JPH066484B2 - Method for producing titanium carbide powder - Google Patents

Method for producing titanium carbide powder

Info

Publication number
JPH066484B2
JPH066484B2 JP61050245A JP5024586A JPH066484B2 JP H066484 B2 JPH066484 B2 JP H066484B2 JP 61050245 A JP61050245 A JP 61050245A JP 5024586 A JP5024586 A JP 5024586A JP H066484 B2 JPH066484 B2 JP H066484B2
Authority
JP
Japan
Prior art keywords
titanium
carbon
gel
organotitanate
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61050245A
Other languages
Japanese (ja)
Other versions
JPS62207708A (en
Inventor
エイ.ジヤニイ マーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Energy
Original Assignee
US Department of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Energy filed Critical US Department of Energy
Publication of JPS62207708A publication Critical patent/JPS62207708A/en
Publication of JPH066484B2 publication Critical patent/JPH066484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は一般的には炭化チタン(TiC)粉末の製造
に関し、さらに詳しくは、サブミクロン単位の高純度T
iC粉末を製造する方法に関するものである。
Description: FIELD OF THE INVENTION This invention relates generally to the production of titanium carbide (TiC) powder, and more particularly to high purity T in the submicron range.
The present invention relates to a method for producing iC powder.

<従来の技術> セラミックおよびセラミック複合体は、高温環境、特に
浸食や腐食の条件が存在する環境で使用される構造材料
として注目されつつある。例えば、数種類のセラミック
およびセラミック複合体が、高温ガス・タービンや熱機
関中で使用される部品の構造材料として満足しうるもの
であることが見出されている。また、石炭転化施設で用
いられる部品もセラミックやセラミック複合体から効果
的に製造できる。
<Prior Art> Ceramics and ceramic composites are attracting attention as structural materials used in high temperature environments, particularly in environments where erosion and corrosion conditions exist. For example, several types of ceramics and ceramic composites have been found to be satisfactory structural materials for components used in hot gas turbines and heat engines. Also, parts used in coal conversion facilities can be effectively manufactured from ceramics and ceramic composites.

TiC粉末は、切削工具や研削砥石等の製造に有用な耐
火材料であり、また前述したように高温の浸食性,腐食
性環境で用いる構造材料を製造するために、酸化アルミ
ニウム,窒化ケイ素,炭化ケイ素のごとき他のセラミッ
ク系と組合せて使用することができる。
TiC powder is a refractory material useful for manufacturing cutting tools, grinding wheels, etc., and as described above, aluminum oxide, silicon nitride, carbon carbide is used for manufacturing structural materials used in high temperature erosive and corrosive environments. It can be used in combination with other ceramic systems such as silicon.

現在TiC粉末は、約1700〜2100℃の温度で炭素粉末、
特にカーボンブラックによって二酸化チタンを還元する
ことにより主として製造されている。このTiC粉末
は、還元反応中の焼結による粒子個々の結合と粒径成長
のために、1ミクロン以上の比較的広範囲の粒径で製造
される。さらに、還元反応中にもたらされる拡散勾配の
ために、望ましくない不均質性が粉末内にしばしば見出
される。
Currently, TiC powder is carbon powder at a temperature of about 1700-2100 ° C,
In particular, it is mainly produced by reducing titanium dioxide with carbon black. This TiC powder is produced in a relatively wide range of particle sizes of 1 micron and above due to the individual bonding and particle size growth of the particles during sintering during the reduction reaction. In addition, undesired inhomogeneities are often found in the powder due to the diffusion gradient created during the reduction reaction.

<発明が解決しようとする問題点> そこでこの発明は、粒子が個々に分離されているサブミ
クロンの粒径の高純度TiC粉末を合成する方法を提供
することを目的としてなされたものである。
<Problems to be Solved by the Invention> Therefore, the present invention has been made for the purpose of providing a method for synthesizing a high-purity TiC powder having a submicron particle size in which particles are individually separated.

<問題点を解決するための手段> この発明によるTiC粉末の製造は、液体オルガノチタ
ネートまたはオルガノチタネート溶液と炭素前駆物質重
合体含有溶液との混合物を生成する工程を有している。
このとき、オルガノチタネートと炭素前駆物質とはチタ
ンと炭素についての実質的に化学量論的濃度とし、オル
ガノチタネートは重合体と架橋反応を起こしてゲルを生
成する。このゲルを引続き加熱してゲルを乾燥し、ゲル
から揮発性成分を追出し、重合体を熱分解して炭素を遊
離させる。このゲル中の残りの成分、すなわちチタンと
炭素を次いで十分な温度に加熱して、このチタンと炭素
をTiC粉末に変換する。
<Means for Solving Problems> The production of TiC powder according to the present invention includes a step of producing a liquid organotitanate or a mixture of an organotitanate solution and a carbon precursor polymer-containing solution.
At this time, the organotitanate and the carbon precursor have substantially stoichiometric concentrations of titanium and carbon, and the organotitanate causes a crosslinking reaction with the polymer to form a gel. The gel is subsequently heated to dry the gel, expel volatile components from the gel and thermally decompose the polymer to liberate carbon. The remaining components in the gel, titanium and carbon, are then heated to a sufficient temperature to convert the titanium and carbon to TiC powder.

架橋するオルガノチタネートをTiC粉末の生成に使用
することは極めて有効である。なぜならば、オルガノチ
タネート中のチタンと重合体中の炭素とを分子レベルで
混合せしめて、化学量論的組成のTiC粉末の生成を起
こさせるからである。さらに、この生成粉末は高純度
(99.99%以上)を呈するとともに、この発明の方法の
成分によりもたらされるチタンと炭素との分子レベルの
混合のために不均質性が少ないかあるいは全くない。
The use of cross-linking organotitanates for the production of TiC powders is extremely effective. This is because the titanium in the organotitanate and the carbon in the polymer are mixed at the molecular level to cause the formation of a TiC powder having a stoichiometric composition. In addition, the resulting powder exhibits high purity (99.99% and above) and has little or no heterogeneity due to the molecular level mixing of titanium and carbon provided by the components of the process of this invention.

この発明のさらに他の目的は、以下の説明から明らかに
されよう。
Other objects of the present invention will be apparent from the following description.

前述したようにこの発明は、粒径がサブミクロンの範囲
の高純度TiC粉末を調製する方法を提供するものであ
る。この方法では、チタンと炭素前駆物質を調合し混合
するために高純度溶液を使用する。液体オルガノチタネ
ートまたはオルガノチタネート溶液が重合体溶液と混合
される。両者の量は、オルガノチタネートおよび重合体
中のチタンおよび炭素について実質的に化学量論的量と
する。このオルガノチタネートは、この発明で用いるた
めに選ばれた炭素前駆物質重合体に対する架橋剤となる
ものである。オルガノチタネートと重合体はゼラチン状
の沈澱を形成するが、これは架橋反応が起こったことを
示している。この架橋反応が、チタンと炭素との分子レ
ベルの混合を確実に起こさしめ、チタンを不動にして引
続いてなされる架橋重合体の乾燥および熱分解の過程で
のチタンの分離を阻止するのである。後述するように、
ある場合には、オルガノチタネートと炭素前駆物質重合
体との混合に加熱が必要となり、これによってゼラチン
状沈澱の生成に必要な架橋反応を行なわせることができ
る。通常この加熱は約80〜100℃の温度で約1〜24
時間行なえばよい。
As mentioned above, the present invention provides a method for preparing high purity TiC powder having a particle size in the submicron range. This method uses a high purity solution to formulate and mix the titanium and carbon precursors. Liquid organotitanate or an organotitanate solution is mixed with the polymer solution. The amounts of both are substantially stoichiometric with respect to the titanium and carbon in the organotitanate and the polymer. The organotitanate is the crosslinker for the carbon precursor polymer selected for use in this invention. The organotitanate and polymer formed a gelatinous precipitate, indicating that a crosslinking reaction had taken place. This cross-linking reaction ensures a molecular mixing of titanium and carbon, immobilizes the titanium and prevents subsequent separation of the titanium during the drying and pyrolysis of the cross-linked polymer. . As described below,
In some cases, heating is required to mix the organotitanate with the carbon precursor polymer, which allows the cross-linking reaction to occur to form a gelatinous precipitate. Normally, this heating is performed at a temperature of about 80 to 100 ° C for about 1 to 24
You just have to go on time.

このゼラチン状沈澱に比較的低温の乾燥工程を施して、
容易に揮発する液体をこの混合物から除去する。この乾
燥は、沈澱を約25〜100℃の範囲の温度で約1〜24
時間加熱することによって達成できる。後述するよう
に、ある場合には、このゲル中に過剰の液体が含まれる
ことがある。かような過剰液体は、乾燥工程に先立って
デカンテーションあるいはその他の方法により容易に除
去することができる。乾燥工程終了後、このゲルをアル
ゴン等の不活性雰囲気中で約600〜800℃の範囲の温度に
加熱し、重合体を熱分解して遊離炭素を生成させるとと
もに、チタンと炭素以外の揮発性成分をゲルから追出
す。通常この温度に約10〜120分間維持して、熱分解
を効果的に起こさせ、ゲル中の実質的にすべての揮発性
物質の除去を確実にさせる。
By subjecting this gelatinous precipitate to a drying process at a relatively low temperature,
Easily volatile liquids are removed from this mixture. This drying causes precipitation to occur at temperatures in the range of about 25-100 ° C for about 1-24.
It can be achieved by heating for a time. In some cases, as described below, excess liquid may be included in the gel. Such excess liquid can be easily removed by decantation or other method prior to the drying step. After completion of the drying process, the gel is heated in an inert atmosphere such as argon to a temperature in the range of about 600 to 800 ° C to pyrolyze the polymer to produce free carbon, and at the same time volatility other than titanium and carbon. Remove components from gel. This temperature is usually maintained for about 10-120 minutes to effectively effect thermal decomposition and ensure removal of substantially all volatiles in the gel.

かくして乾燥され揮発性成分を除去されたゲルの成分、
すなわち架橋されたチタンと炭素を、約1200〜1600℃、
約1〜2時間、アルゴンのごとき不活性雰囲気中で加熱
してチタンと炭素を反応させ、高純度TiC粉末を生成
させる。かくして生成されるTiC粉末は1ミクロン以
下の粒径をもつ。
The components of the gel thus dried and freed from volatile components,
That is, cross-linked titanium and carbon, about 1200 ~ 1600 ℃,
The titanium and carbon are reacted by heating in an inert atmosphere such as argon for about 1-2 hours to produce high purity TiC powder. The TiC powder thus produced has a particle size of less than 1 micron.

この発明に有用な液体オルガノチタネート類としては、
テトライソプロピルチタネート,乳酸チタンキレート,
テトラブチルチタネート,アセチルアセトネートキレー
ト,トリエタノールアミンキレート、および類似のアリ
ルチタネート類やチタンキレート類、例えばE.I.D
u Pont de Nemours & Co.(米国デラウェア
州,ウィルミントン)により「TYZOR」等の商品名
で市販されているもの等が挙げられる。ここに例示した
オルガノチタネート類は、チタンと炭素との所望の分子
レベルの混合を確実に起こすような、炭素前駆物質重合
体に対する架橋剤となりうるものである。さらにこの架
橋は、チタンを移動不可能とし、架橋した重合体の揮発
物質の乾燥,熱分解過程でのチタンの分離を阻止する。
上記したオルガノチタネート類は、イソプロピルトリ
(Nエチルアミノ−エチルアミノ)チタネートあるいは
イソプロピルトリ(2−アミノベンゾイル)チタネート
のごとき他のオルガノチタネート類よりも好ましい。な
ぜならば、好ましいオルガノチタネート類は、TiCの
効率の良い生成をもたらすチタンの濃度が高く、チタン
を低濃度で含有するオルガノチタネート類よりも望まし
いからである。しかしながら、チタン濃度の比較的低い
オルガノチタネート類でもこの発明によるTiCの生成
に利用できる。その場合には、生成したゼラチン状沈澱
を含む反応容器にはかなりの量の液体も含有している
が、この溶液は乾燥に先立ってデカントすることによ
り、反応容器から容易に除去できる。
Liquid organotitanates useful in this invention include:
Tetraisopropyl titanate, titanium lactate chelate,
Tetrabutyl titanate, acetylacetonate chelates, triethanolamine chelates, and similar allyl titanates and titanium chelates such as E. I. D
u Pont de Nemours & Co. (Wilmington, Delaware, USA) and the like, which are commercially available under the trade names such as "TYZOR". The organotitanates exemplified herein are potential crosslinkers for carbon precursor polymers that ensure the desired molecular level mixing of titanium and carbon. Further, this cross-linking makes titanium immobile and prevents the separation of titanium in the process of drying and thermal decomposition of the volatile substances of the cross-linked polymer.
The organotitanates described above are preferred over other organotitanates such as isopropyltri (Nethylamino-ethylamino) titanate or isopropyltri (2-aminobenzoyl) titanate. This is because the preferred organotitanates have a higher concentration of titanium, which leads to the efficient production of TiC, and are more desirable than organotitanates containing a low concentration of titanium. However, organotitanates with a relatively low titanium concentration can also be used to produce TiC according to the invention. In that case, the reaction vessel containing the gelatinous precipitate formed also contained a significant amount of liquid, but this solution can be easily removed from the reaction vessel by decanting prior to drying.

この発明で用いられる炭素前駆物質重合体は、水酸基,
アミノ基,アミド基,カルボキシル基またはチオ基上の
活性水素を有し、ポリビニルアルコール,セルロース誘
導体,フェノール類,ポリエステル類,ポリビニルアセ
テート類,エポキシ樹脂および類似の重合体物質のごと
き重合体類を含んでいる。チタンをTiCに変換するた
めの遊離炭素をかなりの割合で供給しうるような重合体
を選択すべきである。この重合体は比較的揮発性の溶剤
と接触させて十分に液状化し、オルガノチタネートと十
分に混合しうるようにする。かような溶剤としては、ア
ルコール類,水,エステル類,炭化水素類,ハロゲン化
炭化水素類およびこれらの混合物が挙げられる。
The carbon precursor polymer used in this invention is a hydroxyl group,
Having active hydrogens on amino, amido, carboxyl or thio groups, including polymers such as polyvinyl alcohol, cellulose derivatives, phenols, polyesters, polyvinyl acetates, epoxy resins and similar polymeric materials I'm out. The polymer should be chosen so that it can provide a significant proportion of free carbon to convert titanium to TiC. The polymer is contacted with a relatively volatile solvent so that it is sufficiently liquefied so that it can be well mixed with the organotitanate. Such solvents include alcohols, water, esters, hydrocarbons, halogenated hydrocarbons and mixtures thereof.

<実施例> 以下に、オルガノチタネート類と炭素前駆物質重合体類
とをサブミクロン単位のTiC粉末に変換する実施例を
挙げて、この発明をさらに説明する。
<Example> Hereinafter, the present invention will be further described with reference to an example in which organotitanates and carbon precursor polymers are converted into TiC powder in submicron units.

実施例1 テトライソプロピルチタネート(商品名「TYZOR
TPT」、E.I.Du Pont de Nemours & C
o.製)25gとフェノール樹脂(商品名「Durez 316
49」,Occidetnal Chem.Co.(米国ニューヨーク
州,トノワンダ)製)9.7gの25ml無水エタノール溶
液からなる混合物を調製して撹拌した。撹拌中にゼラチ
ン状沈澱を生じた。このことは、オルガノチタネートと
重合体との間の架橋反応が起こったことを示している。
このゲルを60℃で16時間乾燥し、次いでアルゴン雰
囲気下で800℃,10分間加熱して揮発性物質を追出
し、重合体を炭素にした。次いでこのゲルをアルゴン雰
囲気下で1400℃および1600℃で1時間加熱し、チタンと
炭素を反応させて微細TiC粉末を得た。表面積を測定
した結果、この粉末の粒径はサブミクロン単位であっ
た。またX線回折の結果、この粉末はいずれの場合にも
純粋なTiCであることを示した。
Example 1 Tetraisopropyl titanate (trade name "TYZOR
TPT ", E.I. I. Du Pont de Nemours & C
o. 25 g and phenolic resin (trade name "Durez 316")
49 ", Occidetnal Chem. Co. (Tonowanda, NY) 9.7 g of a 25 ml absolute ethanol solution was prepared and stirred. A gelatinous precipitate formed during stirring. This indicates that a crosslinking reaction between the organotitanate and the polymer had taken place.
The gel was dried at 60 ° C. for 16 hours, then heated at 800 ° C. for 10 minutes under an argon atmosphere to drive off volatile substances and carbonize the polymer. Next, this gel was heated under an argon atmosphere at 1400 ° C. and 1600 ° C. for 1 hour to react titanium with carbon to obtain fine TiC powder. As a result of measuring the surface area, the particle size of this powder was in the submicron unit. X-ray diffraction also showed that this powder was pure TiC in all cases.

実施例2 乳酸チタンキレート(商品名「TYZORLA」、E.
I.Du Pont de Nemours & Co.製,CAS
Reg.No.65104-06-5)50gとメチルセルロース(商
品名「Metho-cel 」D,ow Chemical Co.(米国
ミシガン州,ミッドランド)製)61.2gの水溶液からな
る混合物を調製して5分間撹拌した。室温では反応は認
められなかったが、この混合物を85℃で16時間加熱
したところ、容器内に不可逆的にゲルが生成した。これ
により、オルガノチタネートとメチルセルロースとの間
で架橋反応が起こったことがわかる。このゲルを引続き
乾燥し、アルゴン雰囲気下で800℃に徐々に昇温したの
ち800℃に10分間保持することにより重合体を熱分解
した。得られた不揮発性固体をアルゴン中で1400℃,1
時間反応させて微細TiC粉末を生成した。
Example 2 Titanium lactate chelate (trade name “TYZORLA”, E.I.
I. Du Pont de Nemours & Co. Made, CAS
No.65104-06-5) and an aqueous solution of 61.2 g of methylcellulose (trade name "Metho-cel" D, ow Chemical Co. (Midland, Mich., USA)) (61.2 g) and stirred for 5 minutes. did. No reaction was observed at room temperature, but when the mixture was heated at 85 ° C. for 16 hours, an irreversible gel was formed in the container. From this, it can be seen that a crosslinking reaction occurred between the organotitanate and the methyl cellulose. The gel was subsequently dried, the temperature was gradually raised to 800 ° C. under an argon atmosphere, and the temperature was kept at 800 ° C. for 10 minutes to thermally decompose the polymer. The obtained non-volatile solid was placed in argon at 1400 ° C, 1
The reaction was carried out for a time to produce a fine TiC powder.

<発明の効果> この発明のTiC合成方法は従来法に比べていくつかの
利点を有していることがわかるであろう。この発明によ
るサブミクロン単位の粉末形成の重要なポイントは、チ
タンと炭素の分子レベルの混合をもたらすオルガノチタ
ネート類と重合体類との間の架橋反応である。またこの
発明の重要な利点は、TiCを生成させるために架橋し
た炭素とチタンとを反応させるのに用いる1400〜1600℃
という最高温度が従来方法に比べてかなり低く、従って
エネルギー効率やコスト面で有利になることである。従
来方法においては約1700〜2000℃の浸炭温度が必要とさ
れていた。
<Effect of the Invention> It will be understood that the TiC synthesizing method of the present invention has some advantages as compared with the conventional method. An important point of submicron powder formation according to this invention is the cross-linking reaction between the organotitanates and polymers which results in the molecular mixing of titanium and carbon. An important advantage of the present invention is also that it is used to react titanium with crosslinked carbon to produce TiC at 1400-1600 ° C.
That is, the maximum temperature is considerably lower than that of the conventional method, which is advantageous in terms of energy efficiency and cost. In the conventional method, a carburizing temperature of about 1700 to 2000 ° C was required.

この発明は、炭化ケイ素や酸化アルミニウムのごとき他
のセラミック系のマトリックス内に分散させて用いられ
るTiC粉末を合成することを目的としているが、炭化
ケイ素や酸化アルミニウムのごときマトリックス材料を
粉末状で炭素前駆物質とオルガノチタネートの溶液中に
添加してもよいことがわかるであろう。この場合には、
ゲル混合物中に架橋したチタンと重合体の他に粒径マト
リックス材料も含まれることになり、TiCを生成させ
るために加熱すると、セラミックのマトリックス粒子の
表面にTiCの微細な被覆が形成される。この微細なT
iC−被覆された粉末を、粉末治金分野で周知の焼結ま
たはホットプレスによって、適当な形状に緻密架するこ
とができる。
This invention aims at synthesizing TiC powder which is used by being dispersed in other ceramic-based matrix such as silicon carbide and aluminum oxide. It will be appreciated that it may be added into the solution of precursor and organotitanate. In this case,
In addition to the cross-linked titanium and polymer, the particle size matrix material will also be included in the gel mixture, and when heated to produce TiC, a fine TiC coating is formed on the surface of the ceramic matrix particles. This fine T
The iC-coated powder can be compacted into a suitable shape by sintering or hot pressing well known in the powder metallurgy art.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】液体オルガノチタネートまたはオルガノチ
タネート溶液と炭素前駆物質重合体溶液とをこれらの量
がチタンおよび炭素について実質的に化学量論的量とな
るような割合で混合することによって、オルガノチタネ
ートに炭素前駆物質重合体と架橋反応を起こさしめてゲ
ルを生成させる工程と、このゲルを加熱してゲルを乾燥
し、揮発性成分をゲルから追出し、前記重合体を熱分解
して遊離炭素を生成させる工程と、次いでこのゲルの残
留成分を約1400〜1600℃で約1〜2時間加熱してチタン
と炭素を純度99.99%以上のサブミクロン単位の炭化チ
タン粉末に変換する工程とからなることを特徴とする炭
化チタン粉末の製造方法。
1. An organotitanate by mixing a liquid organotitanate or organotitanate solution and a carbon precursor polymer solution in proportions such that the amounts are substantially stoichiometric for titanium and carbon. The step of forming a gel by causing a cross-linking reaction with the carbon precursor polymer in the above, and heating the gel to dry the gel, expelling volatile components from the gel, and thermally decomposing the polymer to produce free carbon. And then heating the residual components of this gel at about 1400-1600 ° C. for about 1-2 hours to convert titanium and carbon to submicron titanium carbide powder with a purity of 99.99% or more. A method for producing a titanium carbide powder, which is characterized.
JP61050245A 1985-03-12 1986-03-07 Method for producing titanium carbide powder Expired - Lifetime JPH066484B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US710881 1985-03-12
US06/710,881 US4622215A (en) 1985-03-12 1985-03-12 Process for preparing fine grain titanium carbide powder

Publications (2)

Publication Number Publication Date
JPS62207708A JPS62207708A (en) 1987-09-12
JPH066484B2 true JPH066484B2 (en) 1994-01-26

Family

ID=24855918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61050245A Expired - Lifetime JPH066484B2 (en) 1985-03-12 1986-03-07 Method for producing titanium carbide powder

Country Status (6)

Country Link
US (1) US4622215A (en)
JP (1) JPH066484B2 (en)
DE (1) DE3608264A1 (en)
FR (1) FR2578827A1 (en)
GB (1) GB2172276B (en)
NL (1) NL8600637A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3381007D1 (en) * 1982-06-01 1990-02-01 Mitsui Toatsu Chemicals METHOD OF PRODUCING METAL CARBIDES AND THEIR PRE-PRODUCTS.
US4826666A (en) * 1985-04-26 1989-05-02 Sri International Method of preparing metal carbides and the like and precursors used in such method
DE3785693D1 (en) * 1986-03-27 1993-06-09 Ici Plc PRODUCTION OF CERAMIC MATERIAL.
GB8626088D0 (en) * 1986-10-31 1986-12-03 Ici Plc Ceramic materials
US4866012A (en) * 1987-10-05 1989-09-12 Engelhard Corporation Carbothermally reduced ceramic materials and method of making same
DE3743357A1 (en) * 1987-12-21 1989-07-06 Sueddeutsche Kalkstickstoff METHOD FOR PRODUCING FINE-PART TRANSITION METAL CARBIDES
AT394188B (en) * 1990-03-14 1992-02-10 Treibacher Chemische Werke Ag METHOD FOR THE PRODUCTION OF FINE-GRINED, SINTER-ACTIVE NITRIDE AND CARBONITRIDE POWDERS OF TITANIUM
WO1992014684A1 (en) * 1991-02-25 1992-09-03 Akzo N.V. Metal carbide production from carboxylate precursors
US5169808A (en) * 1991-02-25 1992-12-08 Akzo Nv Metal carbide production from carboxylate precursors
CN1044269C (en) * 1993-06-02 1999-07-21 美国3M公司 Nonwoven articles and methods of producing same
US5417952A (en) * 1994-05-27 1995-05-23 Midwest Research Institute Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride
DE59801677D1 (en) 1997-05-02 2001-11-15 Bayer Ag Process for the production of transition metal carbides and / or transition metal carbonitrides and their use as well as new transition metal xerogels
WO2006106873A1 (en) * 2005-03-30 2006-10-12 Fukuoka Prefecture Titanium carbide powder and titanium carbide-ceramics composite powder and method for production thereof, and sintered compact from the titanium carbide powder and sintered compact from the titanium carbide/ceramics composite powders and method for production thereof
FR2917080B1 (en) * 2007-06-06 2009-09-04 Commissariat Energie Atomique METHOD FOR MANUFACTURING CARBON-COATED TRANSITION METAL OXIDE NANOPARTICLES
EP2279224A4 (en) * 2008-05-14 2012-07-04 Henkel Corp A curable composition and use thereof
CN103274410A (en) * 2013-06-16 2013-09-04 桂林理工大学 TiC powder preparation method taking tetrabutyl titanate and pentaerythritol serving as titanium source and carbon source respectively
CN103274412A (en) * 2013-06-16 2013-09-04 桂林理工大学 TiC powder preparation method taking tetrabutyl titanate and phenolic resin serving as titanium source and carbon source respectively
CN103395753B (en) * 2013-08-04 2016-02-24 桂林理工大学 The method that titanium source and carbon source prepare TiCN powder is respectively with tetrabutyl titanate and tetramethylolmethane
FR3024722B1 (en) * 2014-08-07 2020-01-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR THE PREPARATION OF A METAL CARBIDE BY COLLOIDAL ROUTE, SAID METAL CARBIDE THUS PREPARED AND USES THEREOF

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3428719A (en) * 1965-10-23 1969-02-18 Fmc Corp Method of producing high temperature resistant structures
DE2108457C3 (en) * 1971-02-22 1978-06-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of powdery tungsten-containing electrode material for electrochemical cells
US3932594A (en) * 1973-12-28 1976-01-13 Union Carbide Corporation Process for the preparation of fine grain metal carbide powders
GB1535471A (en) * 1976-02-26 1978-12-13 Toyo Boseki Process for preparation of a metal carbide-containing moulded product
GB1580041A (en) * 1976-03-31 1980-11-26 Atomic Energy Authority Uk Refractory materials
JPS54107500A (en) * 1978-02-10 1979-08-23 Nat Res Inst Metals Manufacture of titanium carbide fine powder
US4342712A (en) * 1979-06-28 1982-08-03 Ube Industries, Ltd. Process for producing continuous inorganic fibers
US4536358A (en) * 1982-06-17 1985-08-20 Uop Inc. Process for the production of high surface area catalyst supports
JPS59162176A (en) * 1983-03-07 1984-09-13 財団法人 特殊無機材料研究所 Tic-tio molded body and manufacture
JPS59161430A (en) * 1983-03-07 1984-09-12 Tokushu Muki Zairyo Kenkyusho High polymer substance to be converted into inorganic substance having tic crystalline structure and its preparation

Also Published As

Publication number Publication date
FR2578827A1 (en) 1986-09-19
GB8605286D0 (en) 1986-04-09
US4622215A (en) 1986-11-11
NL8600637A (en) 1986-10-01
DE3608264A1 (en) 1986-09-18
JPS62207708A (en) 1987-09-12
GB2172276B (en) 1988-09-14
GB2172276A (en) 1986-09-17

Similar Documents

Publication Publication Date Title
JPH066484B2 (en) Method for producing titanium carbide powder
US5321223A (en) Method of sintering materials with microwave radiation
JPH0139989B2 (en)
EP0247907B1 (en) Metal carbide and nitride powders for ceramics obtained by carbothermal reduction, and process for their manufacture
JP2506852B2 (en) Ceramic abrasive product, manufacturing method thereof, and surface grinding method
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
US5273699A (en) Moisture-resistant aluminum nitride powder and methods of making and using
US4849140A (en) Method for producing monosized ceramic particle through organometallic swollen latex particles
JPS62182164A (en) Manufacture of aluminum nitride sintered body
US4318876A (en) Method of manufacturing a dense silicon carbide ceramic
US5139719A (en) Sintering process and novel ceramic material
RU2556599C1 (en) Method of obtaining nanostructured silicon-carbide ceramics
EP0309323B1 (en) Process of manufacturing superconductors and therewith obtained products
JPH01122964A (en) Zirconia stabilized by yttrium and its production
JPH05508611A (en) Cerium phase in silicon nitride containing cerium
JPH0653564B2 (en) Method for purifying hexagonal boron nitride
FR2620866A1 (en) PROCESS FOR PREPARING SUPERCONDUCTING MATERIALS AND MATERIALS THUS OBTAINED
JPH062565B2 (en) Method for producing silicon carbide
JPS5834427B2 (en) Manufacturing method of silicon nitride sintered body
JPS61183108A (en) Preparation of fine powder of aluminium nitride
EP0479440A1 (en) A method of preparing near-net shape silicon nitride articles and the articles so prepared
JP3224406B2 (en) Method for producing silicon carbide single crystal
JPH04305052A (en) Alpha-alumina-zirconia clad powder and its production
JPH0718013B2 (en) Method for producing glassy carbon coating
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body