JPH0664905B2 - Solid-state magnetic memory device and recording / reproducing method thereof - Google Patents

Solid-state magnetic memory device and recording / reproducing method thereof

Info

Publication number
JPH0664905B2
JPH0664905B2 JP59277300A JP27730084A JPH0664905B2 JP H0664905 B2 JPH0664905 B2 JP H0664905B2 JP 59277300 A JP59277300 A JP 59277300A JP 27730084 A JP27730084 A JP 27730084A JP H0664905 B2 JPH0664905 B2 JP H0664905B2
Authority
JP
Japan
Prior art keywords
stripe
shaped
superconductor
magnetic
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59277300A
Other languages
Japanese (ja)
Other versions
JPS61153897A (en
Inventor
英男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59277300A priority Critical patent/JPH0664905B2/en
Publication of JPS61153897A publication Critical patent/JPS61153897A/en
Publication of JPH0664905B2 publication Critical patent/JPH0664905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/49Fixed mounting or arrangements, e.g. one head per track
    • G11B5/4969Details for track selection or addressing
    • G11B5/4976Disposition of heads, e.g. matrix arrangement
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/49Fixed mounting or arrangements, e.g. one head per track
    • G11B5/4907Details for scanning
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3945Heads comprising more than one sensitive element
    • G11B5/3948Heads comprising more than one sensitive element the sensitive elements being active read-out elements
    • G11B5/3958Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged in a single plane, e.g. "matrix" disposition
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/49Fixed mounting or arrangements, e.g. one head per track
    • G11B5/4969Details for track selection or addressing
    • G11B5/4984Structure of specially adapted switching heads

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はコンピュータの外部記憶装置としてのメモリー
素子に関する。
The present invention relates to a memory device as an external storage device of a computer.

(従来技術とその問題点) 従来、コンピュータ用外部記憶装置は磁気ディスク装置
がその主流をしめている。磁気ディスク装置は回転機構
を有し、そのためにアクセスタイムが大きい欠点があ
り、又ディスク及びヘッドに対して機械的耐久性の点で
問題があった。
(Prior Art and Problems Thereof) Conventionally, magnetic disk devices have been the mainstream of external storage devices for computers. Since the magnetic disk device has a rotating mechanism, it has a drawback that the access time is long, and there is a problem in mechanical durability with respect to the disk and the head.

(本発明の目的) 本発明の目的は上述の欠点を除去した固体磁気メモリー
素子及びその記録・再生方法を提供することにある。
(Object of the Invention) An object of the present invention is to provide a solid-state magnetic memory device and a recording / reproducing method thereof in which the above-mentioned drawbacks are eliminated.

(発明の構成) 本発明は磁気記録媒体層の一方の主面上に絶縁層を介し
て複数の第2のストライプ状超伝導体が所定の間隔をお
いて形成されており、該第2のストライプ状超伝導体上
及び前記磁気記録媒体層の主面上に絶縁層を介して、当
該第2のストライプ状超伝導体と所定の角度で交差する
ように複数の第1のストライプ状超伝導体が所定の間隔
をおいて形成されており、また前記磁気記録媒体層の他
方の主面上には絶縁層を介して複数のストライプ状磁気
抵抗効果素子が所定の間隔で形成されており、当該磁気
記録媒体層の主面上及び該ストライプ状磁気抵抗効果素
子上に絶縁層を介して複数の第3のストライプ状超伝導
体が所定の間隔で形成された構造を備え、第1と第2の
ストライプ状超伝導体の交差部分と第3のストライプ状
超伝導体とストライプ状磁気抵抗効果素子の交差部分が
前記磁気記録媒体層を介して対向する位置にあることを
特徴とする固体磁気メモリー素子と、絶縁層を介して所
定の角度で交差するように形成される第1と第2のスト
ライプ状超伝導体に記録電流を流し、該第2の超伝導体
の交点近傍に形成した磁気記憶媒体を磁化して情報を記
録し、該磁気記憶媒体を介して前記交点に対向する位置
を交点とし絶縁層を介して所定の角度で交差するように
形成される第3のストライプ状超伝導体とストライプ状
磁気抵抗効果素子のうち該第3のストライプ状超伝導体
にセンス電流を流し、ストライプ状磁気抵抗効果素子に
磁場を与え、前記情報を該ストライプ状磁気抵抗効果素
子の抵抗変化として再生することを特徴とする固体磁気
メモリー素子の記録再生方法である。
(Structure of the Invention) According to the present invention, a plurality of second stripe-shaped superconductors are formed on one main surface of a magnetic recording medium layer with an insulating layer interposed therebetween at predetermined intervals. A plurality of first striped superconductors are formed on the striped superconductor and on the main surface of the magnetic recording medium layer with an insulating layer interposed therebetween so as to intersect the second striped superconductor at a predetermined angle. The body is formed at a predetermined interval, and a plurality of stripe-shaped magnetoresistive effect elements are formed at a predetermined interval on the other main surface of the magnetic recording medium layer via an insulating layer, The magnetic recording medium layer has a structure in which a plurality of third stripe-shaped superconductors are formed at predetermined intervals on the main surface and the stripe-shaped magnetoresistive effect element with an insulating layer interposed therebetween. The intersection of the two striped superconductors and the third striped superconductor A solid magnetic memory element characterized in that an intersecting portion of a conductor and a stripe-shaped magnetoresistive effect element is located at a position opposed to each other through the magnetic recording medium layer, so as to intersect at a predetermined angle through an insulating layer. A recording current is passed through the formed first and second stripe-shaped superconductors to magnetize the magnetic storage medium formed in the vicinity of the intersection of the second superconductor to record information. A third stripe-shaped superconductor formed in such a manner as to intersect at a position opposite to the intersection at a predetermined angle through an insulating layer and the third stripe-shaped magnetoresistive element Recording of a solid-state magnetic memory element characterized in that a sense current is passed through a superconductor, a magnetic field is applied to a stripe-shaped magnetoresistive effect element, and the information is reproduced as a resistance change of the stripe-shaped magnetoresistive effect element. It is a raw way.

(構成の詳細な説明) 本発明の素子の基本的構成例を第1図に示した。この基
本構成を用いて固体磁気メモリーを構成した場合の記録
及び再生系の回路の一例を第2図、第3図に示し、これ
を用いてメモリーの構成を説明する。
(Detailed Description of Configuration) FIG. 1 shows a basic configuration example of the element of the present invention. An example of a circuit of a recording and reproducing system in the case where a solid-state magnetic memory is constructed by using this basic configuration is shown in FIGS. 2 and 3, and the configuration of the memory will be described by using this.

本発明の固体磁気メモリー素子は第1図のように磁気記
憶媒体層5の一方の主面に絶縁層3を介して交差する第
1のストライプ状超伝導体2と第2のストライプ状超伝
導体1が形成されている。記録時にはこの2つのストラ
イプ状超伝導体に電流を流し、これらの交点近傍の磁気
記憶媒体を磁化する。一方磁気記憶媒体層5の他方の主
面には絶縁層12を介して交差するストライプ状磁気抵抗
効果素子7と第3のストライプ状超伝導体8とが形成さ
れている。再生時には第3のストライプ状超伝導体にセ
ンス電流を流し、前記磁化情報をストライプ状磁気抵抗
効果素子7の抵抗変化として取り出す。
As shown in FIG. 1, the solid-state magnetic memory device of the present invention includes a first stripe-shaped superconductor 2 and a second stripe-shaped superconductor that intersect with one main surface of a magnetic storage medium layer 5 with an insulating layer 3 interposed therebetween. A body 1 is formed. At the time of recording, an electric current is passed through the two stripe-shaped superconductors to magnetize the magnetic storage medium near the intersection of these two superconductors. On the other hand, a stripe-shaped magnetoresistive effect element 7 and a third stripe-shaped superconductor 8 are formed on the other main surface of the magnetic storage medium layer 5 so as to intersect each other with an insulating layer 12 interposed therebetween. At the time of reproduction, a sense current is passed through the third stripe-shaped superconductor to extract the magnetization information as a resistance change of the stripe-shaped magnetoresistive effect element 7.

次に記録時のメモリー回路構成の例を第2図を用いて説
明する。
Next, an example of the memory circuit configuration during recording will be described with reference to FIG.

第1のストライプ状超伝導体2と第2のストライプ状超
伝導体はそれぞれ第1のスイッチ群20,21,22,23,24,25
及び26,27,28,29と接続している。スイッチ26,27,28,29
はそれぞれ電流源30,31と接続し、かつ第1のY軸アド
レスデコーダ19と接続している。スイッチ20,21,22,23,
24,25は一方で電流源に接続し、他方でデーダ「1」,
「0」を選択するアンドゲート47,48,49,50,51,52を介
して第1のX軸アドレスデコーダと接続している。また
アンドゲート47,48,49,50,51,52はデータ用フリップフ
ロップ45を介してCPU及びインターフエース14に接続し
ている。また第1のX軸アドレスデコーダ44は第1のX
軸アドレスレジスタ46を介して、又第1のY軸アドレス
デコーダ19は第1のY軸アドレスレジスタを介してCPU
及びインターフェースに接続している。
The first striped superconductor 2 and the second striped superconductor are respectively the first switch group 20, 21, 22, 23, 24, 25.
And 26, 27, 28, 29. Switch 26,27,28,29
Are connected to the current sources 30 and 31, respectively, and are also connected to the first Y-axis address decoder 19. Switch 20,21,22,23,
24 and 25 are connected to the current source on the one hand and the data "1" on the other hand,
It is connected to the first X-axis address decoder through AND gates 47, 48, 49, 50, 51, 52 for selecting "0". The AND gates 47, 48, 49, 50, 51, 52 are connected to the CPU and the interface 14 via the data flip-flop 45. Also, the first X-axis address decoder 44 is
CPU via the Y-axis address register 46 and the first Y-axis address decoder 19 via the first Y-axis address register.
And interface.

次に再生時のメモリー回路構成の例を第3図を用いて説
明する。再生時には前記磁気記憶媒体層5上に形成され
たストライプ状磁気抵抗効果素子7と第3のストライプ
状超伝導体8を用いる。第3図に示すとおり第3のスト
ライプ状超伝導体8はスイッチ32,34を介して電流源33
に接続している。スイッチ32,34は第2のY軸アドレス
デコーダ35、第2のY軸アドレスレジスタ36を介してCP
U及びインターフェース14に接続している。一方ストラ
イプ状磁気抵抗効果素子7はスイッチ38,39,40に接続さ
れ、該スイッチ38,39,40は再生回路系43を介してCPU及
びインターフェース14に接続し、同時に第2のX軸アド
レスデコーダ41と第2のX軸アドレスレジスタ42を介し
てCPU及びインターフェース14に接続している。
Next, an example of the memory circuit configuration during reproduction will be described with reference to FIG. At the time of reproduction, the stripe-shaped magnetoresistive effect element 7 and the third stripe-shaped superconductor 8 formed on the magnetic storage medium layer 5 are used. As shown in FIG. 3, the third stripe-shaped superconductor 8 is connected to the current source 33 via the switches 32 and 34.
Connected to. The switches 32 and 34 are connected to the CP via the second Y-axis address decoder 35 and the second Y-axis address register 36.
It is connected to U and interface 14. On the other hand, the stripe-shaped magnetoresistive effect element 7 is connected to the switches 38, 39, 40, which are connected to the CPU and the interface 14 via the reproducing circuit system 43, and at the same time, the second X-axis address decoder. It is connected to the CPU and the interface 14 via 41 and the second X-axis address register 42.

前記構成図を用いて、第4図及び第5図によりデータ記
録時の動作を説明する。今第4−(a)図に示す様な磁
気記録媒体の上の直交する超伝導体の1つを例にその動
作を示す。磁気記録媒体の磁気特性(B−Hカーブ)を
第4図−(b)図に示す。第4−(a)図において、第
1図のCPU及びインターフェース14からの命令により第
1のX軸アドレスレジスタ46、第1のX軸アドレスデコ
ーダ44、データ用フリップフロップ45を設定し、第1の
スイッチ群20,21,22,23,24,25と第1のX軸電流源16,17
とアンドゲート47,48,49,50,51,52から1つを選択しON
状態にして、第1(X軸)のストライプ状超伝導体2に
電流Ix(パルス又は直流)を流し、第4〜(b)図のB
−Hカーブ上で電流Ixによる磁場(磁気記憶媒体のHcよ
り小さい磁場Hx)が磁気記憶媒体5へ印加される。しか
しこの状態では磁気記憶媒体へデータは記録されない。
次に直交する第2のストライプ状超伝導体1に電流Iyを
流すと、第4−(c)−(i)に示す様に電流Iyが印加
され、結果としてHxとHyの合成磁場HtがHcより大きい磁
場となり、それぞれの印加磁場Hx及びHyに対して45゜の
角度を有している。
The operation at the time of data recording will be described with reference to FIGS. 4 and 5 using the configuration diagram. The operation will now be described by taking as an example one of the orthogonal superconductors on the magnetic recording medium as shown in FIG. 4- (a). The magnetic characteristics (BH curve) of the magnetic recording medium are shown in FIG. 4- (b). In FIG. 4- (a), the first X-axis address register 46, the first X-axis address decoder 44, and the data flip-flop 45 are set by an instruction from the CPU and interface 14 in FIG. Switch group 20, 21, 22, 23, 24, 25 and the first X-axis current source 16, 17
And AND gate 47,48,49,50,51,52 Select one from ON
In this state, a current Ix (pulse or direct current) is caused to flow through the first (X-axis) stripe-shaped superconductor 2, and B of FIGS.
A magnetic field (magnetic field Hx smaller than Hc of the magnetic storage medium) by the current Ix is applied to the magnetic storage medium 5 on the −H curve. However, in this state, no data is recorded on the magnetic storage medium.
Next, when a current Iy is passed through the second stripe superconductor 1 which is orthogonal to the second stripe superconductor 1, the current Iy is applied as shown in 4- (c)-(i), and as a result, the combined magnetic field Ht of Hx and Hy is generated. The magnetic field is larger than Hc and has an angle of 45 ° with respect to the applied magnetic fields Hx and Hy.

ここで第1のストライプ状超伝導体の電流による磁場Hy
は第2のストライプ状超伝導体の部分でマイスナー効果
により曲がるので、第2のストライプ状超伝導体の下側
の部分で元に位置へもどり記憶媒体上での磁場は第2の
ストライプ状超伝導体がない場合と同じ様に働らく。前
記合成磁場Htにより磁気記憶媒体5がHtのベクトルの方
法に磁化される。試みに第1のストライプ状超伝導体に
より発生する磁場を計算する。
Where the magnetic field Hy due to the current in the first striped superconductor
Is bent by the Meissner effect in the portion of the second striped superconductor, so it returns to the original position in the lower portion of the second striped superconductor, and the magnetic field on the storage medium is the second striped superconductor. Works as if there were no conductor. The synthetic magnetic field Ht magnetizes the magnetic storage medium 5 in a vector manner of Ht. In an attempt to calculate the magnetic field generated by the first striped superconductor.

アンペアの周回積分の法則 の式より、ストライプ状超伝導体の断面形状を0.5μm
の正方形とし、絶縁層3の厚さを0.1μm、ストライプ
状超伝導体に流す電流を200mA及び300mAとして磁気記憶
媒体上での磁場を計算すると、i=200mAのときHx=800
Oe、i=300mAのときHx=1200Oeが得られる。この時の
電流密度はJ=8×10A/cm(i=200mA)及びJ
=1.2×10A/cm(i=300mA)となり、合成磁場Ht
は1120Oe及び1680Oeとなる。例えば文献によればNbCN超
伝導体を用いれば、臨界電流密度Jc=10 A/cm
得られるので、高Hc媒体(Hc=600〜800)に対して、十
分記録が可能である。次に電流Ix及びIyの電流方向を逆
転することにより第4図−(c)−(ii)に示す様に前
記の合成磁場Ht逆方向の磁場を得ることが出来る。
Ampere's law of circular integration From the formula, the cross-sectional shape of the striped superconductor is 0.5 μm.
When the magnetic field on the magnetic storage medium is calculated assuming that the thickness of the insulating layer 3 is 0.1 μm and the currents flowing through the stripe-shaped superconductor are 200 mA and 300 mA, Hx = 800 when i = 200 mA.
When Oe and i = 300mA, Hx = 1200Oe is obtained. The current density at this time is J = 8 × 10 7 A / cm 3 (i = 200 mA) and J
= 1.2 × 10 8 A / cm 3 (i = 300mA), synthetic magnetic field Ht
Will be 1120 Oe and 1680 Oe. For example, using the NbCN superconductor according to the literature, since the critical current density Jc = 10 1 0 A / cm 3 is obtained, with respect to the high Hc medium (Hc = 600 to 800), it is possible to sufficiently record . Next, by reversing the current directions of the currents Ix and Iy, it is possible to obtain the magnetic field in the reverse direction of the synthetic magnetic field Ht as shown in FIGS. 4 (c)-(ii).

この合成磁場Htにより直交する第1及び第2のストライ
プ状超伝導体の直交点下の磁気記憶媒体5を逆方向に磁
化する。磁化状態の1方向(135゜)をデータ“1"に対
応させ、逆方向(−45゜)を“0"に対応させれば、直交
する第1と第2のストライプ状超伝導体(1,2)の直交
点の下の磁気記憶媒体5に情報“1"及び“0"を記録する
ことが出来る。この様にして記録された磁化の状態を第
5図に示す。
The synthetic magnetic field Ht magnetizes the magnetic storage medium 5 below the orthogonal points of the first and second striped superconductors orthogonal to each other in the opposite direction. If one direction (135 °) of the magnetization state corresponds to the data “1” and the opposite direction (−45 °) corresponds to the “0”, the first and second stripe-shaped superconductors (1 Information "1" and "0" can be recorded in the magnetic storage medium 5 below the orthogonal point of (2). The state of magnetization recorded in this way is shown in FIG.

次に磁気記録媒体5に記録された磁化Mを再生する方法
を説明する。磁気記憶媒体5の下側の絶縁層6を介し
て、ストライプ状磁気抵抗効果素子7が存在し、さらに
該ストライプ状磁気抵抗効果素子7の下側に絶縁層12を
介して、該ストライプ状磁気抵抗効果素子7に直交する
第3のストライプ状超伝導体8が存在している。そこで
今該磁気記憶媒体5の磁化Mが第6−(a)図に示され
る様にストライプ状磁気抵抗効果素子7に流れる電流ベ
クトルIMRに対して+135゜になっている。この状態にお
いて直交点の磁化Mから発生する磁場がストライプ状磁
気抵抗効果素子7に与える磁場HMは第6図−(b)に示
す様に電流ベクトルIMRに対して−45゜角度を有してい
る。ここで、第3のストライプ状超伝導体8にセンス電
流Ise(パルス)を流すと、磁気抵抗効果素子7の直交
点に電流ベクトルIMRと同じ方向にIseによりセンス磁場
Hseを生じさせると、MRストライプ状の巾方向の反磁場
に打ち勝つ程度のHMとHseの合成磁場はHM方向(−45
゜)より電流ベクトルIMRの方向へ近づく。
Next, a method of reproducing the magnetization M recorded on the magnetic recording medium 5 will be described. The stripe-shaped magnetoresistive effect element 7 is present via the insulating layer 6 below the magnetic storage medium 5, and the stripe-shaped magnetoresistive effect element 7 is further provided below the stripe-shaped magnetoresistive effect element 7 via the insulating layer 12. There is a third stripe-shaped superconductor 8 orthogonal to the resistance effect element 7. Therefore, the magnetization M of the magnetic storage medium 5 is now + 135 ° with respect to the current vector I MR flowing through the stripe-shaped magnetoresistive effect element 7 as shown in FIG. 6- (a). In this state, the magnetic field H M given to the stripe magnetoresistive effect element 7 by the magnetic field generated from the magnetization M at the orthogonal point has an angle of −45 ° with respect to the current vector I MR as shown in FIG. 6- (b). is doing. Here, when a sense current Ise (pulse) is passed through the third stripe superconductor 8, the sense magnetic field is generated by Ise in the same direction as the current vector I MR at a point orthogonal to the magnetoresistive effect element 7.
When Hse is generated, the combined magnetic field of H M and Hse that overcomes the demagnetizing field in the width direction of the MR stripe is in the H M direction (−45
)) Approaches the direction of current vector I MR .

次に磁気記憶媒体5上の直交点の磁化が第4図−C−
(ii)の様に前記磁気記録媒体の磁化状態と逆に(デー
タ“0"に対応)になっている場合も同様に第3のストラ
イ状超伝導体8にセンス電流Ise(パルス)を流すと直
交点において、Hseの磁場を発生し、HMとHseの合成磁場
Htの角度は電流スペクトルIMRに対してHMの+135゜より
も小さくなり(第6図−(C)+90゜近くになる様にHs
eを制御しておく。ここでストライプ状磁気抵抗効果素
子7の印加磁場Hによる抵抗Rの変化を第7図−(A)
に示す。
Next, the magnetization at the orthogonal point on the magnetic storage medium 5 is shown in FIG.
When the magnetization state of the magnetic recording medium is opposite (corresponding to data “0”) as in (ii), the sense current Ise (pulse) is similarly passed to the third strike-like superconductor 8. Hse magnetic field is generated at a point orthogonal to and the combined magnetic field of H M and Hse.
The angle of Ht becomes smaller than + 135 ° of H M with respect to the current spectrum I MR (Hs should be close to + 90 ° in Fig. 6- (C)).
Control e. Here, FIG. 7- (A) shows how the resistance R changes with the magnetic field H applied to the stripe-shaped magnetoresistive effect element 7.
Shown in.

第7図−(A)において、磁気抵抗効果素子7の電流IM
の方向に対して磁気記録媒体5の磁化方向は−45゜又は
+135゜のどちらかであるが、第7図−(A)のR−H
カーブ上で、Θ=−45゜の(a)点がデータ“1"に対応
し、Θ=+135゜の(b)点がデータ“0"に対応する。
抵抗の値自身はΘ=+135゜と−45゜で変化がない状態
となっている。
In FIG. 7- (A), the current I M of the magnetoresistive effect element 7
The direction of magnetization of the magnetic recording medium 5 is either −45 ° or + 135 ° with respect to the direction shown in FIG.
On the curve, point (a) at Θ = −45 ° corresponds to data “1”, and point (b) at Θ = + 135 ° corresponds to data “0”.
The resistance value itself remains unchanged at Θ = + 135 ° and -45 °.

この様な状態において、第3のストライプ状超伝導体8
にセンス電流Ise(パルス)を流すと、このセンス電流I
seによる誘導磁場Hseが印加されると第7図−(A)の
(a)点は矢印の方向へ変化し、抵抗値はIseの電流パ
ルスが加わったときだけ増大する。さらに第7図−
(A)の(b)点(“0"に対応)に対しては抵抗値Rは
Iseの電流パルスが加わったときだけ減少する。従って
このそれぞれの抵抗変化を電圧に変換するために第7図
−(b)の様な回路構成により、第7図−(C)に示す
様に、データ“1"に対応したパルス及びデータ“0"に対
応したパルスが逆極性で得られる。
In such a state, the third stripe-shaped superconductor 8
When a sense current Ise (pulse) is applied to the
When the induction magnetic field Hse by se is applied, point (a) in FIG. 7- (A) changes in the direction of the arrow, and the resistance value increases only when the current pulse of Ise is applied. Furthermore, FIG. 7-
For point (b) of (A) (corresponding to “0”), the resistance value R is
It decreases only when the current pulse of Ise is applied. Therefore, in order to convert each resistance change into a voltage, the pulse and data "1" corresponding to the data "1" are set by the circuit configuration as shown in FIG. 7- (b), as shown in FIG. 7- (C). A pulse corresponding to 0 "is obtained with the opposite polarity.

この様にしてデータの再生が可能である。In this way, the data can be reproduced.

例えばNi Fe の場合、T=4.2゜Kにおいて のMR素子(固有抵抗fo=4.75Ω)が得られている。そこ
でストライプ巾を0.5μm、厚さを0.05μmとすると1
ビット当りの抵抗Rとなり、この値Rに対して抵抗変化量△R=0.95×
0.164=0.1558Ωとなる。
For example, in the case of Ni 8 3 Fe 1 9, in T = 4.2 ° K MR element (specific resistance fo = 4.75Ω) has been obtained. Therefore, if the stripe width is 0.5 μm and the thickness is 0.05 μm, 1
The resistance R 1 per bit is Therefore, the resistance change amount ΔR 1 = 0.95 × with respect to this value R 1 .
0.164 = 0.1558Ω.

従って該ストライプ状磁気抵抗効果素子7に流す電流i
をi=1mAとしたとき、再生出力eは0.1558mVとなり、
i=2mAとすると再生出力eは0.3116mVとなるので、十
分実用的な値を得ることが出来る。ここでストライプ状
磁気抵抗効果素子7の両端の抵抗及び電圧は48.3KΩ及
び48.3V(i=1mA)、96V(i=2mA)となり実用的値と
なっている。
Therefore, the current i flowing in the stripe-shaped magnetoresistive effect element 7 is
When i = 1mA, the playback output e becomes 0.1558mV,
When i = 2 mA, the reproduction output e becomes 0.3116 mV, so a sufficiently practical value can be obtained. Here, the resistance and voltage at both ends of the striped magnetoresistive element 7 are 48.3 KΩ and 48.3 V (i = 1 mA) and 96 V (i = 2 mA), which are practical values.

この再生出力を再生増幅10により増幅すれば、Θ=−45
゜及びΘ=+135゜に対して第7図−(C)に示す様な
パルスが得られる。
If this reproduction output is amplified by reproduction amplification 10, Θ = −45
For .DEG. And .THETA. = + 135.degree., A pulse as shown in FIG. 7- (C) is obtained.

ここでストライプ状超伝導体はNbCNを、ストライプ状磁
気抵抗効果素子はNi−Fe、NiCo等を、絶縁層はAl
,SiO,チッ化シリコン等を、基板は研摩された
Siが適する。又前記固体磁気メモリーデバイス部はスパ
ッタ法、イオンミリング、X線露光(又は光学露光)、
研摩等の薄膜形成技術を用いることができる。
Here, the striped superconductor is NbCN, the striped magnetoresistive element is Ni-Fe, NiCo, etc., and the insulating layer is Al.
The substrate was polished with 2 O 3 , SiO 2 , silicon nitride, etc.
Si is suitable. In addition, the solid-state magnetic memory device portion is formed by sputtering, ion milling, X-ray exposure (or optical exposure),
A thin film forming technique such as polishing can be used.

なお、磁気記憶媒体層の両主面に形成されるストライプ
状パターンは直交するものでなくともよい。またパター
ンの幅はすべて同じでなくともよい。
The stripe-shaped patterns formed on both main surfaces of the magnetic storage medium layer do not have to be orthogonal to each other. Further, the widths of the patterns may not all be the same.

また当然、超伝導体及び磁気抵抗効果素子が形成された
磁気記憶媒体部分と必要な周辺回路部分は超低温の環境
に設置される。
Further, naturally, the magnetic storage medium portion on which the superconductor and the magnetoresistive effect element are formed and the necessary peripheral circuit portion are installed in an ultra-low temperature environment.

以上のような構成で、ストライプ状超伝導体のかわり
に、常伝導体を用いた場合には、断面が0.5ミクロンの
正方形では抵抗が非常に大きくなり、電流200mA〜300mA
を流すと、発熱が大きく、溶断してしまうという問題が
ある。従って抵抗が0のストライプ状超伝導体を用いる
必要がある。
When a normal conductor is used instead of the striped superconductor with the above structure, the resistance becomes very large in a square with a cross section of 0.5 μm, and the current is 200 mA to 300 mA.
When flowing, there is a problem that the heat generation is large and the material is melted. Therefore, it is necessary to use a striped superconductor having a resistance of 0.

(実施例) 本発明の実施例の固体磁気メモリーデバイス部を第1図
のように形成した。基板11の上にストライプ巾0.5μm
の第3のストライプ状超伝導体(NbCN)8をスンパッタ
法による成膜とイオンミリング法によるパターンエッチ
ングにより形成し、該第3のストライプ状超伝導体8の
上に絶縁層(SiO)をスパッタ法により形成し、該絶
縁層(SiO)の表面の段差解消をイオンミリング法を
用いたエッチバック法により行ない、表面を平坦にした
後、該絶縁層12(SiO)の上に、前記ストライプ状超
伝導体8に直交するストライプ巾0.5μmのストライプ
状磁気抵抗効果素子7(NiFe)をスパッタ法による成膜
とイオンミリング法によるエッチングにより形成し、該
ストライプ状磁気抵抗効果素子の上を含む全面に絶縁層
6(SiO)をスパッタ法により形成し、さらに段差解
消を行なった後、該絶縁層6の上に全面に一様に磁気記
憶媒体5(CoPt)をスパッタ法により形成し、該磁気記
憶媒体5の上に絶縁層(SiO)をスパッタ法により形
成し該絶縁層4の上にストライプ巾0.5μmの第2のス
トライプ状超伝導体1(NbCN)をスパッタ法による成膜
とイオンミリング法によるエッチングにより形成し、該
第2のストライプ状超伝導体1を含む全面に絶縁層3を
スパッタ法により形成し、該絶縁層3の上に、第2のス
トライプ状超伝導体と直交す様にストライプ巾0.5μm
の第1のストライプ状超伝導体2(NbCN)をスパッタ法
による成膜とイオンミリング法によるエッチングにより
形成した。この様に形成した超伝導体部分を4.2゜K程
度(液体ヘリウム)の極低温状態において動作させた。
(Example) A solid-state magnetic memory device portion of an example of the present invention was formed as shown in FIG. Stripe width 0.5 μm on substrate 11
Of the third striped superconductor (NbCN) 8 is formed by film formation by the Sumpatta method and pattern etching by the ion milling method, and an insulating layer (SiO 2 ) is formed on the third striped superconductor 8. It is formed by a sputtering method, and the steps on the surface of the insulating layer (SiO 2 ) are eliminated by an etch back method using an ion milling method to flatten the surface, and then, on the insulating layer 12 (SiO 2 ), A stripe-shaped magnetoresistive effect element 7 (NiFe) having a stripe width of 0.5 μm orthogonal to the stripe-shaped superconductor 8 is formed by film formation by sputtering and etching by ion milling. entire surface insulating layer 6 (SiO 2) was formed by sputtering comprising, further after performing step difference cancellation, sputtering a magnetic storage medium 5 (CoPt) uniformly over the entire surface on the insulating layer 6 Formed by, magnetic insulating layer on the gas-storage medium 5 sputtering a second striped superconductors stripe width 0.5μm on the (SiO 2) was formed by sputtering the insulating layer 4 1 (NbCN) Film is formed by a film-forming method and etching by an ion milling method, an insulating layer 3 is formed on the entire surface including the second stripe-shaped superconductor 1 by a sputtering method, and a second stripe is formed on the insulating layer 3. Stripe width of 0.5 μm so that it intersects with the superconductor
The first striped superconductor 2 (NbCN) was formed by sputtering and etching by ion milling. The superconductor portion thus formed was operated in a cryogenic state of about 4.2 ° K (liquid helium).

なお、それぞれのストライプ状超伝導体及びストライプ
状磁気抵抗効果素子7のストライプ間距離は0.5μmと
し、厚さ(t)を0.5μm(ストライプ状超伝導体)及
び0.05μm(ストライプ状磁気抵抗効果素子)とし、ス
トライプの長さ(l)を1インチとして形成した。
The distance between stripes of the stripe-shaped superconductor and the stripe-shaped magnetoresistive effect element 7 is 0.5 μm, and the thickness (t) is 0.5 μm (stripe-shaped superconductor) and 0.05 μm (stripe-shaped magnetoresistive effect). The stripe length (l) was set to 1 inch.

本実施例において1ビットは1μm×1μmの大きさと
なり、面密度としては6.45×10ビット平方インチが実
現された。さらにストライプ幅を小さくすれば、平方イ
ンチ当りの容量は増大する。又前記のビットの大きさ1
μm×1μmの場合、2.5インチ角の基板を用いれば、
1枚の基板で約1ギカバイト(GB)の容量のメモリーの
可能である。
In this embodiment, one bit has a size of 1 μm × 1 μm, and an area density of 6.45 × 10 8 bits square inch is realized. If the stripe width is further reduced, the capacity per square inch increases. Also, the bit size 1
In case of μm × 1μm, if you use 2.5 inch square substrate,
One board can have a memory capacity of about 1 gigabyte (GB).

(発明の効果) 以上により従来の磁気ディスク装置の回転機構及びディ
スク・ヘッド系に要求される機械的耐久性等は除去さ
れ、かつ大容量(5×10ビット/平方インチ、以上)
の不揮発性固体磁気ファイルメモリーが得られた。
(Effects of the Invention) As described above, the mechanical durability and the like required for the rotating mechanism and the disk head system of the conventional magnetic disk device are eliminated, and a large capacity (5 × 10 8 bits / square inch or more) is obtained.
A non-volatile solid magnetic file memory was obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の固体磁気メモリー素子の一実施例を示
す構成図第2図及び第3図はそれぞれデータ記録時及び
再生時の回路構成の一例を示す図、第4図(a),
(b),(c)は記録時の原理を示す図、第5図は磁気
記憶媒体が記録された磁化状態を示す図、第6図
(a),(b),(c)は再生時の原理を示す図、第7
図(a),(b),(c)は本発明の動作を説明する
図。 1は第2のストライプ状超伝導体、2は第1のストライ
プ状超伝導体、8は第3のストライプ状超伝導体、3,4,
6,12,13は絶縁層、5は磁気記憶媒体、7はストライプ
状磁気抵抗効果素子、9は抵抗R、43は再生増幅器、11
は基板、14はCPU及びインターフェース、46は第1のx
軸アドレスレジスタ、18は第1のy軸アドレスレジス
タ、44は第1のx軸アドレスデコーダ、19は第1のy軸
アドレスデコーダ、45はデータ用フリップフロップ、4
7,48,49,50,51,52はアンドゲート、16,17,30,31は電流
源、20,21,22,23,24,25,26,27,28,29は第1のスイッチ
群、36は第2のy軸アドレスレジスタ(再生用)、42は
第2のx軸アドレスレジスタ、35は第2のy軸アドレス
デコーダ、41は第2のx軸アドレスデコーダ、43は再生
回路系、9は抵抗R、38,39,40,32,34は第2のスイッチ
群33は電流源をそれぞれ示す。 又第2図及び第3図において破線の内側部分は固体磁気
メモリー素子部を示す。
FIG. 1 is a configuration diagram showing an embodiment of a solid-state magnetic memory device of the present invention. FIGS. 2 and 3 are diagrams showing an example of a circuit configuration at the time of data recording and reproduction, respectively, and FIG. 4 (a),
(B) and (c) are diagrams showing the principle at the time of recording, FIG. 5 is a diagram showing the magnetized state in which the magnetic storage medium is recorded, and FIGS. 6 (a), (b) and (c) are at the time of reproducing. Showing the principle of, No. 7
(A), (b), (c) is a figure explaining operation | movement of this invention. 1 is the second striped superconductor, 2 is the first striped superconductor, 8 is the third striped superconductor, 3, 4,
6, 12 and 13 are insulating layers, 5 is a magnetic storage medium, 7 is a striped magnetoresistive element, 9 is a resistor R, 43 is a regenerative amplifier, 11
Is a board, 14 is a CPU and an interface, 46 is the first x
Axis address register, 18 is first y-axis address register, 44 is first x-axis address decoder, 19 is first y-axis address decoder, 45 is data flip-flop, 4
7,48,49,50,51,52 are AND gates, 16,17,30,31 are current sources, 20,21,22,23,24,25,26,27,28,29 are first switches Group, 36 is a second y-axis address register (for reproduction), 42 is a second x-axis address register, 35 is a second y-axis address decoder, 41 is a second x-axis address decoder, and 43 is a reproducing circuit Reference numeral 9 denotes a resistor R, 38, 39, 40, 32, 34 denote second switch groups 33, and current sources, respectively. Further, in FIG. 2 and FIG. 3, the inner portion of the broken line shows the solid magnetic memory element portion.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁気記憶媒体層の一方の主面上に絶縁層を
介して複数の第2のストライプ状超伝導体が所定の間隔
をおいて形成されており、該第2のストライプ状超伝導
体上及び前記磁気記憶媒体層の主面上に絶縁層を介し
て、当該第2のストライプ状超伝導体と所定の角度で交
差するように複数の第1のストライプ状超伝導体が所定
の間隔をおいて形成されており、また前記磁気記憶媒体
層の他方の主面上には絶縁層を介して複数のストライプ
状磁気抵抗効果素子が所定の間隔で形成されており、当
該磁気記憶媒体層の主面上及び該ストライプ状磁気抵抗
効果素子上に絶縁層を介して複数の第3のストライプ状
超伝導体が所定の間隔で形成された構造を備え、第1と
第2のストライプ状超伝導体の交差部分と第3のストラ
イプ状超伝導体とストライプ状磁気抵抗効果素子の交差
部分が前記磁気記憶媒体層を介して対向する位置に配置
されていることを特徴とする固体磁気メモリー素子。
1. A plurality of second stripe-shaped superconductors are formed on one main surface of a magnetic storage medium layer with an insulating layer interposed at predetermined intervals. A plurality of first stripe-shaped superconductors are predetermined so as to intersect the second stripe-shaped superconductor at a predetermined angle on the conductor and on the main surface of the magnetic storage medium layer via an insulating layer. And a plurality of stripe-shaped magnetoresistive elements are formed at predetermined intervals on the other main surface of the magnetic storage medium layer with an insulating layer interposed therebetween. The first and second stripes have a structure in which a plurality of third stripe-shaped superconductors are formed at predetermined intervals on the main surface of the medium layer and on the stripe-shaped magnetoresistive effect element via an insulating layer. -Shaped superconductor intersection and third stripe-shaped superconductor Solid-state magnetic memory device characterized by intersection of the stripe-like magnetoresistive effect element is disposed at a position opposed through the magnetic storage medium layer.
【請求項2】絶縁層を介して所定の角度で交差するよう
に形成された第1と第2のストライプ状超伝導体に記録
電流を流し、該2つの超伝導体の交点近傍に形成された
磁気記憶媒体を磁化して情報を記録し該磁気記憶媒体を
介して前記交点に対向する位置を交点とし、絶縁層を介
して所定の角度で交差するように形成された第3のスト
ライプ状超伝導体とストライプ状磁気抵抗効果素子のう
ち該第3のストライプ状超伝導体にセンス電流を流し、
ストライプ状磁気抵抗効果素子に磁場を与え、前記情報
を該ストライプ状磁気抵抗効果素子の抵抗変化として再
生することを特徴とする固体磁気メモリー素子の記録再
生方法。
2. A recording current is applied to first and second stripe-shaped superconductors which are formed so as to intersect each other at a predetermined angle through an insulating layer, and are formed in the vicinity of the intersection of the two superconductors. A third stripe shape formed so that the magnetic recording medium is magnetized to record information, and a position facing the intersection via the magnetic recording medium is an intersection, and the intersection is formed at a predetermined angle via an insulating layer. Of the superconductor and the stripe-shaped magnetoresistive effect element, a sense current is passed through the third stripe-shaped superconductor,
A recording / reproducing method for a solid-state magnetic memory element, characterized in that a magnetic field is applied to the stripe-shaped magnetoresistive effect element and the information is reproduced as a resistance change of the stripe-shaped magnetoresistive effect element.
JP59277300A 1984-12-26 1984-12-26 Solid-state magnetic memory device and recording / reproducing method thereof Expired - Lifetime JPH0664905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277300A JPH0664905B2 (en) 1984-12-26 1984-12-26 Solid-state magnetic memory device and recording / reproducing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277300A JPH0664905B2 (en) 1984-12-26 1984-12-26 Solid-state magnetic memory device and recording / reproducing method thereof

Publications (2)

Publication Number Publication Date
JPS61153897A JPS61153897A (en) 1986-07-12
JPH0664905B2 true JPH0664905B2 (en) 1994-08-22

Family

ID=17581613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277300A Expired - Lifetime JPH0664905B2 (en) 1984-12-26 1984-12-26 Solid-state magnetic memory device and recording / reproducing method thereof

Country Status (1)

Country Link
JP (1) JPH0664905B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178191A (en) * 1988-01-08 1989-07-14 Nec Corp Solid magnetic memory element
JPH01178190A (en) * 1988-01-08 1989-07-14 Nec Corp Multiple layer solid-state magnetic memory device
JPH01192088A (en) * 1988-01-27 1989-08-02 Nec Home Electron Ltd Memory device
US5039655A (en) * 1989-07-28 1991-08-13 Ampex Corporation Thin film memory device having superconductor keeper for eliminating magnetic domain creep
FR2656454B1 (en) * 1989-12-22 1995-07-21 Thomson Csf MULTIPISTE READING HEAD.
FR2665011B1 (en) * 1990-07-20 1992-09-18 Thomson Csf MAGNETIC READING HEAD WITH MAGNETO-RESISTIVE EFFECT.
FR2665010B1 (en) * 1990-07-20 1992-09-18 Thomson Csf MAGNETIC READING DEVICE WITH MATRIX NETWORK OF READING HEADS.

Also Published As

Publication number Publication date
JPS61153897A (en) 1986-07-12

Similar Documents

Publication Publication Date Title
US6906898B2 (en) Differential detection read sensor, thin film head for perpendicular magnetic recording and perpendicular magnetic recording apparatus
US7092225B2 (en) Magnetic tunnel effect type magnetic head, and method of producing same
US5406433A (en) Dual magnetoresistive head for reproducing very narrow track width short wavelength data
JP2003078112A (en) Magnetic device using ferromagnetic film, magnetic recording medium, and device using ferromagnetic film
JP2002523849A (en) Thin film shield type magnetic read head device
JP2911312B2 (en) Magnetic thin film memory and recording method thereof
US7511928B2 (en) Magnetic tunnel effect type magnetic head, and recorder/player
JPH0664905B2 (en) Solid-state magnetic memory device and recording / reproducing method thereof
US6424508B1 (en) Magnetic tunnel junction magnetoresistive head
JP2849354B2 (en) Magnetic transducer and thin-film magnetic head
US6466415B1 (en) Thin film magnetic head including a first pole portion having a depressed portion for receiving a coil
JPH0589435A (en) Magneto-resistance effect type magnetic head
JP2000113666A (en) Magnetic thin film memory device and magnetic thin film memory
JPH05205224A (en) Magnetic head
JPH08329426A (en) Magnetoresistance effect head
JPH1196513A (en) Magnetic head and magnetic memory device using the same
JPH01178191A (en) Solid magnetic memory element
US5778514A (en) Method for forming a transducing head
JPH10302203A (en) Vertical magnetic recorder
US6851179B2 (en) Magnetic head producing method
JPH01178190A (en) Multiple layer solid-state magnetic memory device
JPH1139859A (en) Memory cell by gigantic magneto-resistive effect and parallel random access memory
US5870261A (en) Magnetoresistive head
JPH06274832A (en) Magneto-resistance effect type thin-film magnetic head
JP2941243B2 (en) Thin-film magnetic head and magnetic storage device having the same