony hybridization, immunoassay, and bioassay positive strains were selected from this, and a ClaI DNA fragment containing a nucleotide sequence encoding the amino acid sequence of the insecticidal protein was selected in the same manner as in the case of using the above-mentioned Escherichia coli JM109 strain. The base sequence was determined.
The base sequence encoding the amino acid sequence of the insecticidal protein was composed of a base sequence consisting of 3797 bases as shown in SEQ ID NO: 1, and the open reading frame (ORF) was found to encode 1149 amino acids. In addition, the amino acid sequence encoded by the above base sequence could be estimated, and the estimated molecular weight was found to be 129186. The microorganisms and plasmids containing the nucleotide sequence of SEQ ID NO: 1 are 13
Japan and Japan, deposited with the Institute of Microbial Technology, Ministry of International Trade and Industry, Ministry of International Trade and Industry.

【0029】実施例1において、大腸菌JM109株を
形質転換する方法は、カルシウム法としたが、常法にお
いて形質転換可能な方法を採用すれば良く、例えば、ハ
ナハン法、電気導入法等を用いることも可能である。
In Example 1, the method for transforming Escherichia coli JM109 strain was the calcium method. However, a method capable of transforming in an ordinary method may be adopted. For example, the Hanahan method, the electric introduction method and the like are used. Is also possible.

【0030】また実施例1においてはBluescriptを用い
て大腸菌の形質転換を行ったが、他のプラスミドを用い
て行うこともできる。
In Example 1, E. coli was transformed with Bluescript, but other plasmids may be used.

【0031】実施例1においては宿主細菌を大腸菌JM
109株としたが、宿主細菌は大腸菌に限らず、シュー
ドモナス等のグラム陰性菌、バチルス等のグラム陽性
菌、カビー酵母等の真核生物を用いることも出来る。ま
た、全塩基配列を読みとる方法は、制限酵素を用いたシ
ョットガン法に限られない。実際完全長でない遺伝子を
含んでいたEcoRI断片をPCR法によって3'末端側へ延
長して同じように全塩基配列を読む事もできる。例えば
以下のような読み方が出来る。実施例1において336
6塩基まで読んだEcoRIDNA断片の下流4700番目
近傍及び2037番目近傍にNdeI制限酵素認識サイトが
あるのが分かっているので、遺伝子をNdeIで切りだしそ
の断片の環状化を行った。NdeI制限酵素認識サイトから
3366番目の塩基までの間では、2746番目付近の
塩基配列にAccI制限酵素認識サイトがある事は分かって
いるので、自己環状化した遺伝子を、AccI制限酵素で切
断して開環した。こうして開環した直鎖状DNAの両末
端はAccI制限酵素認識サイトになっている。次に、この
AccI制限酵素認識サイト近傍の既知のDNA配列である
5末端から2974番目から3003番目までの30塩
基からなる塩基配列、及び、アンチセンス鎖のプライマ
ーとして2194番目から2165番目までの30塩基
をプライマーとして合成した(以下化3及び化4に示
す)。これらをプライマーにPCR法でDNA鎖を合成
する。その合成鎖の塩基配列を、常法に従いダイデオキ
シ法を用いて自動塩基配列読みとり装置で読む。結果、
この配列はAccI制限酵素認識サイトを含む形でAccI制限
酵素認識サイトの5'末端側と一部重複しながら、NdeI制
限酵素認識サイトまで至り、その途中に期待どおり終止
コドンが見出されたことにより、殺虫性タンパク質のア
ミノ酸配列をコードする全塩基配列が読めた。
In Example 1, the host bacterium was Escherichia coli JM.
Although 109 strains were used, the host bacteria are not limited to Escherichia coli, but Gram-negative bacteria such as Pseudomonas, Gram-positive bacteria such as Bacillus, and eukaryotic organisms such as Kaby yeast can also be used. The method of reading the entire base sequence is not limited to the shotgun method using a restriction enzyme. In fact, it is also possible to extend the EcoRI fragment containing a gene that is not full-length to the 3'-terminal side by the PCR method and read the entire base sequence in the same manner. For example, the following reading is possible. 336 in Example 1
Since it was found that NdeI restriction enzyme recognition sites were located near the 4700th position and the 2037th position downstream of the EcoRI DNA fragment which had been read up to 6 bases, the gene was cut out with NdeI and the fragment was circularized. From the NdeI restriction enzyme recognition site to the 3366th base, it is known that there is an AccI restriction enzyme recognition site in the base sequence near the 2746th position. Therefore, cut the self-circularized gene with the AccI restriction enzyme. The ring opened. Both ends of the linear DNA thus opened have AccI restriction enzyme recognition sites. Then this
A known DNA sequence near the AccI restriction enzyme recognition site, which is a base sequence consisting of 30 bases from 2974 to 3003 from the 5 terminus, and 30 bases from 2194 to 2165 as an antisense strand primer It was synthesized (shown in Chemical Formulas 3 and 4 below). Using these as primers, a DNA chain is synthesized by the PCR method. The nucleotide sequence of the synthetic chain is read by an automatic nucleotide sequence reader using the dideoxy method according to a conventional method. result,
This sequence overlapped with the 5'-terminal side of the AccI restriction enzyme recognition site in a form that included the AccI restriction enzyme recognition site, reached the NdeI restriction enzyme recognition site, and a stop codon was found in the way as expected. Thus, the entire nucleotide sequence encoding the amino acid sequence of the insecticidal protein could be read.

【0032】[0032]

【化3】5'-CAAGAACAACAATGGCAAGACAAAATGGCA-3'[Chemical 3] 5'-CAAGAACAACAATGGCAAGACAAAATGGCA-3 '

【0033】[0033]

【化4】3'-GCAATAAACTTCGTCTTCTTCTGGATCTAC-5'[Chemical 4] 3'-GCAATAAACTTCGTCTTCTTCTGGATCTAC-5 '

【0034】〔実施例2〕:殺虫性タンパク質を用いた
殺虫製剤 ブイブイ菌を培養して結晶タンパク質を精製した。結晶
タンパク質を含む結晶体は該微生物が生産しコガネムシ
等の甲虫目昆虫の幼虫を殺虫する。この結晶をアルカリ
処理すると結晶タンパク質は溶解し、常法に従いSDS
−PAGE分析を行なう事が出来る。結晶タンパク質の
主要成分は、130kDaである。この可溶化したタン
パク質をイオン交換樹脂を用いて精製すると、二つの活
性成分が分離される。SDS−PAGE分析すると、分
子量は約130kDa及び65kDaであった。65k
Daのタンパク質の存在量は、130kDaに比べ少な
い。ふたつのタンパク質のN末端のアミノ酸分析をした
ところ、分析結果は130kDaタンパク質は配列番号
1に示した塩基配列から類推できるアミノ酸配列と一致
している。つまり130kDaの場合は全く修飾されず
に抽出された事を意味している。一方65kDaの配列
を同じく配列番号1に示した全アミノ酸配列と比較する
と、65kDaのN末端のアミノ酸配列は、130kD
aのアミノ酸配列の54番目から始まるアミノ酸配列と
一致している。したがって精製の過程或いは、可溶化の
際に130kDaのタンパク質がプロセスされて生じた
物と思える。これは殺虫活性を示し、ドウガネブイブイ
を殺虫した。両タンパク質は、DEAE等の陰イオン交
換樹脂に吸着して、NaCl等を用いてイオン強度を連
続的に或いは不連続的にあげていく事により容易に夾雑
物と分別する事ができる(図1、2参照)。このように
して精製した130或いは65kDaの精製タンパク質
は、殺虫製剤の有効成分として製剤化に用いる事ができ
る。施用の方法は対象植物の根の周辺に注入する、堆肥
と共に根の周辺に施肥する植物根の周辺の地際に散布す
るなどの方法をとれる。前記タンパク質は容易に環境中
で微生物により分解されるので、それを防ぐために種々
のポリマーでコーティングする事もできる。尚、前記殺
虫製剤は例えば甲虫目アオドウガネ(Anomala albopilo
sa)、サクラコガネ(Anomala daimiana)、コガネムシ
(Minela splendens)、マメコガネ(Popillia japonic
a )、セマダラコガネ(Blitopertha orientalis)、ヒ
メコガネ(Anomala rufocuprea Motschulsky)、チビサ
クラコガネ(Anomala schoenfeldti Ohaus)などの殺虫
に有効である。
[Example 2]: Insecticidal formulation using insecticidal protein Buoy buoy bacterium was cultured to purify crystal protein. Crystals containing crystal proteins are produced by the microorganism and kill the larvae of Coleoptera insects such as scarabs. If this crystal is treated with alkali, the crystal protein will be dissolved and SDS
-Can perform PAGE analysis. The major component of crystal protein is 130 kDa. Purification of this solubilized protein using an ion exchange resin separates the two active ingredients. By SDS-PAGE analysis, the molecular weight was about 130 kDa and 65 kDa. 65k
The abundance of the Da protein is lower than that of 130 kDa. When the amino acids at the N-terminals of the two proteins were analyzed, the analysis results agree with the amino acid sequence of the 130 kDa protein that can be deduced from the nucleotide sequence shown in SEQ ID NO: 1. That is, the case of 130 kDa means that the data was extracted without any modification. On the other hand, comparing the 65-kDa sequence with the entire amino acid sequence shown in SEQ ID NO: 1, the 65-kDa N-terminal amino acid sequence was 130 kDa.
It matches the amino acid sequence starting from the 54th amino acid sequence of a. Therefore, it seems that the 130-kDa protein was processed during the purification process or solubilization. It exhibited insecticidal activity and killed the squirrel buoy. Both proteins can be easily separated from contaminants by adsorbing them on anion exchange resin such as DEAE and increasing the ionic strength continuously or discontinuously using NaCl etc. (Fig. 1 2). The purified protein of 130 or 65 kDa thus purified can be used for formulation as an active ingredient of an insecticidal formulation. The application method may be such as injecting it around the root of the target plant or spraying it around the root around the plant root, which is applied around the root together with compost. Since the protein is easily decomposed by microorganisms in the environment, it can be coated with various polymers to prevent it. The insecticidal preparation may be, for example, Anomala albopilo.
sa), cherry beetle (Anomala daimiana), scarab beetle (Minela splendens), beetle (Popillia japonic)
It is effective for killing insects such as a), Betpertha orientalis, Anomala rufocuprea Motschulsky, and Anomala schoenfeldti Ohaus.

【0035】〔実施例3〕:変異体DNA及び変異体タ
ンパク質 実施例1において明らかになった殺虫性タンパク質は、
分子量約13万であり、甲虫目昆虫の幼虫の腸の中で酵
素分解によりプロセスされ、分子量約6万の毒素に変換
されるプロトキシンと呼ばれるものである。このような
機構は〔Microbiol. Rev. 53, 242-255 (1989)〕等に示
されるように、殺虫性タンパク質に共通にみられるもの
であり、前記殺虫性タンパク質のC末端側の約半分は、
殺虫性の活性には関与していないものと考えられてい
る。実際ブイブイ株の殺虫性タンパク質の場合も、図1
および図2に示したように130kDaから派生した6
5kDaの殺虫性タンパク質(図1のP1及び図2のか
を示す)も精製され、このものはドウガネブイブイの幼
虫に対して殺虫活性を示した(図2)。
Example 3 Mutant DNA and Mutant Protein The insecticidal protein revealed in Example 1 is
It has a molecular weight of about 130,000 and is called a protoxin that is converted into a toxin having a molecular weight of about 60,000 by being processed by enzymatic decomposition in the intestine of a larva of a beetle insect. Such a mechanism is commonly found in insecticidal proteins as shown in [Microbiol. Rev. 53, 242-255 (1989)] and the like. About half of the insecticidal proteins on the C-terminal side are ,
It is believed that it is not involved in insecticidal activity. In the case of insecticidal protein of buoy buoy strain,
And 6 derived from 130 kDa as shown in FIG.
A 5 kDa insecticidal protein (shown as P1 in FIG. 1 and as in FIG. 2) was also purified and showed insecticidal activity against the larvae of Spodoptera litura (FIG. 2).

【0036】また、バチルス・チューリンゲンシス・セ
ロバー・クルスタキー−HD-1のcryIA(a)遺伝子
を用いて欠失変異株を作った実験では、645番目のア
ミノ酸をもっている場合は活性があり、さらに645番
目から603番目までのアミノ酸をC−末端側から削っ
た場合は、活性を失うことが知られている〔(J.Biol.Ch
em. 260 6273-6280)参照〕。従って、大腸菌等の宿主細
胞を殺虫性タンパク質をコードするDNAを用いて形質
転換する場合は、実施例1により明らかになったDNA
をそのまま宿主細胞に形質転換しなくとも、そのDNA
を殺虫活性を失わないように欠失させることにより改変
を行って、変異体DNAをつくり、その変異体DNAを
用いて宿主細胞を形質転換することができる。
In addition, in an experiment in which a deletion mutant strain was prepared using the cryIA (a) gene of Bacillus thuringiensis serovar klestakey-HD-1, it was active when it had the 645th amino acid, and further 645 It is known that when the amino acids from the 1st to the 603rd position are deleted from the C-terminal side, the activity is lost [(J. Biol. Ch.
Em. 260 6273-6280)]. Therefore, when a host cell such as Escherichia coli is transformed with a DNA encoding an insecticidal protein, the DNA revealed in Example 1
DNA even if it is not transformed into a host cell
Can be modified by deleting so that the insecticidal activity is not lost to produce mutant DNA, and the host DNA can be transformed with the mutant DNA.

【0037】そこで、実施例1において、クローニング
したDNAを用い前記DNAの3'末端をエキソヌクアー
ゼで分解削除して、DNAを5'末端から2300番以後
の塩基配列を削除して変異体DNAを作成し、前記変異
体DNAを、大腸菌を用いてクローニングした。前記変
異体DNAを組み込んで1日〜2日培養した組み換え大
腸菌を、蒸留水で洗浄の後、実施例1と同様の方法で生
物検定を行って殺虫活性を調べたところ前記変異体DN
Aによって生産される変異体殺虫性タンパク質に、殺虫
活性がみられることがわかった。
Therefore, in Example 1, the cloned DNA was used to decompose and delete the 3'end of the DNA with exonuclease to delete the nucleotide sequence from the 5'end to the 2300th and subsequent nucleotides to prepare a mutant DNA. Then, the mutant DNA was cloned using E. coli. Recombinant Escherichia coli containing the mutant DNA and cultured for 1 to 2 days was washed with distilled water and then subjected to a bioassay in the same manner as in Example 1 to examine the insecticidal activity.
It was found that the mutant insecticidal protein produced by A exhibits insecticidal activity.

【0038】以下、配列番号2に、欠失DNA変異体の
塩基配列および変異体タンパク質のアミノ酸配列を示
す。
In the following, SEQ ID NO: 2 shows the nucleotide sequence of the deletion DNA mutant and the amino acid sequence of the mutant protein.

【0039】実施例1の図1および図2に示したように
65kDaの殺虫性タンパク質も結晶性タンパク質から
精製された。この精製された殺虫性タンパク質は、SD
S−PAGEに於いて単一のバンドを示した。この単一
のバンドを示した65kDaの殺虫性タンパク質を常法
に従ってPVDF膜に転写し、相当する部分を切りとり
ABI社製自動アミノ酸配列決定機によりN末端を決定
した。この65kDaの殺虫性タンパク質のN末端のア
ミノ酸配列は、実施例1で単離した分子量130kDa
の殺虫性タンパク質のN末端から54番目のアミノ酸か
ら始まるアミノ酸配列に等しく、配列番号1の配列に由
来している事は明らかである。また、前記分子量130
kDaの殺虫性タンパク質のN末端から53番目までの
アミノ酸および、705番目からC末端までのアミノ酸
が構成する部分は、殺虫性の発現に必ずしも必要でない
事が示された事になる。
The 65 kDa insecticidal protein was also purified from the crystalline protein as shown in FIGS. 1 and 2 of Example 1. This purified insecticidal protein is SD
A single band was shown on S-PAGE. The 65 kDa insecticidal protein showing this single band was transferred onto a PVDF membrane by a conventional method, the corresponding portion was cut out, and the N-terminal was determined by an automatic amino acid sequencer manufactured by ABI. The N-terminal amino acid sequence of this 65 kDa insecticidal protein has a molecular weight of 130 kDa isolated in Example 1.
It is clear that the insecticidal protein is derived from the sequence of SEQ ID NO: 1, which is equivalent to the amino acid sequence starting from the 54th amino acid from the N-terminus. The molecular weight of 130
It has been shown that the portion consisting of the amino acid from the N-terminal to the 53rd amino acid and the amino acid from the 705th to the C-terminal of the insecticidal protein of kDa is not always necessary for the insecticidal expression.

【0040】〔実施例4〕:大腸菌、シュードモナス、
バチルス等で発現するようにしたDNAのカセット化 大腸菌、シュードモナス、バチルス等には遺伝子工学上
あるいは農業、工業の実際上有益な種々の菌が含まれ
る。これらの菌で増殖し、発現するプラスミドに自由に
挿入する事のできるように、前述のトキシンDNAをカ
セット化する事が容易にできる。殺虫性タンパク質をコ
ードするDNAには、BamHIサイトが存在していないの
で、市販されている多くのプラスミドのマルチクローニ
ングサイトに存在するBamHIサイトを開始コドンATG
のすぐ上流に導入すれば、容易にBamHIサイトでトキシ
ンDNAを種々のプラスミドに導入する事ができる。ま
たそのプラスミドが大腸菌とシュードモナスの両方で、
或いはシュードモナスとバチルスの両方などで働くOR
Iをもち、カセットの両端が該微生物中で働くプロモー
タに結合し、且つ、翻訳を希望点で中止できる物とすれ
ば、ブイブイ菌の遺伝子を持ったシャトルベクター、或
いは、同時に発現ベクターを構築することができる。具
体的なカセット化DNAの合成法を以下に示す。DNA
合成機を用いて化5に示すオリゴヌクレオチドを合成す
る。これは、GGATCCというBamHI制限酵素認識サイト
に、ATGAGTCCAAATというブイブイ菌遺伝子の翻訳開始点
の最初の12塩基を連結した物である。前記オリゴヌク
レオチドは、PCR法でDNA鎖を合成する場合のセン
ス鎖のプライマーとして使用できる。一方アンチセンス
鎖のプライマーとしては、遺伝子のORF内の794番
目のAciIサイト、555番目のBclIサイトなどのOR
F内に1箇所だけにあるような制限酵素認識サイトを目
印にして、前記制限酵素認識サイトより少し3'末端側の
塩基配列を用いればよく、合成機でAciI制限酵素認識
サイトの3'末端側の塩基配列である化6に示される塩基
配列を、合成してアンチセンスプライマーとして用いる
ことができる。
[Example 4]: Escherichia coli, Pseudomonas,
Encapsulation of DNA so that it can be expressed in Bacillus, etc. Escherichia coli, Pseudomonas, Bacillus, etc. include various bacteria which are practically useful in genetic engineering, agriculture, and industry. The above-described toxin DNA can be easily made into a cassette so that it can be freely inserted into a plasmid that grows and expresses in these bacteria. Since the BamHI site does not exist in the DNA encoding the insecticidal protein, the BamHI site present in the multicloning sites of many commercially available plasmids should be replaced with the initiation codon ATG.
Toxin DNA can be easily introduced into various plasmids at the BamHI site if it is introduced immediately upstream of. In addition, the plasmid is in both E. coli and Pseudomonas,
Or OR working in both Pseudomonas and Bacillus
If the cassette has I, both ends of the cassette are bound to a promoter working in the microorganism, and the translation can be stopped at a desired point, a shuttle vector having a buoy buoy gene or an expression vector is constructed at the same time. be able to. A specific method for synthesizing a cassette DNA is shown below. DNA
The oligonucleotide shown in Chemical formula 5 is synthesized using a synthesizer. This is a product in which the first 12 bases of the translation start point of the buoy bacterium gene of ATGAGTCCAAAT were linked to the BamHI restriction enzyme recognition site of GGATCC. The above-mentioned oligonucleotide can be used as a primer for a sense strand when a DNA strand is synthesized by the PCR method. On the other hand, as a primer for the antisense strand, OR of the 794th AciI site, the 555th BclI site, etc. in the ORF of the gene is used.
A restriction enzyme recognition site such as one site in F can be used as a mark, and a base sequence slightly 3 ′ to the restriction enzyme recognition site can be used. The 3 ′ end of the AciI restriction enzyme recognition site on a synthesizer can be used. The base sequence shown in Chemical formula 6 which is the side base sequence can be synthesized and used as an antisense primer.

【0041】[0041]

【化5】GGATCCATGAGTCCAAAT[Chemical 5] GGATCCATGAGTCCAAAT

【0042】[0042]

【化6】AGACGTAAACGAACATT[Chemical 6] AGACGTAAACGAACATT

【0043】PCR反応の結果、次のような2本鎖DN
Aが合成される。以下化7に、PCR法により合成され
た2本鎖DNAを示す。
As a result of PCR reaction, the following double-stranded DN
A is synthesized. The following chemical formula 7 shows a double-stranded DNA synthesized by the PCR method.

【0044】[0044]

【化7】 5'-GGATCCATGAGTCCA-------GGCCGCCTCTCTGCATTTGCTT-3' 3'-CCTAGGTACTCAGGT-------CCGGCGGAGAGACGTAAACGA A-5' [Chemical 7] 5'-GGATCCATGAGTCCA ------- GGCCGCCTCTCTGCATTTGCTT-3 '3'-CCTAGGTACTCAGGT ------- CCGGCGGAGAGACGTAAACGA A-5'

【0045】前記2本鎖DNAを、制限酵素BamHIと制
限酵素AciIとを用いて2重分解することにより、BamH
Iサイトを5'末端に、AciIサイトを3'末端に持ったト
キシンDNAの断片を得る事ができる。以下に化7の2
本鎖DNAより作ったカセット化DNAを化8として示
す。
The double-stranded DNA is double-digested with a restriction enzyme BamHI and a restriction enzyme AciI to give BamH
A toxin DNA fragment having the I site at the 5'end and the AciI site at the 3'end can be obtained. 2 of chemical formula 7 below
A cassette DNA prepared from the double-stranded DNA is shown as Chemical formula 8.

【0046】[0046]

【化8】 [Chemical 8]

【0047】一方すでにクローニングしてあるEcoRI断
片をAciIサイトで切断し、PCR法で合成した化8記
載のDNA鎖をT4DNAリガーゼを用いて結合し、5'
末端にBamHIサイトを付加したトキシンDNAを得る。
次には全く同じ原理によって、適当な制限酸素サイトを
終結コドンのすぐ下流に挿入する。下流にいれる制限酵
素サイトは、例えばAccIII,BsaI、濃度NotI等のOR
F内に存在しないサイトが都合良い。例えばセンス鎖の
プライマーとしては、およそ790番近傍のAciIのす
ぐ上流の配列化9に示した物などがよい。
On the other hand, the EcoRI fragment already cloned was cleaved at the AciI site, and the DNA chain described in Chemical formula 8 synthesized by the PCR method was ligated using T4 DNA ligase to obtain 5 ′.
A toxin DNA having a BamHI site added to the end is obtained.
Then, by the exact same principle, an appropriate restriction oxygen site is inserted immediately downstream of the termination codon. The restriction enzyme site placed downstream is, for example, an OR of AccIII, BsaI, or concentration NotI.
A site that does not exist in F is convenient. For example, as the primer for the sense strand, the one shown in Sequence 9 immediately upstream of AciI in the vicinity of about 790 is preferable.

【0048】[0048]

【化9】ACCCACATATGCACAGGCCGCCTCT[Chemical 9] ACCCACATATGCACAGGCCGCCTCT

【0049】アンチセンス鎖のプライマーは、終止コド
ンのすぐ5'側末端側の塩基配列であるAAG TGA---TAG に
AccIIIの認識サイトであるAGGCCTの配列を結合した化1
0に示す塩基配列を用いる。PCR法による合成の結
果、化11に示す2本鎖DNAが合成される。
The primer for the antisense strand was AAG TGA --- TAG which is the base sequence immediately 5'to the stop codon.
Chemical sequence 1 with the sequence of AGG CCT which is the recognition site of AccIII
The base sequence shown in 0 is used. As a result of the synthesis by the PCR method, the double-stranded DNA shown in Chemical formula 11 is synthesized.

【0050】[0050]

【化10】TTCACATAAGTTGTATCAGGCCT[Chemical 10] TTCACATAAGTTGTATCAGGCCT

【0051】[0051]

【化11】 ---AAGTGTATTCAACATAGTCCGGA ---TTCACATAAGTTGTATCAGGCCT[Chemical 11] --- AAGTGTATTCAACATAGTCCGGA --- TTCACATAAGTTGTATCAGGCCT

【0052】前記2本鎖DNA、制限酵素AciI、及びA
ccIIIで2重分解し、サイトの開裂した化12に示すD
NA鎖を得る。
The double-stranded DNA, restriction enzymes AciI and A
Site Cleavage with double decomposition by ccIII
Obtain the NA chain.

【0053】[0053]

【化12】 [Chemical 12]

【0054】これを先に、5'末端の上流に制限酵素認識
サイトBamHIを導入したトキシンDNAの断片とAciI
制限酵素認識サイトで連結する。このようにしてDNA
の両端に意図する制限酵素認識サイトを持ったDNAの
カセット化断片を合成できる。本実施例の場合は5'末端
にBamHI、3'末端にAccIIIの各サイトを持つトキシンD
NAが合成できる。市販のマルチクローニングサイトを
改良し、AccIIIの各サイトを持つトキシンDNAが合成
できる。市販のマルチクローニングサイトを改良し、Ac
cIII等他の目的にかなったサイトを導入する事は出来る
ので、ORF内にただ一つ存在するようなサイトでカセ
ット化する事も容易である。トキシンDNAの両端に制
限酵素サイトを持ったカセットとは、容易に様々なプラ
スミドに挿入する事ができる物であり、例えば、実施例
4に於いてDNAのカセット化断片は、約130kDa
の分子量の殺虫性タンパク質をコードする塩基配列を用
いて合成したが、実施例3に於いて合成した約65kD
aの分子量の殺虫性タンパク質をコードする塩基配列を
用いて合成しても良い。この場合、2300番近傍の制
限酵素に認識サイト、例えばMseI等はDNA内に多数
存在するので、煩雑な操作が必要になり、HindIII ,Bg
lI,HaeII等の制限酵素認識サイトを、切断末端につづ
く3'末端側に付加するとよい。シュードモナスで増殖す
るプラスミドで、バチルスで増殖するpBD9等のBamHIサ
イトに挿入できる。また、大腸菌での増殖にはプラスミ
ドとして、pBR322,pUC18等を用いる事ができる。このよ
うにして完全長の遺伝子、或いは活性を損なわない程度
に欠失する改変を行った遺伝子を含んだ大腸菌、シュー
ドモナス、バチルス等で発現可能なベクターを構築でき
る。用いるベクターは、大腸菌だけで増殖するという必
要はなく、大腸菌と、シュードモナス、大腸菌とバチル
スなどの複数の宿主において増殖するシャトルベクター
でもよい。つまり、各々の宿主に対応するORIを用い
て常法に従ってシャトルベクターを構築する事は十分に
できる。実施例3において、プライマーの塩基配列にAc
iIサイト近傍の塩基配列を用いたが、こうすることに
より、AciIサイトがORF内に1箇所しかないので切
断後の断片の特定が容易になり、またPCR法による合
成を行う場合に、確実に合成できる程良い長さであると
いう利点があるものの他の制限酵素認識サイトを選んで
も良く合成法もPCR法に限られるものではないが、挿
入するサイトはORF内に少ないもの、できれば一つし
かないサイトが良いといえる。
First, a fragment of toxin DNA in which a restriction enzyme recognition site BamHI was introduced upstream of the 5'end and AciI.
Link at the restriction enzyme recognition site. In this way DNA
It is possible to synthesize a cassette-formed fragment of DNA having intended restriction enzyme recognition sites at both ends. In the case of this example, toxin D having BamHI sites at the 5 ′ end and AccIII sites at the 3 ′ end
NA can be synthesized. By improving the commercially available multi-cloning site, a toxin DNA having each AccIII site can be synthesized. Improve the commercially available multi-cloning site to
Since it is possible to introduce a site for other purposes such as cIII, it is easy to make a cassette at a site that exists only in the ORF. A cassette having restriction enzyme sites at both ends of toxin DNA is a product that can be easily inserted into various plasmids. For example, the cassette fragment of DNA in Example 4 is about 130 kDa.
It was synthesized using the nucleotide sequence encoding the insecticidal protein having the molecular weight of about 65 kD synthesized in Example 3.
It may be synthesized using a nucleotide sequence encoding an insecticidal protein having a molecular weight of a. In this case, since there are many recognition sites, such as MseI, in the restriction enzyme near the 2300th position in the DNA, a complicated operation is required, and HindIII, Bg
It is advisable to add restriction enzyme recognition sites such as 11 and HaeII to the 3'end side following the cut ends. It is a plasmid that grows in Pseudomonas and can be inserted into the BamHI site such as pBD9 that grows in Bacillus. Further, pBR322, pUC18 and the like can be used as plasmids for propagation in E. coli. In this way, a vector capable of expressing in Escherichia coli, Pseudomonas, Bacillus, etc., containing a full-length gene or a gene modified so as not to impair the activity can be constructed. The vector used does not have to grow only in E. coli, but may be a shuttle vector that grows in multiple hosts such as E. coli and Pseudomonas, E. coli and Bacillus. That is, it is sufficient to construct a shuttle vector according to a conventional method using ORI corresponding to each host. In Example 3, Ac was added to the base sequence of the primer.
Although the base sequence near the iI site was used, this makes it easy to identify the fragment after cleavage because there is only one AciI site in the ORF, and when synthesizing by the PCR method, surely Other restriction enzyme recognition sites may be selected although they have the advantage that the length is sufficient for synthesis, and the synthesis method is not limited to the PCR method, but the number of insertion sites is small in the ORF, and if possible there is only one. It can be said that there is no site is good.

【0055】〔実施例5〕:形質転換植物の作成 130kDaの殺虫性タンパクをコードしている遺伝子
は、いままで発見されたその殆どが、5箇所の保存され
た領域を持っている〔(Hofte and Whiteley Bactriol R
ev (1989))参照〕。ブイブイ菌の遺伝子にも5個の保存
領域が発見できた(図3)。それらは配列表1の760-84
9,910-1110,1669-1815,1885-1914,2128-2163番の塩基配
列に相当する領域であり、これらを順にブロック1,
2,〜5とする。1987年に3つの論文(Plant Phys
iol. 85 1103-1109 (1987), Bio/Technology 5 807-813
(1987), Nature 328 33-37 (1987)) が形質転換植物に
ついて発表されたが、いずれも、トキシンタンパク質の
半分の活性部分をコードする塩基配列を挿入した物で、
全領域を用いた場合は、いずれも培養細胞でネクロシス
を起こして、形質転換物質を得ることが出来なかった。
常法に従って(例えば、Cell 11 263-271 1977, Cell 1
9 729-739 (1980))、トキシンDNA或いは活性を失っ
ていない半分のトキシンDNAを、アグロバクテリウム
のT−DNAをベクターに用いたプラスミド系に挿入す
る。パーティクルガン、エレクトロポレーション、リポ
ソーム法などの物理的方法によってこのプラスミドを植
物培養細胞に導入し、変異体DNAを持っ形質転換細胞
を作成する。この培養細胞から植物を再生し、前記変異
体DNAを持った組換え植物を作出できる。ベクター系
としては、植物と微生物のシャトルベクター系を用いる
事もできる。この時は、おそらく前記DNAを持ったこ
のシャトルベクター系は、宿主植物細胞中でプラスミド
として存在すると思われる。これはたとえばメンデル遺
伝しないため、一代限りの形質転換植物の作成に適して
いる。T−DNAに挿入した遺伝子断片は、植物細胞中
で発現するように構築した該遺伝子を、例えばCaMVの
35Sプロモータのすぐ3'末端側に連結した。挿入した
遺伝子は、配列番号1の塩基配列5'末端第1番目から、
第2299番目までを用いた。末端を第2299番目と
したことは、ブロック5を含む様にする改良を行ったも
のである。終止コドンの3'末端側には、植物で働くノパ
リン合成酵素(nos) のターミネータを結合した。この方
法によって、双子葉、単子葉を問わず、当該遺伝子を持
ったコメ、ムギ、トウモロコシ、ピーナッツ、ダイズ、
ジャガイモ、サトイモ、ニンジン、カーネーション等数
多くの形質転換植物を作る事が出来る。もし、CaMBの
35Sプロモータ以外の、果実貯蔵タンパク質の合成に
関するプロモータ、葉でのみ発現するタンパク質のプロ
モータ、根のみで発現するタンパク質のプロモータ等を
用いれば、トキシンタンパク質の組織特異的発現を行な
うことができる。
[Example 5]: Preparation of transformed plant Most of the genes encoding the 130 kDa insecticidal protein discovered so far have 5 conserved regions [(Hofte and Whiteley Bactriol R
ev (1989))]. Five conserved regions were found in the buoy buoy genes (Fig. 3). They are 760-84 in Sequence Listing 1.
It is a region corresponding to the nucleotide sequence of 9,910-1110, 1669-1815, 1885-1914, 2128-2163.
2 to 5. In 1987, three papers (Plant Phys
iol. 85 1103-1109 (1987), Bio / Technology 5 807-813
(1987), Nature 328 33-37 (1987)) was published for transformed plants, both of which were obtained by inserting a nucleotide sequence encoding the active portion of half of the toxin protein,
When all the regions were used, necrosis occurred in the cultured cells and no transformant could be obtained.
In accordance with standard methods (eg Cell 11 263-271 1977, Cell 1
9 729-739 (1980)), or half of the toxin DNA which has not lost the activity, is inserted into a plasmid system using T-DNA of Agrobacterium as a vector. This plasmid is introduced into plant cultured cells by a physical method such as particle gun, electroporation, or liposome method to prepare transformed cells having mutant DNA. A plant can be regenerated from this cultured cell to produce a recombinant plant having the mutant DNA. As the vector system, a shuttle vector system of plants and microorganisms can also be used. At this time, it is likely that this shuttle vector system with the DNA is present as a plasmid in the host plant cell. This is not suitable for Mendelian inheritance, for example, and is suitable for the generation of one-time transformed plants. The gene fragment inserted into T-DNA was ligated to the gene constructed so as to be expressed in plant cells, for example, immediately 3'to the 35S promoter of CaMV. Inserted gene, from the first 5'end of the nucleotide sequence of SEQ ID NO: 1,
Up to the 2299th was used. Setting the end to the 2299th position is an improvement to include block 5. The terminator of nopaline synthase (nos), which works in plants, was attached to the 3'end of the stop codon. By this method, regardless of dicots, monocots, rice, wheat, corn, peanuts, soybeans with the gene,
It is possible to make many transformed plants such as potato, taro, carrot and carnation. If a promoter related to the synthesis of fruit storage proteins other than the CaMB 35S promoter, a promoter that expresses only in leaves, a promoter that expresses only in roots, etc. is used, tissue-specific expression of toxin protein can be achieved. it can.

【0056】〔実施例6〕:形質転換微生物の生産する
タンパク質を用いた殺虫製剤 形質転換微生物の生産するタンパク質は、コガネムシ類
の幼虫を殺虫する事が出来る。培養した培養物を、遠心
分離などを用いて分離回収し、洗浄の後製剤の有効成分
として用いることが出来る。製剤は、粉剤、液剤等形態
を問わない。また微生物が自己分解を起こす前に培養を
停止して、酢酸などの化学物質によって殺虫活性を損な
う事なく殺菌し、細菌内に殺虫性タンパク質を閉じ込め
た物を、製剤の有効成分として用いる事が出来る。これ
らの製剤の施用法は、対象植物の根の周辺に注入する、
堆肥と共に根の周辺に施肥する植物根の周辺の地際に散
布するなどの方法をとれる。
[Example 6]: Insecticidal preparation using a protein produced by a transformed microorganism A protein produced by a transformed microorganism can kill larvae of scarab beetles. The cultivated culture can be separated and collected by centrifugation or the like, and can be used as an active ingredient of the preparation after washing. The preparation may be in the form of powder, liquid or the like. It is also possible to stop the culture before the microorganisms undergo autolysis and sterilize it without impairing the insecticidal activity by chemical substances such as acetic acid, and use the substance in which the insecticidal protein is trapped in the bacteria as the active ingredient of the formulation. I can. The application method of these formulations is to inject around the root of the target plant,
Fertilizer is applied around the roots together with the compost. For example, it can be sprayed around the roots around the plant roots.

【0057】[0057]

【配列表】[Sequence list]

配列番号 :1 配列の長さ:3797 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 生物名 :バチルス・チューリンゲンシス:セロバー・
ヤポネンシス(Bacillus thuringiensis serovar japon
ensis ) 株名 :ブイブイ(Buibui) AATTCTAATG ACACAGTAGA ATATTTTTAA AATAAAGATG GAAGGGGGAA TATGAAAAAA 60 ATATAATCAT AAGAGTCATA CAAAAAGATT GTATGTTAAA ACAAAAAAAT CCTGTAGGAA 120 TAGGGGTTTA AAAGCAATCA TTTGAAAAGA TAGTTATATT AAATTGTATG TATAGGGGGA 180 AAAAAG ATG AGT CCA AAT AAT CAA AAT GAG TAT GAA ATT ATA GAT GCT 228 Met Ser Pro Asn Asn Gln Asn Glu Tyr Glu Ile Ile Asp Ala 1 5 10 TTA TCA CCC ACT TCT GTA TCC GAT AAT TCT ATT AGA TAT CCT TTA GCA 276 Leu Ser Pro Thr Ser Val Ser Asp Asn Ser Ile Arg Tyr Pro Leu Ala 15 20 25 30 AAC GAT CAA ACG AAC ACA TTA CAA AAC ATG AAT TAT AAA GAT TAT CTG 324 Asn Asp Gln Thr Asn Thr Leu Gln Asn Met Asn Tyr Lys Asp Tyr Leu 35 40 45 AAA ATG ACC GAA TCA ACA AAT GCT GAA TTG TCT CGA AAT CCC GGG ACA 372 Lys Met Thr Glu Ser Thr Asn Ala Glu Leu Ser Arg Asn Pro Gly Thr 50 55 60 TTT ATT AGT GCG CAG GAT GCG GTT GGA ACT GGA ATT GAT ATT GTT AGT 420 Phe Ile Ser Ala Gln Asp Ala Val Gly Thr Gly Ile Asp Ile Val Ser 65 70 75 ACT ATA ATA AGT GGT TTA GGG ATT CCA GTG CTT GGG GAA GTC TTC TCA 468 Thr Ile Ile Ser Gly Leu Gly Ile Pro Val Leu Gly Glu Val Phe Ser 80 85 90 ATT CTG GGT TCA TTA ATT GGC TTA TTG TGG CCG TCA AAT AAT GAA AAT 516 Ile Leu Gly Ser Leu Ile Gly Leu Leu Trp Pro Ser Asn Asn Glu Asn 95 100 105 110 GTA TGG CAA ATA TTT ATG AAT CGA GTG GAA GAG CTA ATT GAT CAA AAA 564 Val Trp Gln Ile Phe Met Asn Arg Val Glu Glu Leu Ile Asp Gln Lys 115 120 125 ATA TTA GAT TCT GTA AGA TCA AGA GCC ATT GCA GAT TTA GCT AAT TCT 612 Ile Leu Asp Ser Val Arg Ser Arg Ala Ile Ala Asp Leu Ala Asn Ser 130 135 140 AGA ATA GCT GTA GAG TAC TAT CAA AAT GCA CTT GAA GAC TGG AGA AAA 660 Arg Ile Ala Val Glu Tyr Tyr Gln Asn Ala Leu Glu Asp Trp Arg Lys 145 150 155 AAC CCA CAC AGT ACA CGA AGC GCA GCA CTT GTA AAG GAA AGA TTT GGA 708 Asn Pro His Ser Thr Arg Ser Ala Ala Leu Val Lys Glu Arg Phe Gly 160 165 170 AAT GCA GAA GCA ATT TTA CGT ACT AAC ATG GGT TCA TTT TCT CAA ACG 756 Asn Ala Glu Ala Ile Leu Arg Thr Asn Met Gly Ser Phe Ser Gln Thr 175 180 185 190 AAT TAT GAG ACT CCA CTC TTA CCC ACA TAT GCA CAG GCC GCC TCT CTG 804 Asn Tyr Glu Thr Pro Leu Leu Pro Thr Tyr Ala Gln Ala Ala Ser Leu 195 200 205 CAT TTG CTT GTA ATG AGG GAT GTT CAA ATT TAC GGG AAG GAA TGG GGA 852 His Leu Leu Val Met Arg Asp Val Gln Ile Tyr Gly Lys Glu Trp Gly 210 215 220 TAT CCT CAA AAT GAT ATT GAC CTA TTT TAT AAA GAA CAA GTA TCT TAT 900 Tyr Pro Gln Asn Asp Ile Asp Leu Phe Tyr Lys Glu Gln Val Ser Tyr 225 230 235 ACG GCT AGA TAT TCC GAT CAT TGC GTC CAA TGG TAC AAT GCT GGT TTA 948 Thr Ala Arg Tyr Ser Asp His Cys Val Gln Trp Tyr Asn Ala Gly Leu 240 245 250 AAT AAA TTA AGA GGA ACG GGT GCT AAG CAA TGG GTG GAT TAT AAT CGT 996 Asn Lys Leu Arg Gly Thr Gly Ala Lys Gln Trp Val Asp Tyr Asn Arg 255 260 265 270 TTC CGA AGA GAA ATG AAT GTG ATG GTA TTG GAT CTA GTT GCA TTA TTT 1044 Phe Arg Arg Glu Met Asn Val Met Val Leu Asp Leu Val Ala Leu Phe 275 280 285 CCA AAC TAC GAT GCG CGT ATA TAT CCA CTG GAA ACA AAT GCA GAA CTT 1092 Pro Asn Tyr Asp Ala Arg Ile Tyr Pro Leu Glu Thr Asn Ala Glu Leu 290 295 300 ACA AGA GAA ATT TTC ACA GAT CCT GTT GGA AGT TAC GTA ACT GGA CAA 1140 Thr Arg Glu Ile Phe Thr Asp Pro Val Gly Ser Tyr Val Thr Gly Gln 305 310 315 TCG AGT ACC CTT ATA TCT TGG TAC GAT ATG ATT CCA GCA GCT CTT CCT 1188 Ser Ser Thr Leu Ile Ser Trp Tyr Asp Met Ile Pro Ala Ala Leu Pro 320 325 330 TCA TTT TCA ACG CTC GAG AAC CTA CTT AGA AAA CCT GAT TTC TTT ACT 1236 Ser Phe Ser Thr Leu Glu Asn Leu Leu Arg Lys Pro Asp Phe Phe Thr 335 340 345 350 TTG CTG CAA GAA ATT AGA ATG TAT ACA AGT TTT AGA CAA AAC GGT ACG 1284 Leu Leu Gln Glu Ile Arg Met Tyr Thr Ser Phe Arg Gln Asn Gly Thr 355 360 365 ATT GAA TAT TAT AAT TAT TGG GGA GGA CAA AGG TTA ACC CTT TCT TAT 1332 Ile Glu Tyr Tyr Asn Tyr Trp Gly Gly Gln Arg Leu Thr Leu Ser Tyr 370 375 380 ATC TAT GGT TCC TCA TTC AAT AAA TAT AGT GGG GTT CTT GCC GGT GCT 1380 Ile Tyr Gly Ser Ser Phe Asn Lys Tyr Ser Gly Val Leu Ala Gly Ala 385 390 395 GAG GAT ATT ATT CCT GTG GGT CAA AAT GAT ATT TAC AGA GTT GTA TGG 1428 Glu Asp Ile Ile Pro Val Gly Gln Asn Asp Ile Tyr Arg Val Val Trp 400 405 410 ACT TAT ATA GGA AGG TAC ACG AAT AGT CTG CTA GGA GTA AAT CCA GTT 1476 Thr Tyr Ile Gly Arg Tyr Thr Asn Ser Leu Leu Gly Val Asn Pro Val 415 420 425 430 ACT TTT TAC TTC AGT AAT AAT ACA CAA AAA ACT TAT TCG AAG CCA AAA 1524 Thr Phe Tyr Phe Ser Asn Asn Thr Gln Lys Thr Tyr Ser Lys Pro Lys 435 440 445 CAA TTC GCG GGT GGA ATA AAA ACA ATT GAT TCC GGC GAA GAA TTA ACT 1572 Gln Phe Ala Gly Gly Ile Lys Thr Ile Asp Ser Gly Glu Glu Leu Thr 450 455 460 TAC GAA AAT TAT CAA TCT TAT AGT CAC AGG GTA AGT TAC ATT ACA TCT 1620 Tyr Glu Asn Tyr Gln Ser Tyr Ser His Arg Val Ser Tyr Ile Thr Ser 465 470 475 TTT GAA ATA AAA AGT ACC GGT GGT ACA GTA TTA GGA GTA GTT CCT ATA 1668 Phe Glu Ile Lys Ser Thr Gly Gly Thr Val Leu Gly Val Val Pro Ile 480 485 490 TTT GGT TGG ACG CAT AGT AGT GCC AGT CGC AAT AAC TTT ATT TAC GCA 1716 Phe Gly Trp Thr His Ser Ser Ala Ser Arg Asn Asn Phe Ile Tyr Ala 495 500 505 510 ACA AAA ATC TCA CAA ATC CCA ATC AAT AAA GCA AGT AGA ACT AGC GGT 1764 Thr Lys Ile Ser Gln Ile Pro Ile Asn Lys Ala Ser Arg Thr Ser Gly 515 520 525 GGA GCG GTT TGG AAT TTC CAA GAA GGT CTA TAT AAT GGA GGA CCT GTA 1812 Gly Ala Val Trp Asn Phe Gln Glu Gly Leu Tyr Asn Gly Gly Pro Val 530 535 540 ATG AAA TTA TCT GGG TCT GGT TCC CAA GTA ATA AAC TTA AGG GTC GCA 1860 ケ Met Lys Leu Ser Gly Ser Gly Ser Gln Val Ile Asn Leu Arg Val Ala 545 550 555 ACA GAT GCA AAG GGA GCA AGT CAA AGA TAT CGT ATT AGA ATC AGA TAT 1908 Thr Asp Ala Lys Gly Ala Ser Gln Arg Tyr Arg Ile Arg Ile Arg Tyr 560 565 570 GCC TCT GAT AGA GCG GGT AAA TTT ACG ATA TCT TCC AGA TCT CCA GAG 1956 Ala Ser Asp Arg Ala Gly Lys Phe Thr Ile Ser Ser Arg Ser Pro Glu 575 580 585 590 AAT CCT GCA ACC TAT TCA GCT TCT ATT GCT TAT ACA AAT ACT ATG TCT 2004 Asn Pro Ala Thr Tyr Ser Ala Ser Ile Ala Tyr Thr Asn Thr Met Ser ACA AAT GCT TCT CTA ACG TAT AGT ACT TTT GCA TAT GCA GAA TCT GGC 2052 Thr Asn Ala Ser Leu Thr Tyr Ser Thr Phe Ala Tyr Ala Glu Ser Gly 610 615 620 CCT ATA AAC TTA GGG ATT TCG GGA AGT TCA AGG ACT TTT GAT ATA TCT 2100 Pro Ile Asn Leu Gly Ile Ser Gly Ser Ser Arg Thr Phe Asp Ile Ser 625 630 635 ATT ACA AAA GAA GCA GGT GCT GCT AAC CTT TAT ATT GAT AGA ATT GAA 2148 Ile Thr Lys Glu Ala Gly Ala Ala Asn Leu Tyr Ile Asp Arg Ile Glu 640 645 650 TTT ATT CCA GTT AAT ACG TTA TTT GAA GCA GAA GAA GAC CTA GAT GTG 2196 Phe Ile Pro Val Asn Thr Leu Phe Glu Ala Glu Glu Asp Leu Asp Val 655 660 665 670 GCA AAG AAA GCT GTG AAT GGC TTG TTT ACG AAT GAA AAA GAT GCC TTA 2244 Ala Lys Lys Ala Val Asn Gly Leu Phe Thr Asn Glu Lys Asp Ala Leu 675 680 685 CAG ACA AGT GTA ACG GAT TAT CAA GTC AAT CAA GCG GCA AAC TTA ATA 2292 Gln Thr Ser Val Thr Asp Tyr Gln Val Asn Gln Ala Ala Asn Leu Ile 690 695 700 GAA TGC CTA TCC GAT GAG TTA TAC CCA AAT GAA AAA CGA ATG TTA TGG 2340 Glu Cys Leu Ser Asp Glu Leu Tyr Pro Asn Glu Lys Arg Met Leu Trp 705 710 715 GAT GCA GTG AAA GAG GCG AAA CGA CTT GTT CAG GCA CGT AAC TTA CTC 2388 Asp Ala Val Lys Glu Ala Lys Arg Leu Val Gln Ala Arg Asn Leu Leu 720 725 730 CAA GAT ACA GGC TTT AAT AGG ATT AAT GGA GAA AAC GGA TGG ACG GGA 2436 Gln Asp Thr Gly Phe Asn Arg Ile Asn Gly Glu Asn Gly Trp Thr Gly 735 740 745 750 AGT ACG GGA ATC GAG GTT GTG GAA GGA GAT GTT CTG TTT AAA GAT CGT 2484 755 760 765 TCG CTT CGT TTG ACA AGT GCG AGA GAG ATT GAT ACA GAA ACA TAT CCA 2532 Ser Leu Arg Leu Thr Ser Ala Arg Glu Ile Asp Thr Glu Thr Tyr Pro 770 775 780 ACG TAT CTC TAT CAA CAA ATA GAT GAA TCG CTT TTA AAA CCA TAT ACA 2580 Thr Tyr Leu Tyr Gln Gln Ile Asp Glu Ser Leu Leu Lys Pro Tyr Thr 785 790 795 AGA TAT AAA CTA AAA GGT TTT ATA GGA AGT AGT CAA GAT TTA GAG ATT 2628 Arg Tyr Lys Leu Lys Gly Phe Ile Gly Ser Ser Gln Asp Leu Glu Ile 800 805 810 AAA TTA ATA CGT CAT CGG GCA AAT CAA ATC GTC AAA AAT GTA CCA GAT 2676 Lys Leu Ile Arg His Arg Ala Asn Gln Ile Val Lys Asn Val Pro Asp 815 820 825 830 AAT CTC TTG CCA GAT GTA CGC CCT GTC AAT TCT TGT GGT GGA GTC GAT 2724 Asn Leu Leu Pro Asp Val Arg Pro Val Asn Ser Cys Gly Gly Val Asp 835 840 845 CGC TGC AGT GAA CAA CAG TAT GTA GAC GCG AAT TTA GCA CTC GAA AAC 2772 Arg Cys Ser Glu Gln Gln Tyr Val Asp Ala Asn Leu Ala Leu Glu Asn 850 855 860 AAT GGA GAA AAT GGA AAT ATG TCT TCT GAT TCC CAT GCA TTT TCT TTC 2820 Asn Gly Glu Asn Gly Asn Met Ser Ser Asp Ser His Ala Phe Ser Phe 865 870 875 CAT ATT GAT ACG GGT GAA ATA GAT TTG AAT GAA AAT ACA GGA ATT TGG 2868 His Ile Asp Thr Gly Glu Ile Asp Leu Asn Glu Asn Thr Gly Ile Trp 880 885 890 ATC GTA TTT AAA ATT CCG ACA ACA AAT GGA AAC GCA ACA CTA GGA AAT 2916 Ile Val Phe Lys Ile Pro Thr Thr Asn Gly Asn Ala Thr Leu Gly Asn 895 900 905 910 CTT GAA TTT GTA GAA GAG GGG CCA TTG TCA GGG GAA ACA TTA GAA TGG 2964 Leu Glu Phe Val Glu Glu Gly Pro Leu Ser Gly Glu Thr Leu Glu Trp 915 920 925 GCC CAA CAA CAA GAA CAA CAA TGG CAA GAC AAA ATG GCA AGA AAA CGT 3012 Ala Gln Gln Gln Glu Gln Gln Trp Gln Asp Lys Met Ala Arg Lys Arg 930 935 940 GCA GCA TCA GAA AAA ACA TAT TAT GCA GCA AAG CAA GCC ATT GAT CGT 3060 Ala Ala Ser Glu Lys Thr Tyr Tyr Ala Ala Lys Gln Ala Ile Asp Arg 945 950 955 TTA TTC GCA GAT TAT CAA GAC CAA AAA CTT AAT TCT GGT GTA GAA ATG 3108 Leu Phe Ala Asp Tyr Gln Asp Gln Lys Leu Asn Ser Gly Val Glu Met 960 965 970 TCA GAT TTG TTG GCA GCC CAA AAC CTT GTA CAG TCC ATT CCT TAC GTA 3156 Ser Asp Leu Leu Ala Ala Gln Asn Leu Val Gln Ser Ile Pro Tyr Val 975 980 985 990 TAT AAT GAT GCG TTA CCG GAA ATC CCT GGA ATG AAC TAT ACG AGT TTT 3204 Tyr Asn Asp Ala Leu Pro Glu Ile Pro Gly Met Asn Tyr Thr Ser Phe 995 1000 1005 ACA GAG TTA ACA AAT AGA CTC CAA CAA GCA TGG AAT TTG TAT GAT CTT 3252 Thr Glu Leu Thr Asn Arg Leu Gln Gln Ala Trp Asn Leu Tyr Asp Leu 1010 1015 1020 CAA AAC GCT ATA CCA AAT GGA GAT TTT CGA AAT GGA TTA AGT AAT TGG 3300 Gln Asn Ala Ile Pro Asn Gly Asp Phe Arg Asn Gly Leu Ser Asn Trp 1025 1030 1035 AAT GCA ACA TCA GAT GTA AAT GTG CAA CAA CTA AGC GAT ACA TCT GTC 3348 Asn Ala Thr Ser Asp Val Asn Val Gln Gln Leu Ser Asp Thr Ser Val 1040 1045 1050 CTT GTC ATT CCA AAC TGG AAT TCT CAA GTG TCA CAA CAA TTT ACA GTT 3396 Leu Val Ile Pro Asn Trp Asn Ser Gln Val Ser Gln Gln Phe Thr Val CAA CCG AAT TAT AGA TAT GTG TTA CGT GTC ACA GCG AGA AAA GAG GGA 3444 Gln Pro Asn Tyr Arg Tyr Val Leu Arg Val Thr Ala Arg Lys Glu Gly 1075 1080 1085 GTA GGA GAC GGA TAT GTG ATC ATC CGT GAT GGT GCA AAT CAG ACA GAA 3492 Val Gly Asp Gly Tyr Val Ile Ile Arg Asp Gly Ala Asn Gln Thr Glu 1090 1095 1100 ACA CTC ACA TTT AAT ATA TGT GAT GAT GAT ACA GGT GTT TTA TCT ACT 3540 Thr Leu Thr Phe Asn Ile Cys Asp Asp Asp Thr Gly Val Leu Ser Thr 1105 1110 1115 GAT CAA ACT AGC TAT ATC ACA AAA ACA GTG GAA TTC ACT CCA TCT ACA 3588 Asp Gln Thr Ser Tyr Ile Thr Lys Thr Val Glu Phe Thr Pro Ser Thr 1120 1125 1130 GAG CAA GTT TGG ATT GAC ATG AGT GAG ACC GAA GTG TAT TCA ACA TAGAAAG3640 Glu Gln Val Trp Ile Asp Met Ser Glu Thr Glu Val Tyr Ser Thr 1135 1140 1145 TGTAGAACTC GTGTTAGAAG AAGAGTAATC ATAGTTTCCC TCCAGATAGA AGGTTGATCT 3700 GGAGGTTTTC TTATAGAGAG AGTACTATGA ATCAAATGTT TGATGAATGC GTTGCGAGCG 3760 GTTTATCTCA AATATCAACG GTACAAGGTT TATAAAT 3797
SEQ ID NO: 1 Sequence length: 3797 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Genomic DNA Origin organism name: Bacillus thuringiensis: Serovar
Japonensis (Bacillus thuringiensis serovar japon
ensis) Co., Ltd. Name: buibui (Buibui) AATTCTAATG ACACAGTAGA ATATTTTTAA AATAAAGATG GAAGGGGGAA TATGAAAAAA 60 ATATAATCAT AAGAGTCATA CAAAAAGATT GTATGTTAAA ACAAAAAAAT CCTGTAGGAA 120 TAGGGGTTTA AAAGCAATCA TTTGAAAAGA TAGTTATATT AAATTGTATG TATAGGGGGA 180 AAAAAG ATG AGT CCA AAT AAT CAA AAT GAG TAT GAA ATT ATA GAT GCT 228 Met Ser Pro Asn Asn Gln Asn Glu Tyr Glu Ile Ile Asp Ala 1 5 10 TTA TCA CCC ACT TCT GTA TCC GAT AAT TCT ATT AGA TAT CCT TTA GCA 276 Leu Ser Pro Thr Ser Val Ser Asp Asn Ser Ile Arg Tyr Pro Leu Ala 15 20 25 30 AAC GAT CAA ACG AAC ACA TTA CAA AAC ATG AAT TAT AAA GAT TAT CTG 324 Asn Asp Gln Thr Asn Thr Leu Gln Asn Met Asn Tyr Lys Asp Tyr Leu 35 40 45 AAA ATG ACC GAA TCA ACA AAT GCT GAA TTG TCT CGA AAT CCC GGG ACA 372 Lys Met Thr Glu Ser Thr Asn Ala Glu Leu Ser Arg Asn Pro Gly Thr 50 55 60 TTT ATT AGT GCG CAG GAT GCG GTT GGA ACT GGA ATT GAT ATT GTT AGT 420 Phe Ile Ser Ala Gln Asp Ala Val Gly Thr Gly Ile Asp Ile Val Ser 65 70 75 ACT ATA ATA AGT GGT TTA GGG ATT CCA GTG CTT GGG G AA GTC TTC TCA 468 Thr Ile Ile Ser Gly Leu Gly Ile Pro Val Leu Gly Glu Val Phe Ser 80 85 90 ATT CTG GGT TCA TTA ATT GGC TTA TTG TGG CCG TCA AAT AAT GAA AAT 516 Ile Leu Gly Ser Leu Ile Gly Leu Leu Trp Pro Ser Asn Asn Glu Asn 95 100 105 110 GTA TGG CAA ATA TTT ATG AAT CGA GTG GAA GAG CTA ATT GAT CAA AAA 564 Val Trp Gln Ile Phe Met Asn Arg Val Glu Glu Leu Ile Asp Gln Lys 115 120 125 ATA TTA GAT TCT GTA AGA TCA AGA GCC ATT GCA GAT TTA GCT AAT TCT 612 Ile Leu Asp Ser Val Arg Ser Arg Ala Ile Ala Asp Leu Ala Asn Ser 130 135 140 AGA ATA GCT GTA GAG TAC TAT CAA AAT GCA CTT GAA GAC TGG AGA AAA 660 Arg Ile Ala Val Glu Tyr Tyr Gln Asn Ala Leu Glu Asp Trp Arg Lys 145 150 155 AAC CCA CAC AGT ACA CGA AGC GCA GCA CTT GTA AAG GAA AGA TTT GGA 708 Asn Pro His Ser Thr Arg Ser Ala Ala Leu Val Lys Glu Arg Phe Gly 160 165 170 AAT GCA GAA GCA ATT TTA CGT ACT AAC ATG GGT TCA TTT TCT CAA ACG 756 Asn Ala Glu Ala Ile Leu Arg Thr Asn Met Gly Ser Phe Ser Gln Thr 175 180 185 190 AAT TAT GAG ACT CCA CTC TTA CCC ACA T AT GCA CAG GCC GCC TCT CTG 804 Asn Tyr Glu Thr Pro Leu Leu Pro Thr Tyr Ala Gln Ala Ala Ser Leu 195 200 205 CAT TTG CTT GTA ATG AGG GAT GTT CAA ATT TAC GGG AAG GAA TGG GGA 852 His Leu Leu Val Met Arg Asp Val Gln Ile Tyr Gly Lys Glu Trp Gly 210 215 220 TAT CCT CAA AAT GAT ATT GAC CTA TTT TAT AAA GAA CAA GTA TCT TAT 900 Tyr Pro Gln Asn Asp Ile Asp Leu Phe Tyr Lys Glu Gln Val Ser Tyr 225 230 235 ACG GCT AGA TAT TCC GAT CAT TGC GTC CAA TGG TAC AAT GCT GGT TTA 948 Thr Ala Arg Tyr Ser Asp His Cys Val Gln Trp Tyr Asn Ala Gly Leu 240 245 250 AAT AAA TTA AGA GGA ACG GGT GCT AAG CAA TGG GTG GAT TAT AAT CGT 996 Asn Lys Leu Arg Gly Thr Gly Ala Lys Gln Trp Val Asp Tyr Asn Arg 255 260 265 270 TTC CGA AGA GAA ATG AAT GTG ATG GTA TTG GAT CTA GTT GCA TTA TTT 1044 Phe Arg Arg Glu Met Asn Val Met Val Leu Asp Leu Val Ala Leu Phe 275 280 285 CCA AAC TAC GAT GCG CGT ATA TAT CCA CTG GAA ACA AAT GCA GAA CTT 1092 Pro Asn Tyr Asp Ala Arg Ile Tyr Pro Leu Glu Thr Asn Ala Glu Leu 290 295 300 ACA AGA GAA ATT TTC ACA GAT CCT GTT GGA AGT TAC GTA ACT GGA CAA 1140 Thr Arg Glu Ile Phe Thr Asp Pro Val Gly Ser Tyr Val Thr Gly Gln 305 310 315 TCG AGT ACC CTT ATA TCT TGG TAC GAT ATG ATT CCA GCA GCT CTT CCT 1188 Ser Ser Thr Leu Ile Ser Trp Tyr Asp Met Ile Pro Ala Ala Leu Pro 320 325 330 TCA TTT TCA ACG CTC GAG AAC CTA CTT AGA AAA CCT GAT TTC TTT ACT 1236 Ser Phe Ser Thr Leu Glu Asn Leu Leu Arg Lys Pro Asp Phe Phe Thr 335 340 345 350 TTG CTG CAA GAA ATT AGA ATG TAT ACA AGT TTT AGA CAA AAC GGT ACG 1284 Leu Leu Gln Glu Ile Arg Met Tyr Thr Ser Phe Arg Gln Asn Gly Thr 355 360 365 ATT GAA TAT TAT AAT TAT TGG GGA GGA CAA AGG TTA ACC CTT TCT TAT 1332 Ile Glu Tyr Tyr Asn Tyr Trp Gly Gly Gln Arg Leu Thr Leu Ser Tyr 370 375 380 ATC TAT GGT TCC TCA TTC AAT AAA TAT AGT GGG GTT CTT GCC GGT GCT 1380 Ile Tyr Gly Ser Ser Phe Asn Lys Tyr Ser Gly Val Leu Ala Gly Ala 385 390 395 GAG GAT ATT ATT CCT GTG GGT CAA AAT GAT ATT TAC AGA GTT GTA TGG 1428 Glu Asp Ile Ile Pro Val Gly Gln Asn Asp Ile Tyr Arg Val Val Trp 400 405 410 ACT TAT ATA GGA AGG TAC ACG AAT AGT CTG CTA GGA GTA AAT CCA GTT 1476 Thr Tyr Ile Gly Arg Tyr Thr Asn Ser Leu Leu Gly Val Asn Pro Val 415 420 425 430 ACT TTT TAC TTC AGT AAT AAT ACA CAA AAA ACT TAT TCG AAG CCA AAA 1524 Thr Phe Tyr Phe Ser Asn Asn Thr Gln Lys Thr Tyr Ser Lys Pro Lys 435 440 445 CAA TTC GCG GGT GGA ATA AAA ACA ATT GAT TCC GGC GAA GAA TTA ACT 1572 Gln Phe Ala Gly Gly Ile Lys Thr Ile Asp Ser Gly Glu Glu Leu Thr 450 455 460 TAC GAA AAT TAT CAA TCT TAT AGT CAC AGG GTA AGT TAC ATT ACA TCT 1620 Tyr Glu Asn Tyr Gln Ser Tyr Ser His Arg Val Ser Tyr Ile Thr Ser 465 475 475 TTT GAA ATA AAA AGT ACC GGT GGT ACA GTA TTA GGA GTA GTT CCT ATA 1668 Phe Glu Ile Lys Ser Thr Gly Gly Thr Val Leu Gly Val Val Pro Ile 480 485 490 TTT GGT TGG ACG CAT AGT AGT GCC AGT CGC AAT AAC TTT ATT TAC GCA 1716 Phe Gly Trp Thr His Ser Ser Ala Ser Arg Asn Asn Phe Ile Tyr Ala 495 500 505 510 ACA AAA ATC TCA CAA ATC CCA ATC AAT AAA GCA AGT AGA ACT AGC GGT 1764 Thr Lys Ile Ser Gln Ile Pro Ile Asn Lys Ala Ser Arg Thr S er Gly 515 520 525 GGA GCG GTT TGG AAT TTC CAA GAA GGT CTA TAT AAT GGA GGA CCT GTA 1812 Gly Ala Val Trp Asn Phe Gln Glu Gly Leu Tyr Asn Gly Gly Pro Val 530 535 540 ATG AAA TTA TCT GGG TCT GGT TCC CAA GTA ATA AAC TTA AGG GTC GCA 1860 Ke Met Lys Leu Ser Gly Ser Gly Ser Gln Val Ile Asn Leu Arg Val Ala 545 550 555 ACA GAT GCA AAG GGA GCA AGT CAA AGA TAT CGT ATT AGA ATC AGA TAT 1908 Thr Asp Ala Lys Gly Ala Ser Gln Arg Tyr Arg Ile Arg Ile Arg Tyr 560 565 570 GCC TCT GAT AGA GCG GGT AAA TTT ACG ATA TCT TCC AGA TCT CCA GAG 1956 Ala Ser Asp Arg Ala Gly Lys Phe Thr Ile Ser Ser Arg Ser Pro Glu 575 580 585 590 AAT CCT GCA ACC TAT TCA GCT TCT ATT GCT TAT ACA AAT ACT ATG TCT 2004 Asn Pro Ala Thr Tyr Ser Ala Ser Ile Ala Tyr Thr Asn Thr Met Ser ACA AAT GCT TCT CTA ACG TAT AGT ACT TTT GCA TAT GCA GAA TCT GGC 2052 Thr Asn Ala Ser Leu Thr Tyr Ser Thr Phe Ala Tyr Ala Glu Ser Gly 610 615 620 CCT ATA AAC TTA GGG ATT TCG GGA AGT TCA AGG ACT TTT GAT ATA TCT 2100 Pro Ile Asn Leu Gly Ile Ser Gly Ser Ser Arg Th r Phe Asp Ile Ser 625 630 635 ATT ACA AAA GAA GCA GGT GCT GCT AAC CTT TAT ATT GAT AGA ATT GAA 2148 Ile Thr Lys Glu Ala Gly Ala Ala Asn Leu Tyr Ile Asp Arg Ile Glu 640 645 650 TTT ATT CCA GTT AAT ACG TTA TTT GAA GCA GAA GAA GAC CTA GAT GTG 2196 Phe Ile Pro Val Asn Thr Leu Phe Glu Ala Glu Glu Asp Leu Asp Val 655 660 665 670 GCA AAG AAA GCT GTG AAT GGC TTG TTT ACG AAT GAA AAA GAT GCC TTA 2244 Ala Lys Lys Ala Val Asn Gly Leu Phe Thr Asn Glu Lys Asp Ala Leu 675 680 685 CAG ACA AGT GTA ACG GAT TAT CAA GTC AAT CAA GCG GCA AAC TTA ATA 2292 Gln Thr Ser Val Thr Asp Tyr Gln Val Asn Gln Ala Ala Asn Leu Ile 690 695 700 GAA TGC CTA TCC GAT GAG TTA TAC CCA AAT GAA AAA CGA ATG TTA TGG 2340 Glu Cys Leu Ser Asp Glu Leu Tyr Pro Asn Glu Lys Arg Met Leu Trp 705 710 715 GAT GCA GTG AAA GAG GCG AAA CGA CTT GTT CAG GCA CGT AAC TTA CTC 2388 Asp Ala Val Lys Glu Ala Lys Arg Leu Val Gln Ala Arg Asn Leu Leu 720 725 730 CAA GAT ACA GGC TTT AAT AGG ATT AAT GGA GAA AAC GGA TGG ACG GGA 2436 Gln Asp Thr Gly Phe Asn Arg Ile Asn Gly Glu Asn Gly Trp Thr Gly 735 740 745 750 AGT ACG GGA ATC GAG GTT GTG GAA GGA GAT GTT CTG TTT AAA GAT CGT 2484 755 760 765 TCG CTT CGT TTG ACA AGT GCG AGA GAG ATT GAT ACA GAA ACA TAT CCA 32 Ser Leu Arg Leu Thr Ser Ala Arg Glu Ile Asp Thr Glu Thr Tyr Pro 770 775 780 ACG TAT CTC TAT CAA CAA ATA GAT GAA TCG CTT TTA AAA CCA TAT ACA 2580 Thr Tyr Leu Tyr Gln Gln Ile Asp Glu Ser Leu Leu Lys Pro Tyr Thr 785 790 795 AGA TAT AAA CTA AAA GGT TTT ATA GGA AGT AGT CAA GAT TTA GAG ATT 2628 Arg Tyr Lys Leu Lys Gly Phe Ile Gly Ser Ser Gln Asp Leu Glu Ile 800 805 810 AAA TTA ATA CGT CAT CGG GCA AAT CAA ATC GTC AAA AAT GTA CCA GAT 2676 Lys Leu Ile Arg His Arg Ala Asn Gln Ile Val Lys Asn Val Pro Asp 815 820 825 830 AAT CTC TTG CCA GAT GTA CGC CCT GTC AAT TCT TGT GGT GGA GTC GAT 2724 Asn Leu Leu Pro Asp Val Arg Pro Val Asn Ser Cys Gly Gly Val Asp 835 840 845 CGC TGC AGT GAA CAA CAG TAT GTA GAC GCG AAT TTA GCA CTC GAA AAC 2772 Arg Cys Ser Glu Gln Gln Tyr Val Asp Ala Asn Leu Ala Leu Glu Asn 850 855 860 AAT GGA GAA AAT GGA AAT ATG TCT TCT GAT TCC CAT GCA TTT TCT TTC 2820 Asn Gly Glu Asn Gly Asn Met Ser Ser Asp Ser His Ala Phe Ser Phe 865 870 875 CAT ATT GAT ACG GGT GAA ATA GAT TTG AAT GAA AAT ACA GGA ATT TGG 2868 His Ile Asp Thr Gly Glu Ile Asp Leu Asn Glu Asn Thr Gly Ile Trp 880 885 890 ATC GTA TTT AAA ATT CCG ACA ACA AAT GGA AAC GCA ACA CTA GGA AAT 2916 Ile Val Phe Lys Ile Pro Thr Thr Asn Gly Asn Ala Thr Leu Gly Asn 895 900 905 910 CTT GAA TTT GTA GAA GAG GGG CCA TTG TCA GGG GAA ACA TTA GAA TGG 2964 Leu Glu Phe Val Glu Glu Gly Pro Leu Ser Gly Glu Thr Leu Glu Trp 915 920 925 GCC CAA CAA CAA GAA CAA CAA TGG CAA GAC AAA ATG GCA AGA AAA CGT 3012 Ala Gln Gln Gln Glu Gln Gln Trp Gln Asp Lys Met Ala Arg Lys Arg 930 935 940 GCA GCA TCA GAA AAA ACA TAT TAT GCA GCA AAG CAA GCC ATT GAT CGT 3060 Ala Ala Ser Glu Lys Thr Tyr Tyr Ala Ala Lys Gln Ala Ile Asp Arg 945 950 955 TTA TTC GCA GAT TAT CAA GAC CAA AAA CTT AAT TCT GGT GTA GAA ATG 3108 Leu Phe Ala Asp Tyr Gln Asp Gln Lys Leu Asn Ser G ly Val Glu Met 960 965 970 TCA GAT TTG TTG GCA GCC CAA AAC CTT GTA CAG TCC ATT CCT TAC GTA 3156 Ser Asp Leu Leu Ala Ala Gln Asn Leu Val Gln Ser Ile Pro Tyr Val 975 980 985 990 TAT AAT GAT GCG TTA CCG GAA ATC CCT GGA ATG AAC TAT ACG AGT TTT 3204 Tyr Asn Asp Ala Leu Pro Glu Ile Pro Gly Met Asn Tyr Thr Ser Phe 995 1000 1005 ACA GAG TTA ACA AAT AGA CTC CAA CAA GCA TGG AAT TTG TAT GAT CTT 3252 Thr Glu Leu Thr Asn Arg Leu Gln Gln Ala Trp Asn Leu Tyr Asp Leu 1010 1015 1020 CAA AAC GCT ATA CCA AAT GGA GAT TTT CGA AAT GGA TTA AGT AAT TGG 3300 Gln Asn Ala Ile Pro Asn Gly Asp Phe Arg Asn Gly Leu Ser Asn Trp 10rp 1030 1035 AAT GCA ACA TCA GAT GTA AAT GTG CAA CAA CTA AGC GAT ACA TCT GTC 3348 Asn Ala Thr Ser Asp Val Asn Val Gln Gln Leu Ser Asp Thr Ser Val 1040 1045 1050 CTT GTC ATT CCA AAC TGG AAT TCT CAA GTG TCA CAA CAA TTT ACA GTT 3396 Leu Val Ile Pro Asn Trp Asn Ser Gln Val Ser Gln Gln Phe Thr Val CAA CCG AAT TAT AGA TAT GTG TTA CGT GTC ACA GCG AGA AAA GAG GGA 3444 Gln Pro Asn Tyr Arg Tyr Val Leu Arg Val Thr Ala Arg Lys Glu Gly 1075 1080 1085 GTA GGA GAC GGA TAT GTG ATC ATC CGT GAT GGT GCA AAT CAG ACA GAA 3492 Val Gly Asp Gly Tyr Val Ile Ile Arg Asp Gly Ala Asn Gln Thr Glu 1090 1095 1100 ACA CTC ACA TTT AAT ATA TGT GAT GAT GAT ACA GGT GTT TTA TCT ACT 3540 Thr Leu Thr Phe Asn Ile Cys Asp Asp Asp Thr Gly Val Leu Ser Thr 1105 1110 1115 GAT CAA ACT AGC TAT ATC ACA AAA ACA GTG GAA TTC ACT CCA TCT ACA 3588 Asp Gln Thr Ser Tyr Ile Thr Lys Thr Val Glu Phe Thr Pro Ser Thr 1120 1125 1130 GAG CAA GTT TGG ATT GAC ATG AGT GAG ACC GAA GTG TAT TCA ACA TAGAAAG3640 Glu Gln Val Trp Ile Asp Met Ser Glu Thr Glu Val Tyr Ser Thr 1135 1140 1145 TGTAGAACTC GTGTTAGAAG AAGAGTAATC ATAGTTTCCC TCCAGATAGA AGGTTGATCT 3700 GGAGGTTTTC TTATAGAGAG AGTACTATGA ATCAAATGTT TGATGAATGC GTTGCGAGCG 3760 GTTTATCTCA AATATCAACG GTACAAGGTT TATAAAT 3797

【0058】配列番号 :2 配列の長さ:2299 配列の型 :核酸 鎖の数 :二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 生物名 :バチルス・チューリンゲンシス:セロバー・
ヤポネンシス(Bacillus thuringiensis serovar japon
ensis ) 株名 :ブイブイ(Buibui) AATTCTAATG ACACAGTAGA ATATTTTTAA AATAAAGATG GAAGGGGGAA TATGAAAAAA 60 ATATAATCAT AAGAGTCATA CAAAAAGATT GTATGTTAAA ACAAAAAAAT CCTGTAGGAA 120 TAGGGGTTTA AAAGCAATCA TTTGAAAAGA TAGTTATATT AAATTGTATG TATAGGGGGA 180 AAAAAG ATG AGT CCA AAT AAT CAA AAT GAG TAT GAA ATT ATA GAT GCT 228 Met Ser Pro Asn Asn Gln Asn Glu Tyr Glu Ile Ile Asp Ala 1 5 10 TTA TCA CCC ACT TCT GTA TCC GAT AAT TCT ATT AGA TAT CCT TTA GCA 276 Leu Ser Pro Thr Ser Val Ser Asp Asn Ser Ile Arg Tyr Pro Leu Ala 15 20 25 30 AAC GAT CAA ACG AAC ACA TTA CAA AAC ATG AAT TAT AAA GAT TAT CTG 324 Asn Asp Gln Thr Asn Thr Leu Gln Asn Met Asn Tyr Lys Asp Tyr Leu 35 40 45 AAA ATG ACC GAA TCA ACA AAT GCT GAA TTG TCT CGA AAT CCC GGG ACA 372 Lys Met Thr Glu Ser Thr Asn Ala Glu Leu Ser Arg Asn Pro Gly Thr 50 55 60 TTT ATT AGT GCG CAG GAT GCG GTT GGA ACT GGA ATT GAT ATT GTT AGT 420 Phe Ile Ser Ala Gln Asp Ala Val Gly Thr Gly Ile Asp Ile Val Ser 65 70 75 ACT ATA ATA AGT GGT TTA GGG ATT CCA GTG CTT GGG GAA GTC TTC TCA 468 Thr Ile Ile Ser Gly Leu Gly Ile Pro Val Leu Gly Glu Val Phe Ser 80 85 90 ATT CTG GGT TCA TTA ATT GGC TTA TTG TGG CCG TCA AAT AAT GAA AAT 516 Ile Leu Gly Ser Leu Ile Gly Leu Leu Trp Pro Ser Asn Asn Glu Asn 95 100 105 110 GTA TGG CAA ATA TTT ATG AAT CGA GTG GAA GAG CTA ATT GAT CAA AAA 564 Val Trp Gln Ile Phe Met Asn Arg Val Glu Glu Leu Ile Asp Gln Lys 115 120 125 ATA TTA GAT TCT GTA AGA TCA AGA GCC ATT GCA GAT TTA GCT AAT TCT 612 Ile Leu Asp Ser Val Arg Ser Arg Ala Ile Ala Asp Leu Ala Asn Ser 130 135 140 AGA ATA GCT GTA GAG TAC TAT CAA AAT GCA CTT GAA GAC TGG AGA AAA 660 Arg Ile Ala Val Glu Tyr Tyr Gln Asn Ala Leu Glu Asp Trp Arg Lys 145 150 155 AAC CCA CAC AGT ACA CGA AGC GCA GCA CTT GTA AAG GAA AGA TTT GGA 708 Asn Pro His Ser Thr Arg Ser Ala Ala Leu Val Lys Glu Arg Phe Gly 160 165 170 AAT GCA GAA GCA ATT TTA CGT ACT AAC ATG GGT TCA TTT TCT CAA ACG 756 Asn Ala Glu Ala Ile Leu Arg Thr Asn Met Gly Ser Phe Ser Gln Thr 175 180 185 190 AAT TAT GAG ACT CCA CTC TTA CCC ACA TAT GCA CAG GCC GCC TCT CTG 804 Asn Tyr Glu Thr Pro Leu Leu Pro Thr Tyr Ala Gln Ala Ala Ser Leu 195 200 205 CAT TTG CTT GTA ATG AGG GAT GTT CAA ATT TAC GGG AAG GAA TGG GGA 852 His Leu Leu Val Met Arg Asp Val Gln Ile Tyr Gly Lys Glu Trp Gly 210 215 220 TAT CCT CAA AAT GAT ATT GAC CTA TTT TAT AAA GAA CAA GTA TCT TAT 900 Tyr Pro Gln Asn Asp Ile Asp Leu Phe Tyr Lys Glu Gln Val Ser Tyr 225 230 235 ACG GCT AGA TAT TCC GAT CAT TGC GTC CAA TGG TAC AAT GCT GGT TTA 948 Thr Ala Arg Tyr Ser Asp His Cys Val Gln Trp Tyr Asn Ala Gly Leu 240 245 250 AAT AAA TTA AGA GGA ACG GGT GCT AAG CAA TGG GTG GAT TAT AAT CGT 996 Asn Lys Leu Arg Gly Thr Gly Ala Lys Gln Trp Val Asp Tyr Asn Arg 255 260 265 270 TTC CGA AGA GAA ATG AAT GTG ATG GTA TTG GAT CTA GTT GCA TTA TTT 1044 Phe Arg Arg Glu Met Asn Val Met Val Leu Asp Leu Val Ala Leu Phe 275 280 285 CCA AAC TAC GAT GCG CGT ATA TAT CCA CTG GAA ACA AAT GCA GAA CTT 1092 Pro Asn Tyr Asp Ala Arg Ile Tyr Pro Leu Glu Thr Asn Ala Glu Leu 290 295 300 ACA AGA GAA ATT TTC ACA GAT CCT GTT GGA AGT TAC GTA ACT GGA CAA 1140 Thr Arg Glu Ile Phe Thr Asp Pro Val Gly Ser Tyr Val Thr Gly Gln 305 310 315 TCG AGT ACC CTT ATA TCT TGG TAC GAT ATG ATT CCA GCA GCT CTT CCT 1188 Ser Ser Thr Leu Ile Ser Trp Tyr Asp Met Ile Pro Ala Ala Leu Pro 320 325 330 TCA TTT TCA ACG CTC GAG AAC CTA CTT AGA AAA CCT GAT TTC TTT ACT 1236 Ser Phe Ser Thr Leu Glu Asn Leu Leu Arg Lys Pro Asp Phe Phe Thr 335 340 345 350 TTG CTG CAA GAA ATT AGA ATG TAT ACA AGT TTT AGA CAA AAC GGT ACG 1284 Leu Leu Gln Glu Ile Arg Met Tyr Thr Ser Phe Arg Gln Asn Gly Thr 355 360 365 ATT GAA TAT TAT AAT TAT TGG GGA GGA CAA AGG TTA ACC CTT TCT TAT 1332 Ile Glu Tyr Tyr Asn Tyr Trp Gly Gly Gln Arg Leu Thr Leu Ser Tyr 370 375 380 ATC TAT GGT TCC TCA TTC AAT AAA TAT AGT GGG GTT CTT GCC GGT GCT 1380 Ile Tyr Gly Ser Ser Phe Asn Lys Tyr Ser Gly Val Leu Ala Gly Ala 385 390 395 GAG GAT ATT ATT CCT GTG GGT CAA AAT GAT ATT TAC AGA GTT GTA TGG 1428 Glu Asp Ile Ile Pro Val Gly Gln Asn Asp Ile Tyr Arg Val Val Trp 400 405 410 ACT TAT ATA GGA AGG TAC ACG AAT AGT CTG CTA GGA GTA AAT CCA GTT 1476 Thr Tyr Ile Gly Arg Tyr Thr Asn Ser Leu Leu Gly Val Asn Pro Val 415 420 425 430 ACT TTT TAC TTC AGT AAT AAT ACA CAA AAA ACT TAT TCG AAG CCA AAA 1524 Thr Phe Tyr Phe Ser Asn Asn Thr Gln Lys Thr Tyr Ser Lys Pro Lys 435 440 445 CAA TTC GCG GGT GGA ATA AAA ACA ATT GAT TCC GGC GAA GAA TTA ACT 1572 Gln Phe Ala Gly Gly Ile Lys Thr Ile Asp Ser Gly Glu Glu Leu Thr 450 455 460 TAC GAA AAT TAT CAA TCT TAT AGT CAC AGG GTA AGT TAC ATT ACA TCT 1620 Tyr Glu Asn Tyr Gln Ser Tyr Ser His Arg Val Ser Tyr Ile Thr Ser 465 470 475 TTT GAA ATA AAA AGT ACC GGT GGT ACA GTA TTA GGA GTA GTT CCT ATA 1668 Phe Glu Ile Lys Ser Thr Gly Gly Thr Val Leu Gly Val Val Pro Ile 480 485 490 TTT GGT TGG ACG CAT AGT AGT GCC AGT CGC AAT AAC TTT ATT TAC GCA 1716 Phe Gly Trp Thr His Ser Ser Ala Ser Arg Asn Asn Phe Ile Tyr Ala 495 500 505 510 ACA AAA ATC TCA CAA ATC CCA ATC AAT AAA GCA AGT AGA ACT AGC GGT 1764 Thr Lys Ile Ser Gln Ile Pro Ile Asn Lys Ala Ser Arg Thr Ser Gly 515 520 525 GGA GCG GTT TGG AAT TTC CAA GAA GGT CTA TAT AAT GGA GGA CCT GTA 1812 Gly Ala Val Trp Asn Phe Gln Glu Gly Leu Tyr Asn Gly Gly Pro Val 530 535 540 ATG AAA TTA TCT GGG TCT GGT TCC CAA GTA ATA AAC TTA AGG GTC GCA 1860 Met Lys Leu Ser Gly Ser Gly Ser Gln Val Ile Asn Leu Arg Val Ala 545 550 555 ACA GAT GCA AAG GGA GCA AGT CAA AGA TAT CGT ATT AGA ATC AGA TAT 1908 Thr Asp Ala Lys Gly Ala Ser Gln Arg Tyr Arg Ile Arg Ile Arg Tyr 560 565 570 GCC TCT GAT AGA GCG GGT AAA TTT ACG ATA TCT TCC AGA TCT CCA GAG 1956 Ala Ser Asp Arg Ala Gly Lys Phe Thr Ile Ser Ser Arg Ser Pro Glu 575 580 585 590 AAT CCT GCA ACC TAT TCA GCT TCT ATT GCT TAT ACA AAT ACT ATG TCT 2004 Asn Pro Ala Thr Tyr Ser Ala Ser Ile Ala Tyr Thr Asn Thr Met Ser 595 600 605 ACA AAT GCT TCT CTA ACG TAT AGT ACT TTT GCA TAT GCA GAA TCT GGC 2052 Thr Asn Ala Ser Leu Thr Tyr Ser Thr Phe Ala Tyr Ala Glu Ser Gly 610 615 620 CCT ATA AAC TTA GGG ATT TCG GGA AGT TCA AGG ACT TTT GAT ATA TCT 2100 Pro Ile Asn Leu Gly Ile Ser Gly Ser Ser Arg Thr Phe Asp Ile Ser 625 630 635 ATT ACA AAA GAA GCA GGT GCT GCT AAC CTT TAT ATT GAT AGA ATT GAA 2148 Ile Thr Lys Glu Ala Gly Ala Ala Asn Leu Tyr Ile Asp Arg Ile Glu 640 645 650 TTT ATT CCA GTT AAT ACG TTA TTT GAA GCA GAA GAA GAC CTA GAT GTG 2196 Phe Ile Pro Val Asn Thr Leu Phe Glu Ala Glu Glu Asp Leu Asp Val 655 660 665 670 GCA AAG AAA GCT GTG AAT GGC TTG TTT ACG AAT GAA AAA GAT GCC TTA 2244 Ala Lys Lys Ala Val Asn Gly Leu Phe Thr Asn Glu Lys Asp Ala Leu 675 680 685 CAG ACA AGT GTA ACG GAT TAT CAA GTC AAT CAA GCG GCA AAC TTA ATA 2292 Gln Thr Ser Val Thr Asp Tyr Gln Val Asn Gln Ala Ala Asn Leu Ile 690 695 700 GAA TGC C 2313 Glu Cys
SEQ ID NO: 2 Sequence length: 2299 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Genomic DNA Origin organism name: Bacillus thuringiensis: Serovar
Japonensis (Bacillus thuringiensis serovar japon
ensis) Co., Ltd. Name: buibui (Buibui) AATTCTAATG ACACAGTAGA ATATTTTTAA AATAAAGATG GAAGGGGGAA TATGAAAAAA 60 ATATAATCAT AAGAGTCATA CAAAAAGATT GTATGTTAAA ACAAAAAAAT CCTGTAGGAA 120 TAGGGGTTTA AAAGCAATCA TTTGAAAAGA TAGTTATATT AAATTGTATG TATAGGGGGA 180 AAAAAG ATG AGT CCA AAT AAT CAA AAT GAG TAT GAA ATT ATA GAT GCT 228 Met Ser Pro Asn Asn Gln Asn Glu Tyr Glu Ile Ile Asp Ala 1 5 10 TTA TCA CCC ACT TCT GTA TCC GAT AAT TCT ATT AGA TAT CCT TTA GCA 276 Leu Ser Pro Thr Ser Val Ser Asp Asn Ser Ile Arg Tyr Pro Leu Ala 15 20 25 30 AAC GAT CAA ACG AAC ACA TTA CAA AAC ATG AAT TAT AAA GAT TAT CTG 324 Asn Asp Gln Thr Asn Thr Leu Gln Asn Met Asn Tyr Lys Asp Tyr Leu 35 40 45 AAA ATG ACC GAA TCA ACA AAT GCT GAA TTG TCT CGA AAT CCC GGG ACA 372 Lys Met Thr Glu Ser Thr Asn Ala Glu Leu Ser Arg Asn Pro Gly Thr 50 55 60 TTT ATT AGT GCG CAG GAT GCG GTT GGA ACT GGA ATT GAT ATT GTT AGT 420 Phe Ile Ser Ala Gln Asp Ala Val Gly Thr Gly Ile Asp Ile Val Ser 65 70 75 ACT ATA ATA AGT GGT TTA GGG ATT CCA GTG CTT GGG G AA GTC TTC TCA 468 Thr Ile Ile Ser Gly Leu Gly Ile Pro Val Leu Gly Glu Val Phe Ser 80 85 90 ATT CTG GGT TCA TTA ATT GGC TTA TTG TGG CCG TCA AAT AAT GAA AAT 516 Ile Leu Gly Ser Leu Ile Gly Leu Leu Trp Pro Ser Asn Asn Glu Asn 95 100 105 110 GTA TGG CAA ATA TTT ATG AAT CGA GTG GAA GAG CTA ATT GAT CAA AAA 564 Val Trp Gln Ile Phe Met Asn Arg Val Glu Glu Leu Ile Asp Gln Lys 115 120 125 ATA TTA GAT TCT GTA AGA TCA AGA GCC ATT GCA GAT TTA GCT AAT TCT 612 Ile Leu Asp Ser Val Arg Ser Arg Ala Ile Ala Asp Leu Ala Asn Ser 130 135 140 AGA ATA GCT GTA GAG TAC TAT CAA AAT GCA CTT GAA GAC TGG AGA AAA 660 Arg Ile Ala Val Glu Tyr Tyr Gln Asn Ala Leu Glu Asp Trp Arg Lys 145 150 155 AAC CCA CAC AGT ACA CGA AGC GCA GCA CTT GTA AAG GAA AGA TTT GGA 708 Asn Pro His Ser Thr Arg Ser Ala Ala Leu Val Lys Glu Arg Phe Gly 160 165 170 AAT GCA GAA GCA ATT TTA CGT ACT AAC ATG GGT TCA TTT TCT CAA ACG 756 Asn Ala Glu Ala Ile Leu Arg Thr Asn Met Gly Ser Phe Ser Gln Thr 175 180 185 190 AAT TAT GAG ACT CCA CTC TTA CCC ACA T AT GCA CAG GCC GCC TCT CTG 804 Asn Tyr Glu Thr Pro Leu Leu Pro Thr Tyr Ala Gln Ala Ala Ser Leu 195 200 205 CAT TTG CTT GTA ATG AGG GAT GTT CAA ATT TAC GGG AAG GAA TGG GGA 852 His Leu Leu Val Met Arg Asp Val Gln Ile Tyr Gly Lys Glu Trp Gly 210 215 220 TAT CCT CAA AAT GAT ATT GAC CTA TTT TAT AAA GAA CAA GTA TCT TAT 900 Tyr Pro Gln Asn Asp Ile Asp Leu Phe Tyr Lys Glu Gln Val Ser Tyr 225 230 235 ACG GCT AGA TAT TCC GAT CAT TGC GTC CAA TGG TAC AAT GCT GGT TTA 948 Thr Ala Arg Tyr Ser Asp His Cys Val Gln Trp Tyr Asn Ala Gly Leu 240 245 250 AAT AAA TTA AGA GGA ACG GGT GCT AAG CAA TGG GTG GAT TAT AAT CGT 996 Asn Lys Leu Arg Gly Thr Gly Ala Lys Gln Trp Val Asp Tyr Asn Arg 255 260 265 270 TTC CGA AGA GAA ATG AAT GTG ATG GTA TTG GAT CTA GTT GCA TTA TTT 1044 Phe Arg Arg Glu Met Asn Val Met Val Leu Asp Leu Val Ala Leu Phe 275 280 285 CCA AAC TAC GAT GCG CGT ATA TAT CCA CTG GAA ACA AAT GCA GAA CTT 1092 Pro Asn Tyr Asp Ala Arg Ile Tyr Pro Leu Glu Thr Asn Ala Glu Leu 290 295 300 ACA AGA GAA ATT TTC ACA GAT CCT GTT GGA AGT TAC GTA ACT GGA CAA 1140 Thr Arg Glu Ile Phe Thr Asp Pro Val Gly Ser Tyr Val Thr Gly Gln 305 310 315 TCG AGT ACC CTT ATA TCT TGG TAC GAT ATG ATT CCA GCA GCT CTT CCT 1188 Ser Ser Thr Leu Ile Ser Trp Tyr Asp Met Ile Pro Ala Ala Leu Pro 320 325 330 TCA TTT TCA ACG CTC GAG AAC CTA CTT AGA AAA CCT GAT TTC TTT ACT 1236 Ser Phe Ser Thr Leu Glu Asn Leu Leu Arg Lys Pro Asp Phe Phe Thr 335 340 345 350 TTG CTG CAA GAA ATT AGA ATG TAT ACA AGT TTT AGA CAA AAC GGT ACG 1284 Leu Leu Gln Glu Ile Arg Met Tyr Thr Ser Phe Arg Gln Asn Gly Thr 355 360 365 ATT GAA TAT TAT AAT TAT TGG GGA GGA CAA AGG TTA ACC CTT TCT TAT 1332 Ile Glu Tyr Tyr Asn Tyr Trp Gly Gly Gln Arg Leu Thr Leu Ser Tyr 370 375 380 ATC TAT GGT TCC TCA TTC AAT AAA TAT AGT GGG GTT CTT GCC GGT GCT 1380 Ile Tyr Gly Ser Ser Phe Asn Lys Tyr Ser Gly Val Leu Ala Gly Ala 385 390 395 GAG GAT ATT ATT CCT GTG GGT CAA AAT GAT ATT TAC AGA GTT GTA TGG 1428 Glu Asp Ile Ile Pro Val Gly Gln Asn Asp Ile Tyr Arg Val Val Trp 400 405 410 ACT TAT ATA GGA AGG TAC ACG AAT AGT CTG CTA GGA GTA AAT CCA GTT 1476 Thr Tyr Ile Gly Arg Tyr Thr Asn Ser Leu Leu Gly Val Asn Pro Val 415 420 425 430 ACT TTT TAC TTC AGT AAT AAT ACA CAA AAA ACT TAT TCG AAG CCA AAA 1524 Thr Phe Tyr Phe Ser Asn Asn Thr Gln Lys Thr Tyr Ser Lys Pro Lys 435 440 445 CAA TTC GCG GGT GGA ATA AAA ACA ATT GAT TCC GGC GAA GAA TTA ACT 1572 Gln Phe Ala Gly Gly Ile Lys Thr Ile Asp Ser Gly Glu Glu Leu Thr 450 455 460 TAC GAA AAT TAT CAA TCT TAT AGT CAC AGG GTA AGT TAC ATT ACA TCT 1620 Tyr Glu Asn Tyr Gln Ser Tyr Ser His Arg Val Ser Tyr Ile Thr Ser 465 475 475 TTT GAA ATA AAA AGT ACC GGT GGT ACA GTA TTA GGA GTA GTT CCT ATA 1668 Phe Glu Ile Lys Ser Thr Gly Gly Thr Val Leu Gly Val Val Pro Ile 480 485 490 TTT GGT TGG ACG CAT AGT AGT GCC AGT CGC AAT AAC TTT ATT TAC GCA 1716 Phe Gly Trp Thr His Ser Ser Ala Ser Arg Asn Asn Phe Ile Tyr Ala 495 500 505 510 ACA AAA ATC TCA CAA ATC CCA ATC AAT AAA GCA AGT AGA ACT AGC GGT 1764 Thr Lys Ile Ser Gln Ile Pro Ile Asn Lys Ala Ser Arg Thr S er Gly 515 520 525 GGA GCG GTT TGG AAT TTC CAA GAA GGT CTA TAT AAT GGA GGA CCT GTA 1812 Gly Ala Val Trp Asn Phe Gln Glu Gly Leu Tyr Asn Gly Gly Pro Val 530 535 540 ATG AAA TTA TCT GGG TCT GGT TCC CAA GTA ATA AAC TTA AGG GTC GCA 1860 Met Lys Leu Ser Gly Ser Gly Ser Gln Val Ile Asn Leu Arg Val Ala 545 550 555 ACA GAT GCA AAG GGA GCA AGT CAA AGA TAT CGT ATT AGA ATC AGA TAT 1908 Thr Asp Ala Lys Gly Ala Ser Gln Arg Tyr Arg Ile Arg Ile Arg Tyr 560 565 570 GCC TCT GAT AGA GCG GGT AAA TTT ACG ATA TCT TCC AGA TCT CCA GAG 1956 Ala Ser Asp Arg Ala Gly Lys Phe Thr Ile Ser Ser Arg Ser Pro Glu 575 580 585 590 AAT CCT GCA ACC TAT TCA GCT TCT ATT GCT TAT ACA AAT ACT ATG TCT 2004 Asn Pro Ala Thr Tyr Ser Ala Ser Ile Ala Tyr Thr Asn Thr Met Ser 595 600 605 ACA AAT GCT TCT CTA ACG TAT AGT ACT TTT GCA TAT GCA GAA TCT GGC 2052 Thr Asn Ala Ser Leu Thr Tyr Ser Thr Phe Ala Tyr Ala Glu Ser Gly 610 615 620 CCT ATA AAC TTA GGG ATT TCG GGA AGT TCA AGG ACT TTT GAT ATA TCT 2100 Pro Ile Asn Leu Gly Ile Ser Gly Ser Se r Arg Thr Phe Asp Ile Ser 625 630 635 ATT ACA AAA GAA GCA GGT GCT GCT AAC CTT TAT ATT GAT AGA ATT GAA 2148 Ile Thr Lys Glu Ala Gly Ala Ala Asn Leu Tyr Ile Asp Arg Ile Glu 640 645 650 TTT ATT CCA GTT AAT ACG TTA TTT GAA GCA GAA GAA GAC CTA GAT GTG 2196 Phe Ile Pro Val Asn Thr Leu Phe Glu Ala Glu Glu Asp Leu Asp Val 655 660 665 670 GCA AAG AAA GCT GTG AAT GGC TTG TTT ACG AAT GAA AAA GAT GCC TTA 2244 Ala Lys Lys Ala Val Asn Gly Leu Phe Thr Asn Glu Lys Asp Ala Leu 675 680 685 CAG ACA AGT GTA ACG GAT TAT CAA GTC AAT CAA GCG GCA AAC TTA ATA 2292 Gln Thr Ser Val Thr Asp Tyr Gln Val Asn Gln Ala Ala Asn Leu Ile 690 695 700 GAA TGC C 2313 Glu Cys

【図面の簡単な説明】[Brief description of drawings]

【図1】可溶化したトキシンタンパク質のDEAEカラ
ムクロマトグラフィー
FIG. 1 DEAE column chromatography of solubilized toxin protein.

【図2】図1で得られた130kDa,65kDaタン
パク質の再クロマトグラフィー、(A)は65kDa、
(B)は130kDa
FIG. 2: Re-chromatography of the 130 kDa, 65 kDa protein obtained in FIG. 1, (A) 65 kDa,
(B) is 130 kDa

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12N 1/21 7236−4B 5/10 15/32 15/70 15/75 15/78 // C12P 21/02 C 8214−4B (C12N 1/21 C12R 1:19) (C12N 1/21 C12R 1:38) (C12N 1/21 C12R 1:07) (C12P 21/02 C12R 1:19) (C12P 21/02 C12R 1:38) D06M 13/18 (72)発明者 堀 秀隆 茨城県竜ヶ崎市向陽台5―6 株式会社ク ボタ技術開発研究所つくば研究室内 (72)発明者 浅野 昌司 茨城県竜ヶ崎市向陽台5―6 株式会社ク ボタ技術開発研究所つくば研究室内 (72)発明者 河杉 忠昭 茨城県竜ヶ崎市向陽台5―6 株式会社ク ボタ技術開発研究所つくば研究室内 (72)発明者 佐藤 令一 東京都小金井市貫井北町3―2―22―37 小金井公務員住宅 (72)発明者 大庭 道夫 福岡県福岡市東区箱崎5―4―12―1103 (72)発明者 岩花 秀典 東京都町田市能ヶ谷町1521―44─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C12N 1/21 7236-4B 5/10 15/32 15/70 15/75 15/78 // C12P 21/02 C 8214-4B (C12N 1/21 C12R 1:19) (C12N 1/21 C12R 1:38) (C12N 1/21 C12R 1:07) (C12P 21/02 C12R 1:19) (C12P 21 / 02 C12R 1:38) D06M 13/18 (72) Inventor Hidetaka Hori 5-6 Koyodai, Ryugasaki City, Ibaraki Prefecture Tsukuba Laboratory, Kubota Technology Development Laboratory (72) Inventor Shoji Asano 5 Koyodai, Ryugasaki City, Ibaraki Prefecture ―6 Kubota Technology Development Laboratory Tsukuba Laboratory (72) Inventor Tadaaki Kawasugi 5-6 Koyodai, Ryugasaki City, Ibaraki Prefecture 6-6 Kubota Technology Development Laboratory Tsukuba Laboratory (72) Inventor Akira Sato 1-3-22-22-37 Nukiikitamachi, Koganei-shi, Tokyo (72) Koganei civil servant housing (72) Inventor Michio Ohba 5-4-12-1103 Hakozaki, Higashi-ku, Fukuoka-shi, Fukuoka (72) Hidenori Iwahana, Noga 1521-44 Tanimachi

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1に記載のアミノ酸配列を有す
る甲虫目昆虫の幼虫に対する殺虫性タンパク質。
1. An insecticidal protein for the larvae of Coleoptera insects, which has the amino acid sequence of SEQ ID NO: 1.
【請求項2】 配列番号1に記載のアミノ酸配列を有す
る甲虫目昆虫の幼虫に対する殺虫性タンパク質をコード
する塩基配列を含むDNA。
2. A DNA containing a nucleotide sequence encoding an insecticidal protein for larvae of Coleoptera insects, which has the amino acid sequence of SEQ ID NO: 1.
【請求項3】 請求項2記載のDNAの持つ塩基配列を
有し、宿主細菌において発現するプラスミド。
3. A plasmid having the nucleotide sequence of the DNA according to claim 2 and expressed in a host bacterium.
【請求項4】 前記宿主細菌が、大腸菌、シュードモナ
ス、バチルス・チューリンゲンシス類の群の中から選ば
れたものである請求項3記載のプラスミド。
4. The plasmid according to claim 3, wherein the host bacterium is selected from the group consisting of Escherichia coli, Pseudomonas, and Bacillus thuringiensis.
【請求項5】 請求項3記載のプラスミドを有し、前記
殺虫性タンパク質を生産する微生物。
5. A microorganism having the plasmid according to claim 3 and producing the insecticidal protein.
【請求項6】 請求項1記載の殺虫性タンパク質を有効
成分とする殺虫剤。
6. An insecticide containing the insecticidal protein according to claim 1 as an active ingredient.
【請求項7】 配列番号2に記載のアミノ酸配列を有す
る甲虫目昆虫の幼虫に対する変異体殺虫性タンパク質。
7. A mutant insecticidal protein for larvae of Coleoptera, which has the amino acid sequence of SEQ ID NO: 2.
【請求項8】 配列番号1記載のアミノ酸配列におい
て、N末端から第53番までのアミノ酸及び、第705
番からC末端までのアミノ酸を欠失することによって改
変されたアミノ酸配列をコードする塩基配列を含む変異
体DNA。
8. The amino acid sequence of SEQ ID NO: 1, comprising the N-terminal to the 53rd amino acid and the 705th amino acid.
A mutant DNA containing a nucleotide sequence encoding an amino acid sequence modified by deleting an amino acid from the number C to the C-terminus.
【請求項9】 請求項8記載の変異体DNAの塩基配列
を有し、宿主細菌において発現するプラスミド。
9. A plasmid having the nucleotide sequence of the mutant DNA according to claim 8 and expressed in a host bacterium.
【請求項10】 前記宿主細菌が、大腸菌、シュードモ
ナス、バチルス・チューリンゲンシス類の群の中から選
ばれたものである請求項9記載のプラスミド。
10. The plasmid according to claim 9, wherein the host bacterium is selected from the group consisting of Escherichia coli, Pseudomonas, and Bacillus thuringiensis.
【請求項11】 請求項9記載のプラスミドを有し、請
求項7記載の前記変異体殺虫性タンパク質を生産する微
生物。
11. A microorganism having the plasmid according to claim 9 and producing the mutant insecticidal protein according to claim 7.
【請求項12】 有効成分が、請求項11記載の微生物
が生産する変異体殺虫性タンパク質である殺虫剤。
12. An insecticide, wherein the active ingredient is a mutant insecticidal protein produced by the microorganism according to claim 11.
【請求項13】 有効成分が、請求項11記載の微生物
を、前記変異体殺虫性タンパク質と共に含んだものであ
る殺虫剤。
13. An insecticide, wherein the active ingredient contains the microorganism according to claim 11 together with the mutant insecticidal protein.
【請求項14】 有効成分が、前記変異体殺虫性タンパ
ク質を含んだ状態の請求項11記載の微生物を死菌化し
たものである殺虫剤。
14. An insecticide obtained by killing the microorganism according to claim 11, wherein the active ingredient contains the mutant insecticidal protein.
【請求項15】 請求項2記載のDNAを導入した組換
え体植物。
15. A recombinant plant into which the DNA according to claim 2 has been introduced.
【請求項16】 請求項8記載のDNAを導入した組換
え体植物。
16. A recombinant plant into which the DNA according to claim 8 has been introduced.
JP4213886A 1992-08-11 1992-08-11 Insecticidal proteins against larvae of Coleoptera, and novel DNAs encoding the insecticidal proteins Expired - Lifetime JP2609786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4213886A JP2609786B2 (en) 1992-08-11 1992-08-11 Insecticidal proteins against larvae of Coleoptera, and novel DNAs encoding the insecticidal proteins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4213886A JP2609786B2 (en) 1992-08-11 1992-08-11 Insecticidal proteins against larvae of Coleoptera, and novel DNAs encoding the insecticidal proteins

Publications (2)

Publication Number Publication Date
JPH0665292A true JPH0665292A (en) 1994-03-08
JP2609786B2 JP2609786B2 (en) 1997-05-14

Family

ID=16646649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4213886A Expired - Lifetime JP2609786B2 (en) 1992-08-11 1992-08-11 Insecticidal proteins against larvae of Coleoptera, and novel DNAs encoding the insecticidal proteins

Country Status (1)

Country Link
JP (1) JP2609786B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736514A (en) * 1994-10-14 1998-04-07 Nissan Chemical Industries, Ltd. Bacillus strain and harmful organism controlling agents
US6962977B2 (en) 2000-08-03 2005-11-08 Sds Biotech K.K. Protein having pesticidal activity, DNA encoding the protein, and noxious organism-controlling agent and method
CN114891076A (en) * 2022-03-23 2022-08-12 中国农业科学院植物保护研究所 Mutant protein and application thereof in control of Spodoptera frugiperda

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736514A (en) * 1994-10-14 1998-04-07 Nissan Chemical Industries, Ltd. Bacillus strain and harmful organism controlling agents
US5834296A (en) * 1994-10-14 1998-11-10 Nissan Chemical Industries, Ltd. Bacillus strain and harmful organism controlling agents
US5837526A (en) * 1994-10-14 1998-11-17 Nissan Chemical Industries, Ltd. Bacillus strain and harmful organism controlling agents
US6962977B2 (en) 2000-08-03 2005-11-08 Sds Biotech K.K. Protein having pesticidal activity, DNA encoding the protein, and noxious organism-controlling agent and method
CN114891076A (en) * 2022-03-23 2022-08-12 中国农业科学院植物保护研究所 Mutant protein and application thereof in control of Spodoptera frugiperda

Also Published As

Publication number Publication date
JP2609786B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JP3878209B2 (en) Expression of chimeric delta-endotoxin in Pseudomonas florescence
JP4558072B2 (en) A plant-optimized gene encoding an insecticidal toxin
JP4647099B2 (en) A polynucleotide most effectively expressed in plants that encodes an insecticidal protein of about 15 kDa and about 45 kDa
AU2004267355B2 (en) Insecticidal proteins secreted from Bacillus thuringiensis and uses therefor
CA2187534A1 (en) Improved bacillus thuringiensis .delta.-endotoxin
RU2225114C2 (en) Recombinant dna encoding protein that represents insecticide agent, insecticide agent (variants), strain of microorganism xenorhabdus nematophilus (variants), insecticide composition, method for control of insect-pests
AU747294B2 (en) Bacillus thuringiensis Cry6-toxins with improved activity
AU666692B2 (en) Novel coleopteran-active (bacillus thuringiensis) isolates and genes encoding coleopteran-active toxins
JP2001510022A (en) Toxin genes from the bacteria Xenorabodos nematofilus and Photolabdos luminescence
JPS63160577A (en) Harmful insect resistant tomato plant
US5073632A (en) CryIIB crystal protein gene from Bacillus thuringiensis
US5731194A (en) Insecticide protein and gene
US6096306A (en) Strains of Bacillus thuringiensis and pesticide composition containing them
JPH0665292A (en) Insecticidal protein against larva of coleopteran insect and new dna encoding the same
AU768073C (en) Insecticidal agents
EP0533701B1 (en) SHUTTLE VECTOR FOR RECOMBINANT $i(BACILLUS THURINGIENSIS) STRAIN DEVELOPMENT
AU5394899A (en) Pesticidal toxins and genes from (bacillus laterosporus) strains
AU747851B2 (en) Bacillus thuringiensis toxins and genes for controlling coleopteran pests
AU708689B2 (en) Polynucleotides and the proteins encoded thereby, suitable for controlling lamellicorn beetles
US7662940B1 (en) Nucleotide and amino acid sequences from Bacillus thuringiensis and uses thereof
EP0585396A1 (en) NOVEL $i(BACILLUS THURINGIENSIS) ISOLATES ACTIVE AGAINST HYMENOPTERAN PESTS AND GENES ENCODING HYMENOPTERAN-ACTIVE TOXINS
WO1992020802A2 (en) Novel bacillus thuringiensis isolates active against hymenopteran pests and genes encoding hymenopteran-active toxins
MXPA00001151A (en) Bacillus thuringiensis
MXPA99008412A (en) Bacillus thuringiensis toxins
MXPA01001547A (en) Pesticidal toxins and genes from bacillus laterosporus

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16