JPH0665054B2 - Air-cooled fuel cell - Google Patents
Air-cooled fuel cellInfo
- Publication number
- JPH0665054B2 JPH0665054B2 JP58187442A JP18744283A JPH0665054B2 JP H0665054 B2 JPH0665054 B2 JP H0665054B2 JP 58187442 A JP58187442 A JP 58187442A JP 18744283 A JP18744283 A JP 18744283A JP H0665054 B2 JPH0665054 B2 JP H0665054B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- battery
- temperature
- load
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】 (イ)産業状の利用分野 本発明は空冷式燃料電池の温度制御に関するものであ
る。The present invention relates to temperature control of an air-cooled fuel cell.
(ロ)従来技術 電池作動温度を負荷の変動にかかわらず一定(設定温
度)に維持する制御方法は、電池特性及び寿命を向上さ
せることができるので有利である。(B) Prior Art A control method of maintaining the battery operating temperature constant (set temperature) regardless of load fluctuations is advantageous because the battery characteristics and life can be improved.
従来周知のかかる制御方法における基本原理は、第1図
のブロック図に示すように負荷探知部で検出された負荷
量に応じてブロワインバータの周波数を調節し、電池へ
の供給空気量を設定すると同時に電池温度検知部で検知
された温度に応じてダンパを調節し、電池作動温度が設
定値になるよう電池への供給空気温度を設定するもので
あった。As shown in the block diagram of FIG. 1, the basic principle of the conventionally known control method is to adjust the frequency of the blower inverter according to the load amount detected by the load detection unit and set the amount of air supplied to the battery. At the same time, the damper is adjusted according to the temperature detected by the battery temperature detection unit, and the temperature of the air supplied to the battery is set so that the battery operating temperature becomes the set value.
しかしこの制御方式では、負荷変動が比較的小さい場合
電池温度を設定値に維持することは比較的良好に行われ
るが、負荷変動の大きい場合電池温度が設定値に安定化
するにはかなりの時間おくれが生ずる。例えば負荷が1
00%から50%へ急激に変化した場合には、まず50
%負荷に見合ったブロワによる風量が電池本体へ供給さ
れる。However, with this control method, it is relatively good to maintain the battery temperature at the set value when the load fluctuation is relatively small, but it takes a considerable amount of time for the battery temperature to stabilize at the set value when the load fluctuation is large. A bow is generated. For example, the load is 1
If there is a sudden change from 00% to 50%, 50
The air volume by the blower corresponding to the% load is supplied to the battery body.
この時電池本体はその熱量が大きいため、100%負荷
時の反応熱が蓄積されている。このため50%負荷に変
化した初期において、50%負荷時の反応熱と100%
負荷時の前記蓄熱の両方を放熱する必要があるにもかか
わらず50%負荷時の反応熱を取り除くのに必要な風量
となるので電池温度が上昇する。このためダンパを開き
外部空気導入量を増大して電池本体への供給空気温度を
下げることにより、電池温度を設定値(約180℃)に
維持しようとする。At this time, since the battery body has a large amount of heat, the reaction heat at 100% load is accumulated. Therefore, in the early stage when the load changed to 50%, the reaction heat at 100% load and 100%
Although it is necessary to radiate both of the heat storage under load, the air temperature is 50% to remove the reaction heat under load, so the battery temperature rises. For this reason, the damper is opened to increase the amount of external air introduced to lower the temperature of the air supplied to the battery body, thereby attempting to maintain the battery temperature at a set value (about 180 ° C.).
しかし供給空気温度は、無制限に下げられるものではな
く、電極触媒の一酸化炭素被毒による触媒能低下を防止
するために120℃以上であるのが好ましく低くとも1
10℃が限界である。従って過渡的に上昇した電池温度
を設定値まで低下させるには供給空気温度を120℃以
上に保持しながら長時間かけて徐々に行うことになるの
で、第3図特性図に示すように電池温度が安定化するま
で約15分程度かかり、負荷変動に対する電池温度の即
応性に欠けるため電池性能に悪影響を及ぼすという問題
があった。However, the supply air temperature is not infinitely lowered, and is preferably 120 ° C. or higher in order to prevent deterioration of catalytic activity due to carbon monoxide poisoning of the electrode catalyst.
The limit is 10 ° C. Therefore, in order to reduce the battery temperature that has risen transiently to the set value, it is necessary to maintain the supply air temperature at 120 ° C. or higher and gradually perform it over a long period of time. Therefore, as shown in FIG. It takes about 15 minutes to stabilize, and there is a problem that battery performance is adversely affected due to lack of quick response of battery temperature to load fluctuation.
(ハ)発明の目的 本発明の目的は負荷の著しい変動に対しても速やかに電
池温度を設定値に復元し、電池温度の即応性良好な空冷
式燃料電池を提供することである。(C) Object of the invention It is an object of the present invention to provide an air-cooled fuel cell that quickly restores the cell temperature to a set value even when the load fluctuates significantly, and that has a good responsiveness to the cell temperature.
(ニ)発明の構成 本発明は、負荷量に応じて供給空気温度を調節すべくダ
ンパを一義的に設定すると同時に負荷量に応じたブロワ
インバータの基本周波数を算定し、この基本周波数を検
出された電池温度と設定温度の偏差値に応じて補正し、
この補正周波数でブロワインバータを駆動してブロワに
よる供給空気量を設定せしめることを特徴とする空冷式
燃料電池の温度制御にある。(D) Configuration of the Invention The present invention sets the damper uniquely to adjust the supply air temperature according to the load amount, and at the same time calculates the basic frequency of the blower inverter according to the load amount and detects the basic frequency. Corrected according to the deviation between the battery temperature and the set temperature,
The temperature control of the air-cooled fuel cell is characterized in that the blower inverter is driven at this correction frequency to set the amount of air supplied by the blower.
このような本発明温度制御の基本原理が、第2図のブロ
ック図に示されている。The basic principle of such temperature control of the present invention is shown in the block diagram of FIG.
(ホ)実施例 本発明の実施例を第4図について説明する。(E) Embodiment An embodiment of the present invention will be described with reference to FIG.
第4図は、本発明の一例にかかる空冷式燃料電池の概略
図であり、第4図中の空冷式燃料電池は、電池本体
(S)と燃料供給源とを連結する燃料供給路(A)と、
この燃料供給路(A)に設けられ、前記電池本体(S)
に供給される燃料の流量を調節する調整弁(8)と、こ
の調整弁(8)より上流に設けられた導入弁(7)と、
電池本体(S)から排出される燃料排ガスが通過する排
ガス通路(B)と、この排ガス通路(B)の途中に設け
られる燃料排ガスバルブ(9)と、 電池本体と電池本体(S)に電池反応と冷却に用いられ
る空気の供給源とを連結する空気供給路(C)と、電池
本体(S)から排出される空気を通過させ外部に排出さ
せるための空気排出路(D)と、上記空気供給路(C)
と空気排出路(D)とを連結する循環支路(4)と、空
気排出路(D)と循環支路(4)との連結部分に設けら
れるダンパ(2)と、空気排出路(D)の途中でしかも
空気排出路(D)と循環支路(4)との連結部分より下
流側に設けられた排気弁(3)と、空気供給路(C)の
途中でしかも空気供給路(C)と循環支路(4)との連
結部分より上流側に設けられた吸気弁(6)とフィルタ
ー(5)と、空気供給路(C)の途中でしかも空気供給
路(C)と循環支路(4)との連結部分より下流側に設
けられたブロワ(1)と、電池本体(S)に接続された
負荷(L)とを有している。FIG. 4 is a schematic view of an air-cooled fuel cell according to an example of the present invention. The air-cooled fuel cell in FIG. 4 has a fuel supply path (A) connecting a cell body (S) and a fuel supply source. )When,
Provided in the fuel supply path (A), the cell body (S)
A regulating valve (8) for regulating the flow rate of fuel supplied to the valve, and an introduction valve (7) provided upstream of the regulating valve (8),
An exhaust gas passage (B) through which the fuel exhaust gas discharged from the battery body (S) passes, a fuel exhaust gas valve (9) provided in the middle of the exhaust gas passage (B), a battery body and a battery body (S) An air supply path (C) connecting a supply source of air used for reaction and cooling, an air discharge path (D) for passing the air discharged from the battery body (S) and discharging the air to the outside, Air supply path (C)
And the air discharge path (D), a circulation branch (4), a damper (2) provided at a connecting portion between the air discharge path (D) and the circulation branch (4), and an air discharge path (D). ) And an exhaust valve (3) provided on the downstream side of the connecting portion of the air discharge path (D) and the circulation branch path (4), and an air supply path (C) in the middle of the air supply path (C). Intake valve (6) and filter (5) provided on the upstream side of the connecting portion between C) and the circulation branch (4), and in the middle of the air supply channel (C) and in circulation with the air supply channel (C). It has a blower (1) provided on the downstream side of the connection portion with the branch (4) and a load (L) connected to the battery body (S).
上記、ブロワ(1)は電池本体(S)へ供給される空気
の量を調節するものであり、上記ダンパ(2)は電池本
体(S)から排出される空気の外部に排出される流量及
び循環支路への流量の比率を変えて新鮮空気吸入量を調
節するものである。The blower (1) controls the amount of air supplied to the battery body (S), and the damper (2) controls the flow rate of the air discharged from the battery body (S) to the outside. The amount of fresh air suction is adjusted by changing the ratio of the flow rate to the circulation branch.
このような空冷式燃料電池では、反応空気と冷却に必要
な空気は空気供給源から空気供給通路(C)を通ってブ
ロワ(1)により電池本体(S)に供給される。この
際、上記ブロワ(1)により電池本体(S)に供給され
る空気の供給量は、ブロワインバータ(25)の周波数
を変化させると、これに接続されたモータ(26)の回
転数が変化し、ブロワ(1)の風量が変化し供給量も変
化するようになっている。In such an air-cooled fuel cell, reaction air and air required for cooling are supplied from the air supply source to the cell body (S) by the blower (1) through the air supply passage (C). At this time, when the frequency of the blower inverter (25) is changed, the rotation amount of the motor (26) connected to the blower (1) changes the frequency of the air supplied to the battery main body (S). However, the air volume of the blower (1) changes and the supply amount also changes.
また、電池本体(S)より排出された空気は、ダンパ
(2)により一部が排気弁(3)を通って外部へ排出さ
れると共に残部が循環支路(4)に入り、前記排出空気
に見合ってフィルター(5)及び吸気弁(6)より吸引
された新鮮空気と共に電池本体(S)に還流する。Further, a part of the air discharged from the battery body (S) is discharged to the outside through the exhaust valve (3) by the damper (2) and the remaining part enters the circulation branch (4), and the discharged air is discharged. Corresponding to the condition (1), it is returned to the battery body (S) together with the fresh air sucked from the filter (5) and the intake valve (6).
一方、燃料ガス例えば改質水素ガスは、燃料供給通路
(A)に設けられた導入弁(7)及び調整弁(8)を通
って電池本体(S)へ供給され、前記空気中の酸素と共
に電極反応に使用されて後、導出弁(9)より排出され
る。On the other hand, the fuel gas such as reformed hydrogen gas is supplied to the battery main body (S) through the introduction valve (7) and the regulating valve (8) provided in the fuel supply passage (A), and together with the oxygen in the air. After being used for electrode reaction, it is discharged from the outlet valve (9).
前記ブロワ(1)による電池本体(S)への空気供給
量、ダンパ(2)による電池本体(S)から排出された
空気の外部へ排出される流量及び循環支路への流量の比
率及び燃料調節弁(8)による燃料の流量はプロセッシ
ングユニット(PU)、メモリ(ROM)及びインター
フェース(I/O)で構成されたマイクロコンピュータ
(10)により制御される。Amount of air supplied to the battery main body (S) by the blower (1), a flow rate of air discharged from the battery main body (S) by the damper (2) to the outside, a flow rate to a circulation branch, and fuel. The flow rate of fuel by the control valve (8) is controlled by a microcomputer (10) including a processing unit (PU), a memory (ROM) and an interface (I / O).
インターフェース(I/O)には、負荷(L)への通電
量を分流器などの電流検出器(11)により、又電池温
度を熱電対などの温度検出器(12)により夫々検知
し、これら各検知信号は、夫々A/D変換器(13)
(14)でデジタル信号として入力される。The interface (I / O) detects the amount of electricity supplied to the load (L) by a current detector (11) such as a shunt and the battery temperature by a temperature detector (12) such as a thermocouple. The detection signals are respectively sent to the A / D converter (13).
It is inputted as a digital signal in (14).
一方、供給空気流量及び導入燃料流量がビトー管などの
流量検出器(15)(16)で夫々空気圧として検出さ
れ、空電変換器(17)(18)で夫々アナログ変換さ
れて後、A/D変換器(19)(20)を通りでデジタ
ル信号として入力される。On the other hand, the supply air flow rate and the introduced fuel flow rate are detected as air pressures by the flow rate detectors (15) (16) such as Vito tubes, and are analog-converted by the air-electric converters (17) (18) respectively, and then A / It is inputted as a digital signal through the D converters (19) and (20).
メモリ(ROM)内には、負荷に対応した燃料流量設定
値、ダンパ設定値及びブロワインバータ(25)の基本
周波数設定値を夫々定める基本式を予め記憶させてお
き、負荷検出器(11)からの入力信号に応じて夫々該
当する前記基本式をメモリ(ROM)から読み出し、プ
ロセッシングユニット(PU)で演算して前記夫々の設
定値を定める。In the memory (ROM), basic formulas for determining the fuel flow rate setting value, the damper setting value, and the basic frequency setting value of the blower inverter (25) corresponding to the load are stored in advance, and the load detector (11) outputs the basic equations. The corresponding basic equations are read from the memory (ROM) and calculated by the processing unit (PU) to determine the respective set values.
燃料流量は読み出された基本式af(x)(f(x)は
負荷xの関数、aは定数)で演算して定められるが、こ
の流量は流量検出器(16)で検知された流量値をフィ
ードバックしながら、燃料調節弁(8)を制御する。こ
のときインターフェース(I/O)からの出力信号はD
/A変換器(21)及び電空変換器(22)により空気
圧に変換して燃料調節弁(8)を制御する。The fuel flow rate is calculated and determined by the read basic equation af (x) (f (x) is a function of load x, and a is a constant). This flow rate is the flow rate detected by the flow rate detector (16). The fuel control valve (8) is controlled while feeding back the value. At this time, the output signal from the interface (I / O) is D
The A / A converter (21) and the electropneumatic converter (22) convert the air pressure to control the fuel control valve (8).
ダンパ(2)は、負荷に応じて読み出された基本式bf
(x)(bは定数)に負荷値xを代入してプロセッシン
グユニット(PU)で演算し、その設定値になるように
インターフェース(I/O)からパルス信号をパルスモ
ータ(23)に送ることにより調節される。The damper (2) uses the basic formula bf read according to the load.
(X) (b is a constant) Substitute the load value x for calculation in the processing unit (PU), and send a pulse signal from the interface (I / O) to the pulse motor (23) so as to reach the set value. Is adjusted by.
具体的には、負荷が大きくなると、ダンパは、排出され
る空気の流量を高めるように調節される。これにより、
負荷が大きくなることにより、反応熱が大きくなり、電
池本体(S)の温度が上昇しても、外部からの新鮮空気
の流入が増大するので、電池本体(S)への供給空気の
温度が下がり冷却能力が向上する。Specifically, as the load increases, the damper is adjusted to increase the flow rate of discharged air. This allows
Even if the heat of reaction increases due to the increase in load and the temperature of the battery body (S) rises, the inflow of fresh air from the outside increases, so the temperature of the supply air to the battery body (S) increases. Cooling capacity is improved.
逆に、負荷が小さくなると、ダンパは、排出される流量
比率をさげるように調節される。これにより、負荷が減
少し、反応熱が低下するような場合は、新鮮空気の流入
が抑えられるので、電池本体(S)への供給空気温度が
上昇し、冷却能力が抑えられる。On the contrary, when the load becomes smaller, the damper is adjusted so as to reduce the discharged flow rate ratio. As a result, when the load decreases and the reaction heat decreases, the inflow of fresh air is suppressed, so the temperature of the air supplied to the battery main body (S) rises, and the cooling capacity is suppressed.
このようにして負荷量に応じて循環・排出比率を変え新
鮮空気取入量を制御し、電池本体(S)への供給空気温
度が設定される。In this way, the circulation / discharge ratio is changed according to the load amount to control the fresh air intake amount, and the temperature of the air supplied to the battery body (S) is set.
ブロワインバータ(25)の周波数は、同じく負荷に応
じて読み出された基本式cf(x)(cは定数)により
演算して基本周波数(FR)を定める。この基本周波数
(FR)は、温度検出器(12)から入力された信号に
基づき電池温度が設定値に対してどれくらいずれている
か(温度偏差値)を判定し、その判定結果に応じて補正
をすることにより決定される。Frequency of the blower inverter (25), like the basic type cf (x) read in accordance with the load (c is a constant) defines the fundamental frequency (F R) and calculates by. This basic frequency (F R ) determines how much the battery temperature is relative to the set value (temperature deviation value) based on the signal input from the temperature detector (12), and corrects it according to the determination result. It is determined by
基本周波数(FR)を補正する周波数制御値(ΔM)
は、 ΔM=lde/dt+me+nde2/dt2・・・(A) (ただし、e=温度偏差値=(電池設定温度)−(電池
検出温度)l、m、nは定数) で表されるPID制御演算を行うことによって得られ
る。Frequency control value for correcting the fundamental frequency (F R) (ΔM)
Is a PID represented by ΔM = lde / dt + me + nde 2 / dt 2 (A) (where, e = temperature deviation value = (battery set temperature) − (battery detection temperature) l, m, and n are constants) It is obtained by performing a control calculation.
上記(A)より得られたΔMを基本周波数(FR)に加
算することにより周波数が補正される。The frequency is corrected by adding ΔM obtained from the above (A) to the fundamental frequency (F R ).
このようにして補正された周波数信号(F←FR+Δ
M)は、インターフェース(I/O)からD/A変換器
(24)を通ってインバータ(25)に入力される。こ
の入力信号に応じてモータ(26)の回転が制御され、
ブロワ(1)により供給空気量が調整される。In this way, the corrected frequency signal (F ← F R + Δ
M) is input from the interface (I / O) to the inverter (25) through the D / A converter (24). The rotation of the motor (26) is controlled according to this input signal,
The blower (1) adjusts the supply air amount.
この供給空気量は、流量検知器(15)で検知された流
量値を前記燃料流量の場合と同様にインターフェースに
入力してフィードバックをかけながら、設定値に制御さ
れる。This supply air amount is controlled to a set value by inputting the flow rate value detected by the flow rate detector (15) to the interface and feeding it back as in the case of the fuel flow rate.
上記したようなブロワの流量調整における、具体的なイ
ンバータの周波数の補正は以下のように行われる。In the blower flow rate adjustment as described above, the specific frequency correction of the inverter is performed as follows.
電池設定温度より電池検出温度の方が高い場合、ΔMを
基本周波数(FR)に加算することにより周波数が増加
する方向に補正され、逆に、電池設定温度より電池検出
温度の方が低い場合、ΔMは負の値となり、ΔMを基本
周波数(FR)に加算することにより周波数が減少する
方向に補正される。(勿論温度差がない場合前記ΔM=
0となる。) このような補正がなされることにより、電池設定温度よ
り電池検出温度の方が高い場合、電池本体(S)への空
気の供給量は増加し冷却効果が増大し、電池温度を下げ
る方向に動作が起こる事になる。If higher in the battery temperature detected from the battery set temperature is corrected in the direction in which the frequency is increased by adding the ΔM to the fundamental frequency (F R), if conversely, the direction of the battery temperature detected from the battery set temperature lower , .DELTA.M becomes a negative value, the frequency is corrected in a decreasing direction by adding a fundamental frequency (F R) the .DELTA.M. (Of course, if there is no temperature difference, ΔM =
It becomes 0. By performing such correction, when the battery detection temperature is higher than the battery set temperature, the amount of air supplied to the battery body (S) increases, the cooling effect increases, and the battery temperature decreases. Action will occur.
一方、電池設定温度より電池検出温度の方が低い場合、
電池本体(S)への空気の供給量は減少し冷却効果が低
下し、電池温度を上げる方向に動作が起こる事になる。On the other hand, if the battery detection temperature is lower than the battery set temperature,
The amount of air supplied to the battery body (S) is reduced, the cooling effect is reduced, and the operation occurs in the direction of increasing the battery temperature.
このような制御を行う本発明の空冷式燃料電池では負荷
が大きく変動した場合にも第3図に示すように電池温度
は2〜3分の短時間で設定温度に復元する。In the air-cooled fuel cell of the present invention which performs such control, the cell temperature is restored to the set temperature in a short time of 2 to 3 minutes even when the load largely changes, as shown in FIG.
第5図は前記制御を実行するフローチャートで、図中P
1〜P12はフローチャートの各ステップを示す。このフ
ローは定周期例えば10回/secで行われる。FIG. 5 is a flow chart for executing the above-mentioned control.
1 to P 12 indicate the steps of the flowchart. This flow is performed at a fixed cycle, for example, 10 times / sec.
今P2で燃料電池の諸条件が規定値に達し通常運転を始
めると、P3で負荷及び電池温度を入力し、P4で入力
された負荷量が前回入力された負荷量と等しいかどうか
を判定する。ただし負荷の初期値(F)は予め或る値が
入力されている。When conditions of the fuel cell at P 2 now starts normal operation reaches a predetermined value, enter the load and the battery temperature at P 3, whether loading input in P 4 is equal to the load that is input previous To judge. However, a certain value is input in advance as the initial value (F) of the load.
負荷が等しくない場合、P5でその負荷に応じた燃料流
量値(Ff)を設定し、P6でその負荷に応じたダンパ
の角度を設定し、さらにP7でその負荷に応じた基本周
波数(FR)を算定する。P9で入力された電池温度の
設定温度に対する偏差値(e)にもとづいて前記
(FR)を補正する周波数制御値(ΔM)を設定し、P
10において、P7で設定された(FR)とP9で設定さ
れた(ΔMとを加算して補正周波数(F←FR+ΔM)
を定める。If the load is not equal, setting a fuel flow rate corresponding to the load P 5 a (Ff), and sets the angle of the damper in accordance with the load P 6, the fundamental frequency, further in accordance with the load P 7 (F R) to calculate the. Set deviation for the set temperature of the battery temperature as input P 9 frequency control value for correcting the (F R) based on (e) a (ΔM), P
In 10 , the correction frequency (F ← F R + ΔM) is obtained by adding (F R ) set in P 7 and (ΔM) set in P 9
Determine.
負荷が等しい場合には、P8で周波数の記号をFからF
Rに転送して後、前記と同様P9、P10で温度偏差値
(e)にもとづいて周波数を補正する。If the loads are equal, the frequency symbol is changed from F to F at P 8.
After transferring to R , the frequency is corrected based on the temperature deviation value (e) at P 9 and P 10 as described above.
以上の結果をP11で(I/O)の出力レジスタに移し、
P12で次の制御プログラムにもどる。The above result is transferred to the output register of (I / O) at P 11 ,
In P 12 Back to the next control program.
(ヘ)発明の結果 本発明によれば、電池の負荷量に応じてダンパによる電
池本体から排出された空気の外部へ排出される流量及び
循環支路への流量の比率を設定すると共に、ブロワイン
バータの基本周波数を算定し、この基本周波数を検出さ
れた電池温度と設定温度との偏差値に応じて補正し、こ
の補正周波数に基づいてインバータ周波数を決定し、ブ
ロワによる送風量を設定するものであるから、負荷が大
きく変化した場合にも電池温度を速やかに設定値に復元
して一定に維持することができるため、電池を最適の条
件で運転することができる。(F) Result of the Invention According to the present invention, the blower is set with the ratio of the flow rate of the air discharged from the battery main body by the damper to the outside and the flow rate to the circulation branch according to the load amount of the battery. Calculates the basic frequency of the inverter, corrects this basic frequency according to the deviation between the detected battery temperature and the set temperature, determines the inverter frequency based on this corrected frequency, and sets the blower volume by the blower. Therefore, even when the load changes significantly, the battery temperature can be quickly restored to the set value and kept constant, so that the battery can be operated under optimum conditions.
さらにダンパによる電池本体から排出された空気の外部
へ排出される流量及び循環支路への流量の比率は負荷に
より一義的に設定され電池温度はブロワの風量を変化し
て設定値に維持するので、従来方式のように、電池への
供給空気温度を下げすぎることなく電池の冷却を行うた
め、触媒能の低下を招くことないなど、電池特性と電池
寿命の良好な燃料電池を提供することができる。Furthermore, the ratio of the flow rate of the air discharged from the battery body to the outside by the damper and the flow rate to the circulation branch is uniquely set by the load, and the battery temperature changes the air flow of the blower and maintains the set value. As in the conventional method, the battery is cooled without excessively lowering the temperature of the air supplied to the battery, so that it is possible to provide a fuel cell with good battery characteristics and battery life, such as not causing a drop in catalytic performance. it can.
第1図及び第2図は燃料電池における温度制御の基本原
理を示すブロック図で、第1図は従来の温度制御の場
合、第2図は本発明の温度制御の場合である。第3図は
負荷変動時における従来の温度制御と本発明の温度制御
の復元性を比較して示す図、第4図は本発明の空冷式燃
料電池の系統図、第5図は本発明の空冷式燃料電池の制
御のフローチャートである。 (S)電池本体、(L)負荷、(1)ブロワ、(2)ダ
ンパ、(10)マイクロコンピュータ、(11)負荷検
出器、(12)電池温度検出器、(15)空気流量検出
器、(13)、(14)、(19)A/D変換器、(2
1)、(24)D/A変換器、(17)空電変換器、
(22)電空変換器、(25)インバータ。1 and 2 are block diagrams showing the basic principle of temperature control in a fuel cell. FIG. 1 shows the case of the conventional temperature control, and FIG. 2 shows the case of the temperature control of the present invention. FIG. 3 is a diagram showing a comparison of the recoverability of the conventional temperature control and the temperature control of the present invention when the load changes, FIG. 4 is a system diagram of the air-cooled fuel cell of the present invention, and FIG. It is a flow chart of control of an air cooling type fuel cell. (S) Battery body, (L) Load, (1) Blower, (2) Damper, (10) Microcomputer, (11) Load detector, (12) Battery temperature detector, (15) Air flow detector, (13), (14), (19) A / D converter, (2
1), (24) D / A converter, (17) static converter,
(22) Electro-pneumatic converter, (25) Inverter.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 誠 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 田島 収 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Makoto Yamada 2-18 Keihan Hon-dori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Ta Osamu 2-18-2 Keihan-hondori, Moriguchi City, Osaka Sanyo Denki Within the corporation
Claims (1)
気の供給源とを連結する空気供給路と、 電池本体から排出される空気排ガスを通過させ外部に排
出させるための空気排出路と、 上記空気供給路と空気排出路とを連結する循環支路と、 空気排出路と循環支路との連結部に設けられ、電池本体
から排出される排空気の外部に排出される流量及び循環
支路への流量の比率を調整するダンパと、 空気供給路の循環支路との連結部分より下流側に設けら
れ、電池本体に供給される空気の量を調節し、ブロワイ
ンバータの周波数により流量が決定されるブロワと、 電池本体に接続された負荷と、 上記電池本体の温度を検出する温度検出器と、 上記電池本体に接続された負荷の大きさを検出する負荷
検出器と、 ブロワによる空気の供給流量を検出する空気流量検出器
と、 上記負荷検出器で検出された負荷を参照し、負荷が大き
くなると排出路への流量比率を高め、負荷が小さくなる
と排出路への流量比率をさげるようにダンパの調整を行
う第一の制御手段と、 上記負荷検出手段により検出された負荷に基づいてブロ
ワインバータの基本周波数を算出し、さらに電池温度検
出器によって検出された電池検出温度を考慮した下記に
示す式によって補正値ΔMの算出を行い、 ΔM=de/dt+me+nde2/dt2 (上記e=(設定温度)−(電池検出温度)、、m、
nは定数) 上記式で算出された補正値ΔMを、上記基本周波数に加
えることによって、基本周波数の補正を行い、電池検出
温度が設定温度より高い場合は、周波数を増加させ、電
池検出温度が設定温度より低い場合は、周波数を減少さ
せ、この補正された周波数を基に決定されるブロワの流
量と、上記空気流量検出器によって検出された流量に基
づいてブロワの流量を決定する第二の制御手段と、 を有することを特徴とする空冷式燃料電池。1. An air supply path for connecting a battery main body with an air supply source used for battery reaction and cooling, and an air exhaust path for passing air exhaust gas discharged from the battery main body to the outside. The circulation branch that connects the air supply path and the air discharge path, and the flow rate and the circulation branch of the exhaust air discharged from the battery body, which is provided at the connecting portion between the air discharge path and the circulation branch. It is provided on the downstream side of the connection between the damper that adjusts the ratio of the flow rate to the passage and the circulation branch of the air supply passage, and adjusts the amount of air that is supplied to the battery body. The blower to be determined, the load connected to the battery body, the temperature detector that detects the temperature of the battery body, the load detector that detects the magnitude of the load connected to the battery body, and the air by the blower. Check the supply flow rate of Adjust the damper to increase the flow rate to the discharge path when the load increases and decrease the flow rate to the discharge path when the load decreases as the load increases. Based on the first control means for performing the above, the basic frequency of the blower inverter is calculated based on the load detected by the load detection means, and by the formula shown below in consideration of the battery detection temperature detected by the battery temperature detector. The correction value ΔM is calculated, and ΔM = de / dt + me + nde 2 / dt 2 (the above e = (set temperature) − (battery detection temperature), m,
n is a constant) The basic frequency is corrected by adding the correction value ΔM calculated by the above equation to the basic frequency. When the battery detection temperature is higher than the set temperature, the frequency is increased to increase the battery detection temperature. If the temperature is lower than the set temperature, the frequency is decreased, and the flow rate of the blower is determined based on the corrected frequency and the flow rate detected by the air flow rate detector. An air-cooled fuel cell comprising: a control unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58187442A JPH0665054B2 (en) | 1983-10-05 | 1983-10-05 | Air-cooled fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58187442A JPH0665054B2 (en) | 1983-10-05 | 1983-10-05 | Air-cooled fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6079675A JPS6079675A (en) | 1985-05-07 |
JPH0665054B2 true JPH0665054B2 (en) | 1994-08-22 |
Family
ID=16206132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58187442A Expired - Fee Related JPH0665054B2 (en) | 1983-10-05 | 1983-10-05 | Air-cooled fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0665054B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9029034B2 (en) | 2011-02-18 | 2015-05-12 | Altergy Systems | Integrated recirculating fuel cell system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0789494B2 (en) * | 1986-05-23 | 1995-09-27 | 株式会社日立製作所 | Combined power plant |
JPS63314769A (en) * | 1987-06-18 | 1988-12-22 | Fuji Electric Co Ltd | Fuel cell power generation unit |
JP4686812B2 (en) * | 1999-11-17 | 2011-05-25 | 株式会社エクォス・リサーチ | Fuel cell device |
JP4686813B2 (en) * | 1999-11-17 | 2011-05-25 | 株式会社エクォス・リサーチ | Fuel cell device |
GB2411043B (en) * | 2004-02-10 | 2007-09-19 | Ceres Power Ltd | A method and apparatus for operating an intermediate-temperature solid-oxide fuel cell stack |
-
1983
- 1983-10-05 JP JP58187442A patent/JPH0665054B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9029034B2 (en) | 2011-02-18 | 2015-05-12 | Altergy Systems | Integrated recirculating fuel cell system |
US9466847B2 (en) | 2011-02-18 | 2016-10-11 | Altergy Systems | Integrated recirculating fuel cell methods |
US10115984B2 (en) | 2011-02-18 | 2018-10-30 | Altergy Systems | Integrated recirculating open cathode fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JPS6079675A (en) | 1985-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3671898B2 (en) | Fuel cell system | |
US5991670A (en) | Power control system for a fuel cell powered vehicle | |
US7968241B2 (en) | Fuel cell system and method of controlling gas pressure in fuel cell system | |
JP2008505450A (en) | Fuel purge control of a fuel cell in response to operating conditions of a recirculating fuel blower | |
JP3460897B2 (en) | Fuel cell generator | |
CN110649288A (en) | Air supply system and method for proton exchange membrane fuel cell | |
KR100547638B1 (en) | Controllers for Fuel Cells | |
JPH0665054B2 (en) | Air-cooled fuel cell | |
JP4951862B2 (en) | Fuel cell system | |
JP2002246051A (en) | Controller for fuel cell system | |
JP6992420B2 (en) | Fuel cell system and its control method | |
JP5358947B2 (en) | FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM | |
JPWO2014103589A1 (en) | Fuel cell system and control method thereof | |
JP3446465B2 (en) | Raw fuel flow control device for fuel cell power plant | |
US7851099B2 (en) | Fuel cell system and control method for fuel cell | |
JP2002313390A (en) | Fuel cell system | |
JP3517260B2 (en) | Fuel cell power generator and control method for fuel cell power generator | |
JPS6356672B2 (en) | ||
JPS6356673B2 (en) | ||
JP2007059348A (en) | Fuel cell system and starting method of fuel cell system | |
WO2015022836A1 (en) | Fuel cell system and fuel cell system control method | |
JP5266626B2 (en) | Fuel cell system | |
JP2007165019A (en) | Fuel cell system | |
JPS6229868B2 (en) | ||
JPS60216467A (en) | Fuel cell power generating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |