JPH0665159A - Production of alkyleneamines - Google Patents

Production of alkyleneamines

Info

Publication number
JPH0665159A
JPH0665159A JP4214873A JP21487392A JPH0665159A JP H0665159 A JPH0665159 A JP H0665159A JP 4214873 A JP4214873 A JP 4214873A JP 21487392 A JP21487392 A JP 21487392A JP H0665159 A JPH0665159 A JP H0665159A
Authority
JP
Japan
Prior art keywords
weight
catalyst
reaction
formula
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4214873A
Other languages
Japanese (ja)
Inventor
Toshiaki Saito
俊秋 斉藤
Hideaki Tsuneki
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP4214873A priority Critical patent/JPH0665159A/en
Publication of JPH0665159A publication Critical patent/JPH0665159A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a compound useful as a chelating agent efficiently in high selectivity and in high yield without occurrence of by-product and problems of corrosion of device, etc., by reacting a specific aziridine compound with ammonia, etc., in the presence of a specific catalyst. CONSTITUTION:An aziridine compound of formula I (R<1> and R<2> are H, methyl or ethyl) is reacted with ammonia or amine of formula II (R<3> and R<4> are H, 1-4C alkyl or 2-4C aminoalkyl; (m) is 0-4) in the presence of a catalyst prepared by crosslinking layer clay belonging to the genus smectite to give the objective compound of formula III ((n) is 1-20 larger than (m)).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】アルキレンアミン類は水処理用の
キレ−ト剤あるいはエンジンオイルの添加剤、紙力増強
剤、繊維柔軟剤などの界面活性剤、エポキシ樹脂の硬化
剤、殺菌剤など、繊維工業、製紙工業、塗料、接着、農
薬等の種々の分野に用途を持った化合物である。本発明
はアルキレンアミン類を高選択的に効率よく製造する方
法に関するものである。
[Industrial application] Alkylene amines are chelating agents for water treatment or additives for engine oils, paper strength agents, surfactants such as fabric softeners, epoxy resin curing agents, bactericides, etc. It is a compound that has applications in various fields such as the textile industry, paper industry, paints, adhesives, and agricultural chemicals. The present invention relates to a method for producing alkylene amines with high selectivity and high efficiency.

【0002】[0002]

【従来の技術】工業的にアルキレンアミン類を製造する
方法としては、(A)二塩化エチレンとアンモニアある
いはエチレンジアミンとを高温、高圧下で反応させる方
法、(B)モノエタノールアミンとアンモニアを反応さ
せる方法(特開昭61−236752号、特開昭61−
18324号、特開昭60−94944号)、(C)水
の共存下、エチレンイミンとアンモニアを反応させる方
法(米国特許第2318730号)、(D)塩化アンモ
ニウム、塩化アルミニウム等の塩化物を触媒として、エ
チレンイミンとアンモニアを反応させる方法[Jour
nal of the American Chemi
cal Society,第70巻,第184頁(19
48年)、同第68巻,第2006頁(1946年)]
等が知られている。
2. Description of the Related Art As a method for industrially producing alkyleneamines, (A) a method of reacting ethylene dichloride with ammonia or ethylenediamine at high temperature and high pressure, and (B) a reaction of monoethanolamine with ammonia. Method (JP-A-61-236275, JP-A-61-162)
18324, JP-A-60-94944), (C) a method of reacting ethyleneimine with ammonia in the coexistence of water (US Pat. No. 2,318,730), (D) ammonium chloride, aluminum chloride and other chloride catalysts As a method of reacting ethyleneimine with ammonia [Jour
nal of the American Chemi
cal Society, 70, 184 (19).
48), Vol. 68, p. 2006 (1946)].
Etc. are known.

【0003】しかしながら、上記の方法はいずれも次の
ような問題がある。(A):副生無機塩や塩ビモノマー
等の廃棄物があり、これらの処理設備や塩素イオンによ
る腐食のために、設備にコストがかかり経済的でない。
(B):ピペラジン等の環状アミン類の副生が多く、ま
た該副生アミンや未反応の原料モノエタノールアミン等
と目的生成物との分離工程が複雑になるなど効率的でな
い。(C):反応系中に過剰量の水を共存させる必要が
あるため、生成物を回収する際に水との分離に多大なる
エネルギーを要し経済的でない。(D):触媒が生成物
と塩を形成するため生成物と触媒の分離工程が複雑にな
るなど効率的でない。
However, each of the above methods has the following problems. (A): There are wastes such as by-produced inorganic salts and vinyl chloride monomers, and these equipments are costly and uneconomical due to corrosion due to chlorine ion.
(B): Cyclic amines such as piperazine are often produced as by-products, and the process of separating the by-produced amine and unreacted starting material monoethanolamine from the target product is complicated, which is not efficient. (C): Since it is necessary to allow an excessive amount of water to coexist in the reaction system, a great amount of energy is required to separate the product from water when recovering the product, which is not economical. (D): The catalyst forms a salt with the product, which makes the process of separating the product and the catalyst complicated, which is not efficient.

【0004】近年、かかる問題を改善する方法として、
(E)イオン交換樹脂、シリカ−アルミナ等の固体酸触
媒を用いてアジリジン化合物とアンモニアあるいはアミ
ンとを反応させる方法(特開平3−173851号)が
提案された。この方法は優れた方法ではあるが、なお、
触媒を繰り返し使用した場合に目的生成物より高分子量
のアルキレンアミン類(ポリマー分)の生成が除々に増
加してくるなどの問題があり、工業的見地からは未だ不
十分である。
In recent years, as a method for improving such a problem,
(E) A method of reacting an aziridine compound with ammonia or an amine using a solid acid catalyst such as an ion exchange resin or silica-alumina (JP-A-3-173851) has been proposed. This method is excellent, but still
When the catalyst is repeatedly used, there is a problem that the production of alkyleneamines (polymer content) having a higher molecular weight than the intended product gradually increases, which is still insufficient from an industrial viewpoint.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、無機
塩や塩ビモノマー等の副生、装置の腐食等の問題を伴わ
ず、また反応生成物から目的とするアルキレンアミン類
の分離の問題を伴わず、更には触媒を繰り返し使用した
場合でも、ポリマー分が増加してくる等の問題がなく、
アルキレンアミン類を高選択的に効率よく製造する方法
を提供することにある。
The object of the present invention is not accompanied by problems such as by-products such as inorganic salts and vinyl chloride monomers, corrosion of equipment, and the problem of separation of desired alkylene amines from reaction products. Without the problem, and even when the catalyst is used repeatedly, there is no problem that the polymer content increases,
An object of the present invention is to provide a method for producing alkylene amines with high selectivity and high efficiency.

【0006】[0006]

【課題を解決するための手段】本発明者等は、前記課題
を解決すべく鋭意検討した結果、アジリジン化合物とア
ンモニアもしくはアミンとを液相中で反応するに当た
り、優れた性能を発揮する触媒を見いだし、本発明を完
成するに到った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that a catalyst that exhibits excellent performance in reacting an aziridine compound with ammonia or amine in a liquid phase is selected. The present invention has been completed and the present invention has been completed.

【0007】すなわち本発明は、触媒の存在下、下記一
般式(1)
That is, the present invention provides the following general formula (1) in the presence of a catalyst.

【0008】[0008]

【化4】 [Chemical 4]

【0009】(式中、R1、R2は各々独立して水素原
子、メチル基またはエチル基を表わす。)で示されるア
ジリジン化合物と下記一般式(2)
(Wherein R 1 and R 2 each independently represents a hydrogen atom, a methyl group or an ethyl group) and the following general formula (2):

【0010】[0010]

【化5】 [Chemical 5]

【0011】(R1、R2は式(1)と同じであり、
3、R4は各々独立して水素原子、炭素数1〜4のアル
キル基または炭素数2〜4のアミノアルキル基を表わ
し、mは0〜4の整数である。)で示されるアンモニア
もしくはアミンとを反応させる下記一般式(3)
(R 1 and R 2 are the same as in formula (1),
R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an aminoalkyl group having 2 to 4 carbon atoms, and m is an integer of 0 to 4. ) The following general formula (3) for reacting with ammonia or an amine represented by

【0012】[0012]

【化6】 [Chemical 6]

【0013】(R1、R2、R3、R4は式(1)、(2)
と同じであり、nはmより大きい1〜20の整数であ
る。)で示されるアルキレンアミン類の製造方法におい
て、該触媒がスメクタイト属に属する層状粘土を架橋処
理した触媒であることを特徴とするアルキレンアミン類
の製造方法である。
(R 1 , R 2 , R 3 and R 4 are represented by the formulas (1) and (2)
And n is an integer of 1 to 20 larger than m. In the method for producing alkyleneamines represented by the formula (1), the catalyst is a catalyst obtained by subjecting a layered clay belonging to the genus Smectite to a cross-linking treatment.

【0014】本発明の方法により、触媒を繰り返し使用
した場合でもポリマー分が増加してくることなく、アル
キレンアミン類を高選択的に効率よく製造することがで
きる。
According to the method of the present invention, alkylene amines can be produced highly selectively and efficiently without increasing the polymer content even when the catalyst is repeatedly used.

【0015】以下、本発明を詳しく説明する。The present invention will be described in detail below.

【0016】本発明に係わるスメクタイト属に属する層
状粘土としては、モンモリロナイト、バイデライト、ノ
ントロナイト、サポナイト、鉄サポナイト、ヘクトライ
ト、ソ−コナイト、スチブンサイト及び合成マイカなど
が挙げられる。これらの層状粘土はシリケート層の層間
に空隙があり、通常その空隙にはナトリウムなどが入っ
ているが、これを除去したものや他の無機物に置換した
ものであってもよい。また、これらの混合物であっても
よい。
Examples of the layered clay belonging to the genus Smectite according to the present invention include montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, soconite, stevensite and synthetic mica. These layered clays have voids between the layers of the silicate layer, and sodium or the like is usually contained in the voids, but the voids may be removed or replaced with other inorganic substances. Also, a mixture of these may be used.

【0017】本発明において用いられる触媒は該スメク
タイト属に属する層状粘土を架橋処理した触媒であり、
いわゆるピラード・クレーに属するものである。即ち、
本発明に係わる触媒は、比較的嵩の大きな金属酸化物が
層状粘土のシリケート層の層間に入り込んで架橋構造を
形成しており、従ってこの架橋によってシリケート層間
の間隔が拡った状態になっており、そのために特異な触
媒性能を発揮するものと考えられる。
The catalyst used in the present invention is a catalyst obtained by subjecting a layered clay belonging to the genus Smectite to a cross-linking treatment,
It belongs to the so-called Pillar Clay. That is,
In the catalyst according to the present invention, a relatively bulky metal oxide penetrates between the layers of the silicate layer of the layered clay to form a crosslinked structure. Therefore, this crosslink causes a wide space between the silicate layers. Therefore, it is considered that for that reason, it exhibits a unique catalytic performance.

【0018】本発明に係わる触媒を調製するには、スメ
クタイト属に属する層状粘土をピラーのもととなるピラ
ー源で処理してシリケート層の層間にピラー源を入り込
ませた後焼成すればよい。こうすることによってシリケ
ート層の層間に酸化物のピラーが形成され、シリケート
層とシリケート層とがピラーによって架橋された触媒が
得られる。
In order to prepare the catalyst according to the present invention, the layered clay belonging to the smectite genus may be treated with a pillar source which is a source of pillars so that the pillar source is allowed to enter between the layers of the silicate layer and then calcined. By doing so, oxide pillars are formed between the layers of the silicate layer, and a catalyst in which the silicate layer and the silicate layer are cross-linked by the pillars is obtained.

【0019】ピラー源には陽イオン性酸化物のゾル、陽
イオン性水酸化物あるいはこれらの混合物などがある。
具体例としては、陽イオン性酸化物のゾルとしてはチタ
ンテトライソプロポキシドを塩酸水溶液で加水分解させ
て生じたチタニアゾルなどがある。また、陽イオン性水
酸化物としては一般式が(Al2(OH)nCl6-n
m(但し、nは約3、mは10以下である)で示される
ポリ塩化アルミニウムを水に溶解して部分的に加水分解
した多核の水酸化アルミニウム;Al,Cr,Bi,F
eの各塩化物、硝酸塩、硫酸塩の水溶液を攪拌しながら
少量ずつアルカリを加えて部分的に加水分解して得た多
核の水酸化アルミニウム、水酸化クロム、水酸化ビスマ
ス、水酸化鉄;オキシ塩化ジルコニウムを水に溶解して
得た多核の水酸化ジルコニウムイオンおよび三核酢酸鉄
の水溶液などがある。
The pillar source includes a sol of a cationic oxide, a cationic hydroxide or a mixture thereof.
Specific examples include a titania sol produced by hydrolyzing titanium tetraisopropoxide with a hydrochloric acid aqueous solution as a sol of a cationic oxide. The general formula of the cationic hydroxide is (Al 2 (OH) n Cl 6-n ).
Polynuclear aluminum hydroxide obtained by dissolving polyaluminum chloride represented by m (where n is about 3 and m is 10 or less) in water to partially hydrolyze it; Al, Cr, Bi, F
Polynuclear aluminum hydroxide, chromium hydroxide, bismuth hydroxide, iron hydroxide obtained by partially hydrolyzing an aqueous solution of each chloride, nitrate or sulfate of e by stirring while adding alkali little by little; Examples thereof include an aqueous solution of polynuclear zirconium hydroxide ion obtained by dissolving zirconium chloride in water and trinuclear iron acetate.

【0020】触媒の調製法についてより具体的に述べる
と、例えば、スメクタイト属に属する層状粘土を陽イオ
ン性酸化物のゾル、陽イオン性水酸化物あるいはこれら
の混合物からなる水溶液に加え、室温〜100℃にてよ
く分散させ、濾過、水洗、乾燥した後、200〜700
℃にて焼成することによって本発明に係わる触媒が得ら
れる。
More specifically, the method for preparing the catalyst will be described, for example, by adding a layered clay belonging to the genus Smectite to an aqueous solution comprising a cation of a cationic oxide, a cationic hydroxide or a mixture thereof, and at room temperature to Disperse well at 100 ° C, filter, wash with water, and dry, then 200-700
The catalyst according to the present invention is obtained by calcination at ℃.

【0021】このようにして得られる触媒は、元のスメ
クタイト属層状粘土よりもはるかに強い固体酸としての
性質、40〜800m2/gの比表面積、0.3〜3n
mのシリケート層の層間隔を有し、耐熱性に優れる。こ
れらの性状は用いるピラー源の種類や焼成条件などによ
って変わる。
The catalyst thus obtained has a much stronger property as a solid acid than the original smectite layered clay, a specific surface area of 40 to 800 m 2 / g, and 0.3 to 3 n.
It has a silicate layer spacing of m and is excellent in heat resistance. These properties vary depending on the type of pillar source used and firing conditions.

【0022】該触媒が、本反応に有効な理由は完全には
明かでないが、考えられる作用を以下に述べる。
The reason why the catalyst is effective for this reaction is not completely clear, but possible actions are described below.

【0023】陽イオン性酸化物のゾル、陽イオン性水酸
化物及びそれらの混合物の様な、かさ高い無機化合物を
イオン交換によってスメクタイト型鉱物のシリケート層
の層間に取りこませ、加熱脱水すると層間の陽イオン性
酸化物のゾル、陽イオン性水酸化物及びそれらの混合物
は酸化物粒子となり、スメクタイト型鉱物のシリケート
層間隔の収縮を支え、ゼオライトのような二次元的な細
孔構造を保つ。このものは、例えば500゜Cにおいても
0.6〜0.7nmのシリケ−ト層の層間と300〜4
00m2/gの比表面積を有し、耐熱性に優れた多孔体
となり、しかも元のスメクタイト型鉱物よりもはるかに
強い固体酸が生じる。
A bulky inorganic compound such as a cation of a cationic oxide, a cationic hydroxide and a mixture thereof is introduced into the layers of a silicate layer of a smectite type mineral by ion exchange and heated to dehydrate the layers. Cationic oxide sols, cationic hydroxides and their mixtures form oxide particles, supporting the contraction of the silicate layer spacing of smectite type minerals and maintaining a two-dimensional pore structure like zeolite. . This has a thickness of between 300 and 4 between the layers of the silicate layer of 0.6 to 0.7 nm even at 500 ° C.
It has a specific surface area of 00 m 2 / g, becomes a porous body with excellent heat resistance, and produces a solid acid much stronger than the original smectite-type mineral.

【0024】このような特定の層間距離や固体酸性質を
持つ触媒を用いる事により、触媒を繰り返し使用した場
合でもポリマ−分が増加してくる等の問題がなく、アル
キレンアミン類を高選択的に効率良く製造できるものと
考えられる。
By using such a catalyst having a specific interlayer distance and a solid acid property, there is no problem that the polymer content increases even when the catalyst is repeatedly used, and alkyleneamines are highly selective. It is thought that it can be manufactured efficiently.

【0025】式(1)のアジリジン化合物の具体例とし
てはエチレンイミン、プロピレンイミン、2−エチルエ
チレンイミンなどが挙げられる。また、式(2)の具体
例を例示するとアンモニアもしくはアミンとしては、メ
チルアミン、エチルアミンなどの第1級アミン、ジメチ
ルアミン、ジエチルアミンなどの第2級アミン、エチレ
ンジアミン、メチルエチレンジアミンなどのジアミン、
ジエチレントリアミン、テトラエチレンペンタミンなど
のポリアミンなどが挙げられる。これら式(1)のアジ
リジン化合物および式(2)のアンモニアもしくはアミ
ンの組み合わせに従って対応する式(3)のアルキレン
アミン類が得られる。また、これら式(1)のアジリジ
ン化合物や式(2)のアンモニアもしくはアミンは各々
混合物として使用することもできる。更に、反応圧力を
低下させるなどの目的で溶媒を用いてもよい。
Specific examples of the aziridine compound of the formula (1) include ethyleneimine, propyleneimine and 2-ethylethyleneimine. Further, when exemplifying a specific example of the formula (2), as ammonia or amine, primary amines such as methylamine and ethylamine, secondary amines such as dimethylamine and diethylamine, diamines such as ethylenediamine and methylethylenediamine,
Examples thereof include polyamines such as diethylenetriamine and tetraethylenepentamine. Corresponding alkyleneamines of formula (3) are obtained according to the combination of the aziridine compound of formula (1) and the ammonia or amine of formula (2). The aziridine compound of the formula (1) and the ammonia or amine of the formula (2) can also be used as a mixture. Further, a solvent may be used for the purpose of lowering the reaction pressure.

【0026】アルキレンアミン類を製造するための反応
器としては、流通式反応器、回分式反応器、半回分式反
応器何れも使用できる。
As the reactor for producing the alkyleneamines, any of a flow reactor, a batch reactor and a semi-batch reactor can be used.

【0027】反応温度はアジリジン化合物、アンモニア
もしくはアミン、目的物の種類、使用する触媒の量など
に応じて適宣に設定される。一般に、反応温度が高いと
反応圧の上昇を招くとともに、アジリジン化合物のポリ
マーなどの副生物の割合が増し、また、反応温度が低い
と生産性が低下する。好ましい反応温度は50〜200
℃である。
The reaction temperature is appropriately set according to the aziridine compound, ammonia or amine, the kind of the target substance, the amount of the catalyst used, and the like. Generally, when the reaction temperature is high, the reaction pressure is increased, and the proportion of by-products such as polymers of the aziridine compound is increased, and when the reaction temperature is low, the productivity is decreased. The preferred reaction temperature is 50-200.
℃.

【0028】反応圧力としては、反応を行う温度におい
て反応原料が実質上液体であるような圧力を要する。そ
れはアジリジン化合物、アンモニアもしくはアミン、溶
媒等の種類や組成比、反応温度によっても異なるが、通
常大気圧〜100Kg/cm2である。
The reaction pressure must be such that the reaction raw material is substantially liquid at the temperature at which the reaction is carried out. It is usually from atmospheric pressure to 100 Kg / cm 2 , although it varies depending on the kind and composition ratio of the aziridine compound, ammonia or amine, the solvent and the like, and the reaction temperature.

【0029】本発明においてもアジリジン化合物がアミ
ノ基に次々付加していく逐次反応を伴うが、従来の方法
に比べ比較的狭い生成物分布でアルキレンアミン類が得
られる。主としてジエチレントリアミン等の低分子量の
アルキレンアミン類を得たい場合には、アジリジン化合
物の割合を少なくし、また主として式(3)のn=10
〜20のアジリジン化合物付加割合の大きいアルキレン
アミン類を得たい場合には、アジリジン化合物の割合を
多くする。しかし、アジリジン化合物が少なすぎるとア
ルキレンアミン類の収量が低下し、反対にアジリジン化
合物が多すぎるとポリマーが多く生成して目的とするア
ルキレンアミン類の収率が低下して不利であり、アンモ
ニアもしくはアミンとアジリジン化合物のモル比は0.
1〜15:1の範囲が好ましい。
The present invention also involves a sequential reaction in which aziridine compounds are sequentially added to amino groups, but alkyleneamines can be obtained with a relatively narrow product distribution as compared with the conventional method. In order to obtain mainly low-molecular-weight alkyleneamines such as diethylenetriamine, the proportion of the aziridine compound should be reduced, and n = 10 in the formula (3) should be mainly used.
When it is desired to obtain alkylene amines having a large addition ratio of aziridine compound of ˜20, the ratio of aziridine compound is increased. However, if the amount of the aziridine compound is too small, the yield of the alkyleneamines decreases, while if the amount of the aziridine compound is too large, a large amount of the polymer is produced, and the yield of the target alkyleneamines decreases, which is disadvantageous. The molar ratio of the amine to the aziridine compound is 0.
A range of 1 to 15: 1 is preferred.

【0030】[0030]

【発明の効果】本発明の方法は、原料として塩素や水酸
基を有する化合物等を用いないことから、反応原料に由
来する含塩素廃棄物が無く、生成アルキルアミン類との
分離が困難なヒドロキシル基を有する副生成物も無いの
で高純度品が得られるなどの利点がある。しかも、反応
系に水を共存させる必要もないことから水を分離させる
工程も不要である。また、固体触媒であるため、生成ア
ルキレンアミン類と触媒が容易に分離できる。
EFFECTS OF THE INVENTION The method of the present invention does not use a compound having chlorine or a hydroxyl group as a raw material, so that there is no chlorine-containing waste derived from the reaction raw material and it is difficult to separate it from the produced alkylamines. Since there is no by-product containing cis, there is an advantage that a high-purity product can be obtained. Moreover, since it is not necessary to allow water to coexist in the reaction system, the step of separating water is also unnecessary. Further, since it is a solid catalyst, the produced alkylene amines and the catalyst can be easily separated.

【0031】更には、本発明に係る触媒は、繰り返し使
用した場合でもポリマー分が増加せず、穏和な反応条件
下でアジリジン化合物とアンモニアもしくはアミンとの
反応を非常に速やかに進行させるため、工業的に連続操
業しても安定して所望のアルキレンアミン類を高選択的
に効率よく製造することが可能となる。
Furthermore, the catalyst according to the present invention does not increase the polymer content even when it is repeatedly used, and the reaction of the aziridine compound with ammonia or amine proceeds very quickly under mild reaction conditions. The desired alkylene amines can be stably and highly selectively produced efficiently even in continuous continuous operation.

【0032】[0032]

【実施例】以下、実施例によって本発明を具体的に述べ
るが、本発明はこれらの実施例に限定されるものではな
い。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0033】実施例1−a この実施例は酸化アルミニウムにより架橋構造が形成さ
れたモンモリロナイトを調製し、触媒として用いた例で
ある。
Example 1-a In this example, a montmorillonite having a crosslinked structure formed of aluminum oxide was prepared and used as a catalyst.

【0034】攪拌機、還流冷却器および温度計を備えた
2リットル三つ口フラスコに、0.2モル濃度の塩化ア
ルミニウム水溶液1000mlを加え、湯浴で60℃に
加温し、この溶液に、1.0モル濃度の水酸化ナトリウ
ム水溶液400mlを2時間かけて滴下した。滴下終了
後60℃で2時間熟成した後、室温まで冷却し、モンモ
リロナイト(クニミネ工業製クニピアF)20gを加え
室温で1週間攪拌した。その後懸濁物を濾過し、得られ
た固形物を蒸留水により塩素イオンが検知されなくなる
まで洗浄し、空気中100℃で24時間乾燥し、空気中
400℃で4時間焼成した後、得られた固体を9〜16
メッシュに破砕して触媒とした。得られた触媒の比表面
積は295m2/g、層間距離は0.8nmであった。
To a 2 liter three-necked flask equipped with a stirrer, a reflux condenser and a thermometer, 1000 ml of a 0.2 molar aqueous solution of aluminum chloride was added, and the mixture was heated to 60 ° C. in a water bath to 400 ml of a 0.0 molar aqueous sodium hydroxide solution was added dropwise over 2 hours. After completion of dropping, the mixture was aged at 60 ° C. for 2 hours, cooled to room temperature, 20 g of montmorillonite (Kunipia F manufactured by Kunimine Industries Co., Ltd.) was added, and the mixture was stirred at room temperature for 1 week. After that, the suspension was filtered, and the obtained solid was washed with distilled water until chlorine ions were not detected, dried in air at 100 ° C. for 24 hours, and calcined in air at 400 ° C. for 4 hours to obtain the product. 9 to 16
It was crushed into a mesh to obtain a catalyst. The specific surface area of the obtained catalyst was 295 m 2 / g, and the interlayer distance was 0.8 nm.

【0035】この触媒2.0gとジエチレントリアミン
77.5g(0.75モル)を、攪拌機、還流冷却器、
温度計、原料送入口を備えた300ml4つ口フラスコ
に仕込んだ後、オイルバスで内温を115℃に昇温し
て、定量ポンプによりエチレンイミン35.0g(0.
81モル)を4時間かけて供給した。エチレンイミンの
供給開始とともに内温の上昇が認められたので、エチレ
ンイミン供給の間、内部温度を120℃に制御し、その
後更に4時間、内部温度を120℃に維持して反応を完
結させた。反応終了後、反応液を室温まで冷却し反応液
と触媒を濾別した。
2.0 g of this catalyst and 77.5 g (0.75 mol) of diethylenetriamine were added to a stirrer, a reflux condenser,
After charging into a 300 ml four-necked flask equipped with a thermometer and a raw material inlet, the internal temperature was raised to 115 ° C. in an oil bath, and 35.0 g (0.
81 mol) was fed over 4 hours. Since an increase in the internal temperature was observed with the start of the supply of ethyleneimine, the internal temperature was controlled at 120 ° C during the supply of ethyleneimine, and then the internal temperature was maintained at 120 ° C for another 4 hours to complete the reaction. . After completion of the reaction, the reaction solution was cooled to room temperature and the reaction solution and the catalyst were separated by filtration.

【0036】得られた反応液をガスクロマトグラフィー
を用いて内部標準法により分析したところ、エチレンイ
ミンの転化率は100%であり、未反応原料を除いた生
成物の内訳は、トリエチレンテトラミン54.5重量
%、テトラエチレンペンタミン35.1重量%、ペンタ
エチレンヘキサミン9.6重量%、ヘキサエチレンヘプ
タミン以上のポリマー0.8重量%であり、これらの収
量は合計91.9gであった。なお、ピペラジン等の環
状アミン類の生成は認められなかった。反応条件及び結
果を表1に示した。
When the obtained reaction solution was analyzed by gas chromatography using the internal standard method, the conversion of ethyleneimine was 100%, and the content of the products excluding unreacted raw materials was triethylenetetramine 54. 0.5% by weight, tetraethylenepentamine 35.1% by weight, pentaethylenehexamine 9.6% by weight, hexaethyleneheptamine or higher polymer 0.8% by weight, and the total amount of these was 91.9 g. . In addition, formation of cyclic amines such as piperazine was not observed. The reaction conditions and results are shown in Table 1.

【0037】実施例1−b 実施例1−aで濾別した触媒全量を用いて実施例1−a
と同じ条件で繰り返し反応を行った。
Example 1-b Example 1-a was carried out using the entire amount of the catalyst filtered off in Example 1-a.
The reaction was repeated under the same conditions as above.

【0038】反応の結果、エチレンイミンの転化率は1
00%であり、未反応原料を除いた生成物の内訳はトリ
エチレンテトラミン53.1重量%、テトラエチレンペ
ンタミン36.3重量%、ペンタエチレンヘキサミン
9.8重量%、ヘキサエチレンヘプタミン以上のポリマ
ー0.8重量%であり、これらの収量は合計91.3g
であった。なお、ピペラジン等の環状アミン類の生成は
認められなかった。反応条件及び結果を表1に示した。
As a result of the reaction, the conversion of ethyleneimine was 1
The content of the product excluding unreacted raw materials was 53.1% by weight of triethylenetetramine, 36.3% by weight of tetraethylenepentamine, 9.8% by weight of pentaethylenehexamine, and more than hexaethyleneheptamine. 0.8% by weight of polymer, these yields total 91.3 g
Met. In addition, formation of cyclic amines such as piperazine was not observed. The reaction conditions and results are shown in Table 1.

【0039】実施例1−c 実施例1−bで濾別した触媒全量を用いて実施例1−a
と同じ条件で繰り返し反応を行った。
Example 1-c Example 1-a using the total amount of the catalyst filtered off in Example 1-b
The reaction was repeated under the same conditions as above.

【0040】反応の結果、エチレンイミンの転化率は1
00%であり、未反応原料を除いた生成物の内訳はトリ
エチレンテトラミン54.3重量%、テトラエチレンペ
ンタミン35.0重量%、ペンタエチレンヘキサミン
9.8重量%、ヘキサエチレンヘプタミン以上のポリマ
ー0.9重量%であり、これらの収量は合計91.7g
であった。なお、ピペラジン等の環状アミン類の生成は
認められなかった。反応条件及び結果を表1に示した。
As a result of the reaction, the conversion of ethyleneimine was 1
The content of the products excluding unreacted raw materials was triethylenetetramine 54.3% by weight, tetraethylenepentamine 35.0% by weight, pentaethylenehexamine 9.8% by weight, and hexaethyleneheptamine or higher. 0.9% by weight of polymer, these yields total 91.7 g
Met. In addition, formation of cyclic amines such as piperazine was not observed. The reaction conditions and results are shown in Table 1.

【0041】実施例2−a この実施例は酸化ジルコニウムにより架橋構造が形成さ
れたモンモリロナイトを調製し、触媒として用いた例で
ある。
Example 2-a This example is an example in which a montmorillonite having a crosslinked structure formed of zirconium oxide was prepared and used as a catalyst.

【0042】攪拌機、還流冷却器および温度計を備えた
2リットル三つ口フラスコに、0.1モル濃度の塩化ジ
ルコニル水溶液1000mlを加え、湯浴で60℃に加
温し24時間攪拌した。この溶液にモンモリロナイト
(クニミネ工業製クニピアF)20gを加え更に2時間
攪拌した。室温まで冷却後懸濁物を濾過し、得られた固
形物を蒸留水により塩素イオンが検知されなくなるまで
洗浄し、空気中100℃で24時間乾燥し、つづけて空
気中400℃で4時間焼成した後、得られた固体を9〜
16メッシュに破砕して触媒とした。得られた触媒の比
表面積は195m2/g、層間距離は1.0nmであっ
た。
To a 2-liter three-necked flask equipped with a stirrer, a reflux condenser and a thermometer, 1000 ml of a 0.1 molar aqueous zirconyl chloride solution was added, and the mixture was heated to 60 ° C. in a water bath and stirred for 24 hours. 20 g of montmorillonite (Kunipia F manufactured by Kunimine Industries) was added to this solution, and the mixture was further stirred for 2 hours. After cooling to room temperature, the suspension is filtered, the solid obtained is washed with distilled water until chlorine ions are no longer detected, dried in air at 100 ° C. for 24 hours, and subsequently calcined in air at 400 ° C. for 4 hours. And the solid obtained was
It was crushed to 16 mesh to obtain a catalyst. The specific surface area of the obtained catalyst was 195 m 2 / g, and the interlayer distance was 1.0 nm.

【0043】この触媒2.0gを用いた以外は実施例1
−aと同様に操作した。
Example 1 except that 2.0 g of this catalyst was used
Operated in the same manner as for -a.

【0044】その結果、エチレンイミンの転化率は10
0%であり、未反応原料を除いた生成物の内訳は、トリ
エチレンテトラミン52.9重量%、テトラエチレンペ
ンタミン35.1重量%、ペンタエチレンヘキサミン1
1.0重量%、ヘキサエチレンヘプタミン以上のポリマ
ー1.0重量%であり、これらの収量は合計90.8g
であった。なお、ピペラジン等の環状アミン類の生成は
認められなかった。反応条件及び結果を表1に示した。
As a result, the conversion of ethyleneimine was 10%.
The content of the product excluding unreacted raw materials is 0%, 52.9% by weight of triethylenetetramine, 35.1% by weight of tetraethylenepentamine, and 1 of pentaethylenehexamine.
1.0% by weight, 1.0% by weight of a polymer of hexaethyleneheptamine or higher, and the total amount of these was 90.8 g.
Met. In addition, formation of cyclic amines such as piperazine was not observed. The reaction conditions and results are shown in Table 1.

【0045】実施例2−b 実施例2−aで濾別した触媒全量を用いて実施例1−a
と同じ条件で繰り返し反応を行った。
Example 2-b Example 1-a using the total amount of the catalyst filtered off in Example 2-a
The reaction was repeated under the same conditions as above.

【0046】反応の結果、エチレンイミンの転化率は1
00%であり、未反応原料を除いた生成物の内訳はトリ
エチレンテトラミン52.5重量%、テトラエチレンペ
ンタミン35.1重量%、ペンタエチレンヘキサミン1
1.1重量%、ヘキサエチレンヘプタミン以上のポリマ
ー0.9重量%であり、これらの収量は合計90.8g
であった。なお、ピペラジン等の環状アミン類の生成は
認められなかった。反応条件及び結果を表1に示した。
As a result of the reaction, the conversion of ethyleneimine was 1
The content of the products excluding unreacted raw materials was 52.5% by weight of triethylenetetramine, 35.1% by weight of tetraethylenepentamine, and 1 of pentaethylenehexamine.
1.1 wt%, 0.9 wt% polymer of hexaethyleneheptamine or higher, the total yield of these is 90.8 g
Met. In addition, formation of cyclic amines such as piperazine was not observed. The reaction conditions and results are shown in Table 1.

【0047】実施例2−c 実施例2−bで濾別した触媒全量を用いて実施例1−a
と同じ条件で繰り返し反応を行った。
Example 2-c Example 1-a using the whole amount of the catalyst filtered off in Example 2-b
The reaction was repeated under the same conditions as above.

【0048】反応の結果、エチレンイミンの転化率は1
00%であり、未反応原料を除いた生成物の内訳はトリ
エチレンテトラミン52.9重量%、テトラエチレンペ
ンタミン35.0重量%、ペンタエチレンヘキサミン1
1.0重量%、ヘキサエチレンヘプタミン以上のポリマ
ー1.0重量%であり、これらの収量は合計90.8g
であった。なお、ピペラジン等の環状アミン類の生成は
認められなかった。反応条件及び結果を表1に示した。
As a result of the reaction, the conversion of ethyleneimine is 1
The content of the products excluding unreacted raw materials was 52.9% by weight of triethylenetetramine, 35.0% by weight of tetraethylenepentamine, and 1 of pentaethylenehexamine.
1.0% by weight, 1.0% by weight of a polymer of hexaethyleneheptamine or higher, and the total amount of these was 90.8 g.
Met. In addition, formation of cyclic amines such as piperazine was not observed. The reaction conditions and results are shown in Table 1.

【0049】実施例3 実施例1−aの調製法で調製した触媒8.0gとジエチ
レントリアミン36.1g(0.35モル)を、攪拌
機、還流冷却器、温度計、原料送入口を備えた300m
l4つ口フラスコに仕込んだ後、オイルバスで内温を1
45℃に昇温して、定量ポンプによりエチレンイミン1
46.4g(3.4モル)を5時間かけて供給した。エ
チレンイミンの供給開始とともに内温の上昇が認められ
たので、エチレンイミン供給の間、内部温度を150℃
に制御し、その後更に5時間、内部温度を150℃に維
持して反応を完結させた。反応終了後、反応液を室温ま
で冷却し反応液と触媒を濾別した。
Example 3 8.0 g of the catalyst prepared by the preparation method of Example 1-a and 36.1 g (0.35 mol) of diethylenetriamine were added to 300 m equipped with a stirrer, a reflux condenser, a thermometer, and a raw material inlet.
l After charging to a 4-necked flask, set the internal temperature to 1 with an oil bath.
Raise the temperature to 45 ° C and use a metering pump to feed ethyleneimine 1
46.4 g (3.4 mol) was fed over 5 hours. Since the internal temperature increased with the start of the ethyleneimine supply, the internal temperature was kept at 150 ° C during the ethyleneimine supply.
The internal temperature was maintained at 150 ° C. for a further 5 hours to complete the reaction. After completion of the reaction, the reaction solution was cooled to room temperature and the reaction solution and the catalyst were separated by filtration.

【0050】得られた反応液をガスクロマトグラフィー
を用いて内部標準法により分析したところ、エチレンイ
ミンの転化率は100%であり、式(3)のn=4〜2
0の生成物が以下の割合で得られた。n=4が0.5重
量%、n=5が1.2重量%、n=6が2.1重量%、
n=7が4.1重量%、n=8が6.5重量%、n=9
が8.5重量%、n=10が11.3重量%、n=11
が12.1重量%、n=12が13.5重量%、n=1
3が11.4重量%、n=14が9.9重量%、n=1
5が7.3重量%、n=16が4.0重量%、n=17
が2.3重量%、n=18が1.1重量%、n=19が
0.6重量%、n=20が0.5重量%、n=21以上
のポリマーが3.1重量%であり、これらの収量は合計
182.0gであった。なお、ピペラジン等の環状アミ
ン類の生成は認められなかった。
When the obtained reaction liquid was analyzed by an internal standard method using gas chromatography, the conversion of ethyleneimine was 100%, and n = 4 to 2 in the formula (3).
0 product was obtained in the following proportions: n = 4 is 0.5% by weight, n = 5 is 1.2% by weight, n = 6 is 2.1% by weight,
n = 7 is 4.1% by weight, n = 8 is 6.5% by weight, n = 9
Is 8.5% by weight, n = 10 is 11.3% by weight, n = 11
Is 12.1% by weight, n = 12 is 13.5% by weight, n = 1
3 is 11.4% by weight, n = 14 is 9.9% by weight, n = 1
5 is 7.3% by weight, n = 16 is 4.0% by weight, n = 17
Is 2.3% by weight, n = 18 is 1.1% by weight, n = 19 is 0.6% by weight, n = 20 is 0.5% by weight, and a polymer of n = 21 or more is 3.1% by weight. And their total yield was 182.0 g. In addition, formation of cyclic amines such as piperazine was not observed.

【0051】実施例4 調圧弁、定量ポンプを備えた内径10.7mm、長さ2
50mmのステンレス製固定床連続反応装置に、実施例
2−aの調製法で調製した触媒4.0gを充填し、アン
モニアで系内を満たした後、100℃に昇温した油浴中
に反応原料を送入する側が下になるように反応装置を設
置した。アンモニア、エチレンジアミン、およびエチレ
ンイミンのモル比がそれぞれ14:0.4:1である原
料混合物を、反応圧力100Kg/cm2で32.0g
/hの速度で供給した。
Example 4 Inner Diameter 10.7 mm, Length 2 with Pressure Regulator and Metering Pump
A 50 mm fixed bed continuous reactor made of stainless steel was charged with 4.0 g of the catalyst prepared by the preparation method of Example 2-a, the system was filled with ammonia, and then reacted in an oil bath heated to 100 ° C. The reactor was installed so that the side where the raw materials were fed was on the bottom. 32.0 g of a raw material mixture in which the molar ratio of ammonia, ethylenediamine, and ethyleneimine is 14: 0.4: 1 at a reaction pressure of 100 Kg / cm 2 .
It was supplied at a rate of / h.

【0052】原料供給開始後4時間目にサンプリング
し、ガスクロマトグラフィーを用いて内部標準法により
分析したところ、エチレンイミンの転化率は94.5%
であり、未反応原料を除いた生成物の内訳は、エチレン
ジアミン35.9重量%、ジエチレントリアミン48.
3重量%、トリエチレンテトラミン12.4重量%、テ
トラエチレンペンタミン2.4重量%、ペンタエチレン
ヘキサミン0.7重量%、ヘキサエチレンヘプタミン以
上のポリマー0.3重量%であり、これらの収量は合計
5.4g/hであった。なお、ピペラジン等の環状アミ
ン類の生成は認められなかった。
Sampling was carried out 4 hours after the start of feeding the raw materials and analyzed by an internal standard method using gas chromatography, the conversion of ethyleneimine was 94.5%.
The content of the product excluding the unreacted raw materials is 35.9% by weight of ethylenediamine and 48.% of diethylenetriamine.
3% by weight, 12.4% by weight of triethylenetetramine, 2.4% by weight of tetraethylenepentamine, 0.7% by weight of pentaethylenehexamine, and 0.3% by weight of a polymer of hexaethyleneheptamine or higher. Was 5.4 g / h in total. In addition, formation of cyclic amines such as piperazine was not observed.

【0053】更に原料供給開始後50時間目に分析した
ところ、エチレンイミンの転化率は93.8%であり、
未反応原料を除いた生成物の内訳は、エチレンジアミン
36.0重量%、ジエチレントリアミン48.7重量
%、トリエチレンテトラミン12.2重量%、テトラエ
チレンペンタミン2.3重量%、ペンタエチレンヘキサ
ミン0.6重量%、ヘキサエチレンヘプタミン以上のポ
リマー0.2重量%であり、これらの収量は合計5.3
g/hであった。なお、ピペラジン等の環状アミン類の
生成は認められなかった。
Further, when analyzed 50 hours after starting the raw material supply, the conversion of ethyleneimine was 93.8%,
The contents of the product excluding unreacted raw materials are as follows: ethylenediamine 36.0% by weight, diethylenetriamine 48.7% by weight, triethylenetetramine 12.2% by weight, tetraethylenepentamine 2.3% by weight, pentaethylenehexamine. 6% by weight, 0.2% by weight of polymer of hexaethyleneheptamine or higher, and the total yield of these was 5.3.
It was g / h. In addition, formation of cyclic amines such as piperazine was not observed.

【0054】比較例1−a 触媒を9〜16メッシュに破砕したシリカアルミナ(日
揮化学製N631HN)2.0gとした以外は実施例1
−aと同様に操作した。
Comparative Example 1-a Example 1 except that 2.0 g of silica-alumina (N631HN manufactured by JGC Chemical Co., Ltd.) crushed to 9 to 16 mesh was used as the catalyst.
Operated in the same manner as for -a.

【0055】結果は、エチレンイミンの転化率は100
%であり、未反応原料を除いた生成物の内訳は、トリエ
チレンテトラミン50.5重量%、テトラエチレンペン
タミン33.2重量%、ペンタエチレンヘキサミン1
5.1重量%、ヘキサエチレンヘプタミン以上のポリマ
ー1.2重量%であり、これらの収量は合計88.8g
であった。反応条件及び結果を表1に示した。
As a result, the conversion of ethyleneimine was 100.
%, And the breakdown of the products excluding unreacted raw materials is triethylenetetramine 50.5% by weight, tetraethylenepentamine 33.2% by weight, pentaethylenehexamine 1
5.1 wt%, 1.2 wt% polymer of hexaethyleneheptamine or higher, the total yield of these is 88.8 g.
Met. The reaction conditions and results are shown in Table 1.

【0056】比較例1−b 比較例1−aで濾別した触媒全量を用いて実施例1−a
と同じ条件で繰り返し反応を行った。
Comparative Example 1-b Example 1-a using the entire amount of the catalyst filtered off in Comparative Example 1-a
The reaction was repeated under the same conditions as above.

【0057】反応の結果、エチレンイミンの転化率は1
00%であり、未反応原料を除いた生成物の内訳はトリ
エチレンテトラミン52.3重量%、テトラエチレンペ
ンタミン34.3重量%、ペンタエチレンヘキサミン1
1.1重量%、ヘキサエチレンヘプタミン以上のポリマ
ー2.3重量%であり、これらの収量は合計89.5g
であった。反応条件及び結果を表1に示した。
As a result of the reaction, the conversion of ethyleneimine was 1
The content of the products excluding unreacted raw materials was 52.3% by weight of triethylenetetramine, 34.3% by weight of tetraethylenepentamine, and 1 of pentaethylenehexamine.
1.1% by weight, 2.3% by weight of polymer of hexaethyleneheptamine or higher, and the total amount of these was 89.5 g.
Met. The reaction conditions and results are shown in Table 1.

【0058】比較例1−c 比較例1−bで濾別した触媒全量を用いて実施例1−a
と同じ条件で繰り返し反応を行った。
Comparative Example 1-c Example 1-a was carried out using the entire amount of the catalyst filtered off in Comparative Example 1-b.
The reaction was repeated under the same conditions as above.

【0059】反応の結果、エチレンイミンの転化率は1
00%であり、未反応原料を除いた生成物の内訳はトリ
エチレンテトラミン58.3重量%、テトラエチレンペ
ンタミン30.7重量%、ペンタエチレンヘキサミン
6.6重量%、ヘキサエチレンヘプタミン以上のポリマ
ー4.4重量%であり、これらの収量は合計91.1g
であった。反応条件及び結果を表1に示した。
As a result of the reaction, the conversion of ethyleneimine was 1
The content of the products excluding unreacted raw materials was 58.3% by weight of triethylenetetramine, 30.7% by weight of tetraethylenepentamine, 6.6% by weight of pentaethylenehexamine, and more than hexaethyleneheptamine. The polymer is 4.4% by weight and their total yield is 91.1 g.
Met. The reaction conditions and results are shown in Table 1.

【0060】[0060]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location // C07B 61/00 300

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】触媒の存在下、下記一般式(1) 【化1】 (式中、R1、R2は各々独立して水素原子、メチル基ま
たはエチル基を表わす。)で示されるアジリジン化合物
と下記一般式(2) 【化2】 (R1、R2は式(1)と同じであり、R3、R4は各々独
立して水素原子、炭素数1〜4のアルキル基または炭素
数2〜4のアミノアルキル基を表わし、mは0〜4の整
数である。)で示されるアンモニアもしくはアミンとを
反応させる下記一般式(3) 【化3】 (R1、R2、R3、R4は式(1)、(2)と同じであ
り、nはmより大きい1〜20の整数である。)で示さ
れるアルキレンアミン類の製造方法において、該触媒が
スメクタイト属に属する層状粘土を架橋処理した触媒で
あることを特徴とするアルキレンアミン類の製造方法。
1. In the presence of a catalyst, the following general formula (1): (In the formula, R 1 and R 2 each independently represent a hydrogen atom, a methyl group or an ethyl group.) And an aziridine compound represented by the following general formula (2): (R 1 and R 2 are the same as those in formula (1), and R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an aminoalkyl group having 2 to 4 carbon atoms, m is an integer of 0 to 4) and is reacted with ammonia or an amine represented by the following general formula (3): (R 1 , R 2 , R 3 , and R 4 are the same as those in formulas (1) and (2), and n is an integer of 1 to 20 that is larger than m.) A method for producing alkyleneamines, wherein the catalyst is a catalyst obtained by subjecting a layered clay belonging to the genus Smectite to a crosslinking treatment.
JP4214873A 1992-08-12 1992-08-12 Production of alkyleneamines Pending JPH0665159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4214873A JPH0665159A (en) 1992-08-12 1992-08-12 Production of alkyleneamines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4214873A JPH0665159A (en) 1992-08-12 1992-08-12 Production of alkyleneamines

Publications (1)

Publication Number Publication Date
JPH0665159A true JPH0665159A (en) 1994-03-08

Family

ID=16662983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4214873A Pending JPH0665159A (en) 1992-08-12 1992-08-12 Production of alkyleneamines

Country Status (1)

Country Link
JP (1) JPH0665159A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112812A (en) * 1995-03-14 2007-05-10 President & Fellows Of Harvard College Stereoselective ring opening reaction
JP2012510354A (en) * 2008-11-30 2012-05-10 ズード−ケミー アーゲー Catalyst carrier, method for producing the same, and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112812A (en) * 1995-03-14 2007-05-10 President & Fellows Of Harvard College Stereoselective ring opening reaction
JP2012510354A (en) * 2008-11-30 2012-05-10 ズード−ケミー アーゲー Catalyst carrier, method for producing the same, and use thereof

Similar Documents

Publication Publication Date Title
US6472561B2 (en) Stable highly active supported copper based catalysts
EP0315189B1 (en) Process for producing an alkylenamine by using a mixing oxide catalyst.
US4584405A (en) Activated carbon catalysts and preparation of linear polyethylene polyamines therewith
CA1330666C (en) Production of ethanolamine by amination of ethylene oxide over acid activated clays
WO1993018017A1 (en) Catalytic reforming of cyclic alkyleneamines
CN1057460A (en) Use metal silicate catalysts to prepare the method for the polyalkylenepolyamines of linear incremental
CN1025733C (en) Process for the catalytic reforming of alkyleneamines to linearly-extended polyalkylenepolyamines
JPH0735356B2 (en) Process for producing acyclic ethylene amines
JPH0665159A (en) Production of alkyleneamines
JPH0649000A (en) Production of monoalkanolamine by animation of alkylene oxide
US5780680A (en) Preparation of amines from olefins over mesoporous oxides having a high surface area
JPH0733718A (en) Production of alkanolamine by amination of alkylene oxide
JPH0665158A (en) Production of alkyleneamines
JPH10324668A (en) Production of amine from olefin by using nu-85 zeolite
JP4201368B2 (en) Process for producing amines from olefins in the presence of boron-MCM-22 or ERB-1 zeolite
JP4201367B2 (en) Process for producing amines from olefins in the presence of MCM-49 or MCM-56 type zeolite
JPH022876A (en) Compound oxide catalyst and production of alkyleneamines with same
EP1552883B1 (en) Alkylation of benzene with propylene using a zeolite catalyst
EP0752411A2 (en) Process for the preparation of amines from olefines using pillared clays
JP2600734B2 (en) Preparation of alkyleneamines
JP2590504B2 (en) Method for producing alkyleneamines
JP3470357B2 (en) Method for producing anilines
WO2023249027A1 (en) Quaternary ammonium salt, organic structure-directing agent, method for producing quaternary ammonium salt, con-type zeolite, method for producing con-type zeolite, catalyst, and method for producing lower olefin
JPH01132550A (en) Production of alkyleneamines by vapor-phase reaction
US5886226A (en) Process for producing amines from olefins on zeolites of types SSZ-33, CIT-1 or mixtures thereof