JPH0664975A - Production of ceramic composite material - Google Patents

Production of ceramic composite material

Info

Publication number
JPH0664975A
JPH0664975A JP23887892A JP23887892A JPH0664975A JP H0664975 A JPH0664975 A JP H0664975A JP 23887892 A JP23887892 A JP 23887892A JP 23887892 A JP23887892 A JP 23887892A JP H0664975 A JPH0664975 A JP H0664975A
Authority
JP
Japan
Prior art keywords
ceramic
ceramic materials
materials
composite material
heat shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23887892A
Other languages
Japanese (ja)
Inventor
Masakazu Kubo
昌和 久保
Hiroyuki Kamata
博之 鎌田
Akio Hosaka
明夫 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP23887892A priority Critical patent/JPH0664975A/en
Publication of JPH0664975A publication Critical patent/JPH0664975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic composite material by monolithic sintering without causing any crack. CONSTITUTION:The objective composite material is obtained by mutual laminating of two kinds of ceramic materials 1, 2 followed by sintering. In this case, the respective thermally shrinking behaviors of the above materials are made as equal as possible. A material 3 as stress-relaxing layer is put in between the ceramic materials 1 and 2 so as to relax the stress developed between the materials 1 and 2 during the sintering. The material 3 is extremely different in thermally shrinking behavior from the above materials 1, 2 so as to be liable to be cracked during the sintering. Owing to the material 3's cracking in the sintering process, no cracks will be developed in the ceramic materials 1, 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は焼結時の熱収縮挙動が異
なるセラミック材料同士を接合してセラミック複合材料
を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic composite material by joining ceramic materials having different heat shrinkage behaviors during sintering.

【0002】[0002]

【従来の技術】セラミック材料を焼成して緻密なものに
する際には、一般的に約20%(体積比で50%)の収
縮(熱収縮)がある。図7は、異種のセラミック材料1
と2の焼成前の状態(グリーンの状態)(イ)から焼成
中(ロ)、焼成後(ハ)の熱収縮状況を示すもので、セ
ラミック材料1,2は焼成することによって大幅に熱収
縮する。この収縮(熱収縮)の挙動は、素材の化学的性
質、粒径分布等に依存する。そのため、上記異種のセラ
ミック材料1,2を、図8(イ)に示す焼成前の状態で
貼り合わせ、次いで、焼成すると、(ロ)に示す如く、
多くの場合、一方のセラミック材料1で矢印の如く圧縮
応力が発生し、他方のセラミック材料2で矢印の如く引
張応力が発生する如く、熱収縮挙動の相違により発生す
る応力により、焼成後は異種のセラミック材料1,2に
クラックが生じたり、又は破損したりする問題がある。
2. Description of the Related Art When firing a ceramic material to make it dense, there is generally about 20% (50% by volume) shrinkage (heat shrinkage). FIG. 7 shows a heterogeneous ceramic material 1.
It shows the state of heat shrinkage of the ceramic materials 1 and 2 before firing (green state) (b) to during firing (b) and after firing (c). To do. The behavior of this shrinkage (heat shrinkage) depends on the chemical properties of the material, the particle size distribution, and the like. Therefore, when the different types of ceramic materials 1 and 2 are bonded to each other in a state before firing shown in FIG. 8A and then fired, as shown in FIG.
In many cases, one ceramic material 1 produces a compressive stress as indicated by an arrow and the other ceramic material 2 produces a tensile stress as indicated by an arrow. There is a problem that the ceramic materials 1 and 2 are cracked or damaged.

【0003】かかる異種のセラミック材料をグリーンの
状態で貼り合わせて焼成するときに発生する応力を緩和
するために、従来では、異種のセラミック材料同士の接
合界面に、熱収縮が段階的に又は無段階に変化するよう
に異なる材料(傾斜材料)を何層にも重ねて介在させ、
異種のセラミック材料間に発生する応力を緩和すること
が行われている。
In order to alleviate the stress generated when such different kinds of ceramic materials are bonded and fired in a green state, conventionally, thermal contraction is gradually or absent at the joint interface between different kinds of ceramic materials. Different materials (gradient materials) are layered in layers so that they change in stages,
Relief of stress generated between different kinds of ceramic materials has been performed.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記従来の
方法では、異種のセラミック材料間に異なる材料を何層
にも介在させるため、応力が急激に作用することはない
が、異なる材料を何層にも重ねて介在させて段階的に熱
収縮を変化させるものであるため、介在する材料が多
く、複雑となっている。
However, in the above-described conventional method, since different materials are interposed between different kinds of ceramic materials, stress does not act suddenly, but different layers of different materials are used. In addition, since the heat shrinkage is changed stepwise by interposing them in layers, many materials intervene and are complicated.

【0005】そこで、本発明は、異なる材料を何層にも
重ねて用いることなく、熱収縮の相違により生じる応力
を緩和できるセラミック複合材料の製造方法を提供しよ
うとするものである。
Therefore, the present invention is intended to provide a method for producing a ceramic composite material capable of relaxing the stress caused by the difference in heat shrinkage without using different materials in multiple layers.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、焼成時の熱収縮挙動を極力近づけた異な
るセラミック材料の間に、該セラミック材料の熱収縮挙
動とは極端に違う熱収縮挙動を示す材料の薄板を応力緩
和層として挟み込み、次いで、これらを焼成し一体焼結
させて複合材料とする方法とする。
In order to solve the above-mentioned problems, the present invention is extremely different from the heat-shrinking behavior of the ceramic material between different ceramic materials whose heat-shrinking behavior during firing is as close as possible. A thin plate of a material exhibiting heat shrinkage is sandwiched as a stress relaxation layer, and then these are fired and integrally sintered to obtain a composite material.

【0007】[0007]

【作用】熱収縮挙動が近いセラミック材料間の応力緩和
層としての材料は極く薄くて割れ易いものであるため、
焼成中に微少クラックが生じることによって応力が緩和
され、上記接合すべきセラミック材料には割れが生じな
い。
[Function] Since the material as the stress relaxation layer between the ceramic materials having similar thermal contraction behavior is extremely thin and easily cracked,
The stress is relieved by the generation of minute cracks during firing, and the ceramic materials to be bonded do not crack.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の実施例を示すもので、粒径
等を調節することによって熱収縮挙動を極力近づけた2
つの異なるセラミック材料1と2同士を貼り合わせて一
体構造の複合材料を製造する場合において、上記異種の
セラミック材料1と2同士の接合界面に、図1の(イ)
の如く、上記両セラミック材料1,2の熱収縮挙動とは
極端に異なる熱収縮挙動を示す材料3を、応力緩和層と
して薄板状にして挟み込み、次いで、これを1300℃
〜1400℃で焼成し、上記異種のセラミック材料1,
2を一体焼結して、セラミック材料1と2からなる複合
材料を作るようにする。
FIG. 1 shows an embodiment of the present invention, in which the heat shrinkage behavior is made as close as possible by adjusting the particle size and the like.
When two different ceramic materials 1 and 2 are bonded to each other to manufacture a composite material having an integrated structure, the (a) of FIG.
As described above, the material 3 exhibiting a heat shrinkage behavior extremely different from the heat shrinkage behaviors of the above-mentioned ceramic materials 1 and 2 is sandwiched in the form of a thin plate as a stress relaxation layer, and then the material is placed at 1300 ° C.
〜1400 ℃ fired, the different ceramic materials 1,
2 is sintered together to make a composite material consisting of ceramic materials 1 and 2.

【0010】上記において、応力緩和層としての材料3
は、接合しようとするセラミック材料1,2とは熱収縮
挙動が極端に違うことから焼成時に割れ易く、そのた
め、図1の(ロ)で示す焼成の途中段階では、セラミッ
ク材料1と2が異なる熱収縮挙動をする際に、その間に
ある材料3が伸ばされたり、縮められたりして、破損し
たり、微小なクラックが入ったりすることにより、接合
しようとするセラミック材料1,2間に生じようとする
応力を緩和することができ、図1の(ハ)に示す焼成後
は、セラミック材料1と2には破損がなく、応力緩和材
料3を挟んで一体焼結されたセラミック複合材料Iが得
られる。
In the above, the material 3 as the stress relaxation layer
Of the ceramic materials 1 and 2 to be joined are extremely different from each other in thermal shrinkage behavior, and therefore, the ceramic materials 1 and 2 are different from each other in the middle stage of the baking shown in FIG. 1B. When the material 3 in the heat shrinking behavior is stretched or contracted, the material 3 is broken or has small cracks, so that it is generated between the ceramic materials 1 and 2 to be joined. Thus, the ceramic composite materials I and 2 which have been calcined as shown in (c) of FIG. Is obtained.

【0011】上記応力緩和層として用いる材料3につい
ては、熱収縮挙動を近づけたセラミック材料1及び2と
化学組成が同じであるが粒径等を調整して熱収縮挙動を
変えたものを用いたり、あるいは、セラミック材料1,
2とは化学組成の異なるものを用いるようにする。
As the material 3 used as the stress relaxation layer, one having the same chemical composition as the ceramic materials 1 and 2 which have similar thermal contraction behaviors but having different thermal contraction behaviors by adjusting the grain size or the like may be used. , Or ceramic material 1,
A chemical composition different from that of 2 should be used.

【0012】次に、具体的に説明すると、図2に温度と
熱収縮量との関係を示す。図中、曲線aはセラミック材
料1の熱収縮挙動を、曲線bはセラミック材料2の熱収
縮挙動を、又、曲線cは材料3の熱収縮挙動を示すもの
である。図2の如く、貼り合わせて一体焼結しようとす
るセラミック材料1と2は、熱収縮挙動を極力近づけた
ものを用いるが、その熱収縮の違いは3%以内、好まし
くは1%以内のものとする。次に、上記セラミック材料
1,2と両者の間に挟み込む応力緩和層として用いる材
料3とは、熱収縮が5〜20%の違いがあるものを用い
るようにする。5%以下では、セラミック材料1及び2
に近いものとなり、割れによる応力の緩和の効果が薄
く、又、20%以上では、一般的にセラミック材料の収
縮量が約20%であり、これ以上の収縮はないからであ
る。
Explaining it concretely, FIG. 2 shows the relationship between temperature and the amount of heat shrinkage. In the figure, a curve a shows the heat shrinkage behavior of the ceramic material 1, a curve b shows the heat shrinkage behavior of the ceramic material 2, and a curve c shows the heat shrinkage behavior of the material 3. As shown in FIG. 2, the ceramic materials 1 and 2 to be bonded and sintered together have a heat shrinking behavior as close as possible, but the difference in heat shrinkage is within 3%, preferably within 1%. And Next, the ceramic materials 1 and 2 and the material 3 used as the stress relaxation layer sandwiched between the ceramic materials 1 and 2 are those having a thermal contraction of 5 to 20%. Below 5%, ceramic materials 1 and 2
This is because the effect of relieving stress due to cracking is small, and at 20% or more, the shrinkage amount of the ceramic material is generally about 20%, and there is no further shrinkage.

【0013】上記の条件を満たすものでは、焼成後、セ
ラミック材料1と2に破損はなく、且つセラミック材料
1と2の接合が十分になされていることが実験で確認さ
れている。
It has been confirmed by experiments that the ceramic materials 1 and 2 are not damaged after firing and the ceramic materials 1 and 2 are sufficiently bonded to each other if the above conditions are satisfied.

【0014】一例として、セラミック材料1と2は、熱
収縮の違いが1%以内のものを用い、且つ該セラミック
材料1,2と材料3とは、熱収縮の違いが15%の場合
の実験を行ったところ、好結果が得られた。
As an example, an experiment in which the difference in heat shrinkage between the ceramic materials 1 and 2 is within 1% and the difference in heat shrinkage between the ceramic materials 1 and 2 is 15% The result was good.

【0015】本発明の方法は、他の分野、たとえば、固
体電解質型燃料電池の作製に適用することができる。
The method of the present invention can be applied to other fields, for example, the production of solid oxide fuel cells.

【0016】固体電解質型燃料電池のうち、平板型のも
ので、特に単電池のものは、図3に一例を示す如く、イ
ットリア安定化ジルコニア(YSZ)を適用した固体電
解質板4の両面側に、空気極5と燃料極6を重ねて配置
し、空気極5側には、空気流路形成用の空気流路柱7を
介してセパレータ(インターコネクタ)8を配置し、
又、燃料極6側には、燃料ガスの流路形成用の燃料流路
柱9を介してセパレータ(インターコネクタ)8を配し
てなる構成としてあり、空気極5側に空気を、又、燃料
極6側へ燃料ガスを流すことにより、空気極5側での反
応により生じた酸素イオンが電解質板4を通して燃料極
6側へ到達させられ、一方、燃料極6側では、燃料ガス
2 と上記酸素イオンが反応して水H2 Oとして出され
るようにしてある。
Among the solid oxide fuel cells, the flat type, in particular, the single cell type, as shown in FIG. 3, has both sides of the solid electrolyte plate 4 to which yttria-stabilized zirconia (YSZ) is applied. , The air electrode 5 and the fuel electrode 6 are arranged in an overlapping manner, and a separator (interconnector) 8 is arranged on the air electrode 5 side via an air flow path column 7 for forming an air flow path,
Further, a separator (interconnector) 8 is arranged on the fuel electrode 6 side through a fuel flow channel pillar 9 for forming a fuel gas flow channel, and air is provided on the air electrode 5 side. By flowing the fuel gas to the fuel electrode 6 side, oxygen ions generated by the reaction on the air electrode 5 side are made to reach the fuel electrode 6 side through the electrolyte plate 4, while the fuel gas H 2 is generated on the fuel electrode 6 side. And the oxygen ions react with each other to be released as water H 2 O.

【0017】上記構成としてある平板型の固体電解質型
燃料電池における空気極5、電解質板4、燃料極6及び
燃料流路柱9の一体焼結に、本発明の方法を適用して次
のような実験をした。
The method of the present invention is applied to the integral sintering of the air electrode 5, the electrolyte plate 4, the fuel electrode 6 and the fuel flow channel pillar 9 in the flat plate type solid oxide fuel cell having the above-mentioned structure, and the following method is applied. I did some experiments.

【0018】すなわち、ドクターブレード法で成形した
電解質板4のグリーンシートに、粒径の調節等によって
熱収縮挙動を極力近づけた空気極5及び燃料極6をスク
リーン印刷法で印刷し、その燃料極6上に、粒径の調整
等により熱収縮挙動を極端に変えた燃料極材料10を応
力緩和層として同様にスクリーン印刷法により印刷した
後、該燃料極材料10の上に、燃料極6と同じ材料で成
形した燃料流路柱9を重ねて配置し、これを空気中13
00℃〜1400℃で焼成した。又、実験では、応力緩
和層として燃料極材料10を入れないものについても行
った。
That is, on the green sheet of the electrolyte plate 4 formed by the doctor blade method, the air electrode 5 and the fuel electrode 6 whose thermal contraction behavior is made as close as possible by adjusting the particle size are printed by the screen printing method, and the fuel electrode After the fuel electrode material 10 whose heat shrinkage behavior has been extremely changed by adjusting the particle size or the like is printed on the No. 6 as a stress relaxation layer by the screen printing method in the same manner, the fuel electrode 6 is formed on the fuel electrode material 10. The fuel flow channel pillars 9 formed of the same material are arranged in an overlapping manner,
Firing was performed at 00 ° C to 1400 ° C. Further, in the experiment, the stress relaxation layer was also prepared without the fuel electrode material 10.

【0019】実験の結果、燃料極材料10を応力緩和層
として入れた場合には、焼成後に電解質板4と燃料流路
柱9にクラックは見られなかったが、燃料極材料10を
応力緩和層として入れなかった場合には、燃料流路柱9
が脱落したり、電解質板4が割れたりすることが確認さ
れた。なお、電解質板4と空気極5及び燃料極6とは、
熱収縮挙動を極力近づけたものとしてあるが、焼成時に
熱収縮挙動の違いにより電極に割れが生じる場合があ
る。しかし、割れが入っても、電極は多孔質のものであ
るため問題はない。
As a result of the experiment, when the fuel electrode material 10 was put in as a stress relaxation layer, no cracks were found in the electrolyte plate 4 and the fuel flow path column 9 after firing, but the fuel electrode material 10 was stress relaxation layer. If not included, the fuel flow channel pillar 9
It has been confirmed that the particles fall off and the electrolyte plate 4 is broken. The electrolyte plate 4, the air electrode 5 and the fuel electrode 6 are
Although the thermal shrinkage behavior is as close as possible, cracks may occur in the electrode due to the difference in thermal shrinkage behavior during firing. However, even if cracks occur, there is no problem because the electrode is porous.

【0020】又、接合状態については、電池を発電する
ことにより確認したが、応力緩和層として燃料極材料1
0を入れても接合が十分に行われていた。これは、発電
試験の結果、図5に示す如く、燃料極側の分極Aの増大
は観測されず、電気的接続が十分に確保されていること
から証明される。
The joint state was confirmed by power generation of the cell, but the fuel electrode material 1 was used as the stress relaxation layer.
Even if 0 was entered, the joining was sufficiently performed. This is proved from the result of the power generation test, as shown in FIG. 5, in which no increase in the polarization A on the fuel electrode side was observed and the electrical connection was sufficiently secured.

【0021】因に、上記発電試験は、 燃料 :3%加湿水素 利用率:0.6%以下 酸化剤:酸素 電流 :0.3A/cm2 温度 :(1000±3)℃ の条件で、応力緩和層がある場合とない場合について行
ったもので、応力緩和層のないものでは、図6に示す如
く燃料極側の分極Aの増大が観測されている。なお、図
5及び図6において、Bは起電力、Cは空気極側の分
極、Dは発電電圧である。
The above power generation test was conducted under the following conditions: fuel: 3% humidified hydrogen utilization rate: 0.6% or less, oxidizer: oxygen current: 0.3 A / cm 2 temperature: (1000 ± 3) ° C. This was carried out with and without the relaxation layer. In the case without the stress relaxation layer, an increase in the polarization A on the fuel electrode side was observed as shown in FIG. 5 and 6, B is the electromotive force, C is the polarization on the air electrode side, and D is the generated voltage.

【0022】[0022]

【発明の効果】以上述べた如く、本発明のセラミック複
合材料の製造方法によれば、接合すべきセラミック材料
の間に、これらの材料とは熱収縮挙動の極端に違う材料
を薄くして応力緩和層として入れ、焼成して一体焼結す
るので、セラミック材料間には薄い応力緩和層が介在す
るだけであるため、単純化できる上に、割れが発生せず
に十分な接合が得られ、又、湿式法で製造することによ
り安価に複合材料が得られる、等の優れた効果を奏し得
る。
As described above, according to the method for producing a ceramic composite material of the present invention, a material having extremely different heat shrinkage behavior from those materials is thinned between the ceramic materials to be joined to reduce stress. Since it is put in as a relaxation layer, fired and integrally sintered, only a thin stress relaxation layer is interposed between the ceramic materials, so that it can be simplified and sufficient bonding can be obtained without cracking. Further, by the wet method, the composite material can be obtained at a low cost, and other excellent effects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の実施例を示すもので、(イ)は
焼成前、(ロ)は焼成中、(ハ)は焼成後の状態図であ
る。
FIG. 1 shows an embodiment of the method of the present invention, (a) is a state diagram before firing, (b) is a state during firing, and (c) is a state diagram after firing.

【図2】本発明の方法に用いる材料の熱収縮挙動の違い
を示す図である。
FIG. 2 is a diagram showing a difference in heat shrinkage behavior of materials used in the method of the present invention.

【図3】固体電解質型燃料電池の単電池の構成例を示す
断面図である。
FIG. 3 is a cross-sectional view showing a configuration example of a unit cell of a solid oxide fuel cell.

【図4】図3に示す固体電解質型燃料電池を本発明の方
法で一体焼結するときの状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state when the solid oxide fuel cell shown in FIG. 3 is integrally sintered by the method of the present invention.

【図5】図4で一体焼結したときの発電性能を示す図で
ある。
5 is a diagram showing power generation performance when integrally sintered in FIG.

【図6】図4で応力緩和層を入れないで一体焼結したと
きの発電性能を示す図である。
FIG. 6 is a diagram showing power generation performance when integrally sintered without a stress relaxation layer in FIG.

【図7】セラミック材料を焼成するときに生じる一般的
な熱収縮を示すもので、(イ)は焼成前、(ロ)は焼成
中、(ハ)は焼成後である。
FIG. 7 shows general heat shrinkage that occurs when firing a ceramic material, (a) before firing, (b) during firing, and (c) after firing.

【図8】異種セラミック材料を貼り合わせて焼成すると
きの状態を示すもので、(イ)は焼成前、(ロ)は焼成
中である。
FIG. 8 shows a state in which different kinds of ceramic materials are stuck together and fired, where (a) is before firing and (b) is during firing.

【符号の説明】[Explanation of symbols]

I セラミック複合材料 1,2 セラミック材料 3 材料 4 電解質板 5 空気極 6 燃料極 10 燃料極材料 I Ceramic composite material 1, 2 Ceramic material 3 Material 4 Electrolyte plate 5 Air electrode 6 Fuel electrode 10 Fuel electrode material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱収縮挙動を極力近づけた別々のセラミ
ック材料の間に、該セラミック材料の熱収縮挙動とは極
端に違う熱収縮挙動を示す材料を、応力緩和層として薄
肉にして挟み込み、次いで、これを焼成して一体焼結さ
せ複合材料とするセラミック複合材料の製造方法。
1. A material having a heat shrinkage behavior extremely different from the heat shrinkage behavior of the ceramic material is sandwiched between separate ceramic materials whose heat shrinkage behaviors are as close as possible, as a stress relaxation layer, and then thinned. A method for manufacturing a ceramic composite material, which comprises firing and integrally sintering the composite material into a composite material.
JP23887892A 1992-08-17 1992-08-17 Production of ceramic composite material Pending JPH0664975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23887892A JPH0664975A (en) 1992-08-17 1992-08-17 Production of ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23887892A JPH0664975A (en) 1992-08-17 1992-08-17 Production of ceramic composite material

Publications (1)

Publication Number Publication Date
JPH0664975A true JPH0664975A (en) 1994-03-08

Family

ID=17036613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23887892A Pending JPH0664975A (en) 1992-08-17 1992-08-17 Production of ceramic composite material

Country Status (1)

Country Link
JP (1) JPH0664975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522440B1 (en) * 2011-03-16 2015-05-22 영남대학교 산학협력단 A method of joining ceramic materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522440B1 (en) * 2011-03-16 2015-05-22 영남대학교 산학협력단 A method of joining ceramic materials

Similar Documents

Publication Publication Date Title
US5342705A (en) Monolithic fuel cell having a multilayer interconnect
US5449479A (en) Method of producing ceramic distribution members for solid state electrolyte cells
JPH04345762A (en) Gas separating film type fuel cell
EP0439517A1 (en) Fabrication of a monolithic solid oxide fuel cell
JP2000086204A (en) Separation method of oxygen from oxygen-containing gas
JP2000048831A (en) Solid electrolyte fuel cell
JPH0668885A (en) Manufacture of solid electrolytic fuel cell
JPH01197972A (en) Plate shaped solid electrolyte type fuel cell
JP3166888B2 (en) Solid oxide fuel cell stack
JPH0664975A (en) Production of ceramic composite material
JP2004111145A (en) Unit cell for solid oxide fuel cell and its manufacturing method
JPH11354139A (en) Solid electrolyte type fuel cell
JPH05275106A (en) Solid electrolyte fuel cell
JP3113347B2 (en) Solid oxide fuel cell
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JP3230423B2 (en) Hollow flat electrode substrate and method of manufacturing the same
JP2774227B2 (en) Method for joining solid oxide fuel cell stack
JP3358640B2 (en) Manufacturing method of electrode substrate
JP6965041B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH04280074A (en) Solid electrolyte fuel cell
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JP7061105B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH0462757A (en) Solid electrolyte type fuel cell
JPH09115530A (en) Solid electrolytic fuel cell having mechanical seal structure