JPH0664405A - Resin wheel for caster rubber wheel and caster rubber wheel - Google Patents
Resin wheel for caster rubber wheel and caster rubber wheelInfo
- Publication number
- JPH0664405A JPH0664405A JP24576192A JP24576192A JPH0664405A JP H0664405 A JPH0664405 A JP H0664405A JP 24576192 A JP24576192 A JP 24576192A JP 24576192 A JP24576192 A JP 24576192A JP H0664405 A JPH0664405 A JP H0664405A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- resin
- parts
- wheel
- foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はキャスター用ゴム車輪及
びこれに用いられる樹脂ホイルに関し、更に詳しく言え
ば、キャスターに不可欠なベアリングの樹脂ホイルへの
実装においてこのベアリングの外径のバラつきを容易に
吸収でき、且つゴム部との接着及び衝撃強度に優れる樹
脂ホイル、及びこれを用いたゴム車輪に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber wheel for a caster and a resin foil used for the same. More specifically, when mounting a bearing essential to the caster on the resin foil, the outer diameter of the bearing can be easily varied. The present invention relates to a resin foil that can be absorbed and is excellent in adhesion to a rubber portion and excellent in impact strength, and a rubber wheel using the same.
【0002】[0002]
【従来の技術】従来のこの種のホイルとして、防錆性、
軽量及び安価等の点にて、樹脂製のものが知られてい
る。この樹脂のうち、熱可塑性樹脂ホイルにおいては、
破断時の伸びが5%以上と大きくなる為、「しまりば
め」方向でのベアリング圧入によって若干のベアリング
外径のバラつきは吸収できる。しかし、熱可塑性樹脂自
体が有する表面活性不足の為、ゴムタイヤとの接着力が
弱いので、機械的結合を利用する必要が生じる(実公昭
57−32882号公報)。これでは構造が複雑となる
とともに、この場合でも本質的には高いスラスト荷重に
対しての信頼性は十分とはいえない。2. Description of the Related Art As a conventional foil of this type, rust prevention,
Resin-made ones are known because of their light weight and low cost. Of these resins, in the thermoplastic resin foil,
Since the elongation at break becomes as large as 5% or more, a slight variation in the outer diameter of the bearing can be absorbed by press-fitting the bearing in the "shrink fit" direction. However, due to the lack of surface activity of the thermoplastic resin itself, the adhesive force with the rubber tire is weak, and it is necessary to use mechanical bonding (Japanese Utility Model Publication No. 57-32882). This makes the structure complicated, and even in this case, the reliability with respect to a high thrust load is essentially not sufficient.
【0003】[0003]
【発明が解決しようとする課題】また、上記熱硬化性樹
脂ホイルにおいては、分子鎖が三次元的に化学結合(架
橋)している為、加硫ゴムとの接着は容易且つ強靱であ
る。しかし、破断時伸びが1%以下と小さく、実効的に
は0.5%程度であり、ベアリングのしまりばめ圧入時
に嵌合できなかったり、無理に嵌合すれば、容易にホイ
ルの破損を招く。例えば、図2に示すホイルにおいて、
ホイル内径19.90mmのとき、破断時寸法は19.
90mm×1.005=20.00mmであるが、この
ベアリングは一般にバラつき±0.1mmで外径20m
mのニードルベアリングの場合、φ20.00mm±
0.1mmで正規分布している(図5)。従って、その
まま嵌合すれば、約50%のホイルがベアリング嵌合不
可又はホイル破損という結果になる。尚、ベアリングの
寸法バラつきをホイル内径の寸法許容範囲内にすれば、
この問題は解決できるが、コスト的に大幅アップとな
り、実用的ではない。更に、高衝撃強度を維持しつつ且
つ破断伸びが大きい材料を得るために、熱硬化性樹脂
に、液状又は溶剤に希釈した未加硫のゴム成分を大量に
添加してポリマーマトリックスにゴム的な性質を与える
ことも知られている(「ポリエステルハンドブック」、
第84頁、日刊工業新聞社刊)。しかし、これは、高い
破断伸びが得られたにもかかわらず、衝撃耐性に関して
は十分ではなく20kgfcm/cm2 程度と小さい。Further, in the above thermosetting resin foil, the molecular chains are three-dimensionally chemically bonded (crosslinked), so that the adhesion to the vulcanized rubber is easy and strong. However, the elongation at break is as small as 1% or less, and is effectively about 0.5%. If the bearing cannot be fitted when the bearing is press-fitted or if it is forcibly fitted, the foil will be easily damaged. Invite. For example, in the foil shown in FIG.
When the wheel inner diameter is 19.90 mm, the breaking dimension is 19.
90mm x 1.005 = 20.00mm, but this bearing is generally ± 0.1mm in variation and 20m in outer diameter.
In case of m needle bearing, φ20.00mm ±
It has a normal distribution of 0.1 mm (Fig. 5). Therefore, if they are fitted as they are, about 50% of the foils result in non-fitting bearings or foil breakage. In addition, if the dimensional variation of the bearing is within the dimensional tolerance range of the wheel inner diameter,
Although this problem can be solved, the cost is significantly increased and it is not practical. Furthermore, in order to obtain a material having a large elongation at break while maintaining high impact strength, a large amount of unvulcanized rubber component which is liquid or diluted in a solvent is added to the thermosetting resin to make the polymer matrix rubber-like. It is also known to give properties ("Polyester Handbook",
Page 84, published by Nikkan Kogyo Shimbun). However, this is not sufficient in terms of impact resistance, although a high elongation at break is obtained, and is as small as about 20 kgfcm / cm 2 .
【0004】本発明は、上記問題点を解決するものであ
り、ベアリングの外径のバラつきを容易に吸収でき、且
つゴム部との接着性及び衝撃強度に優れる樹脂ホイル、
及びこれを用いたゴム車輪を提供することを目的とす
る。The present invention solves the above-mentioned problems, and a resin foil capable of easily absorbing variations in the outer diameter of a bearing, and having excellent adhesiveness to a rubber portion and impact strength,
And to provide a rubber wheel using the same.
【0005】[0005]
【課題を解決するための手段】本発明者らは、理想的な
産業用キャスターに用いる強化熱硬化性樹脂ホイルに外
径バラつきの大きい市販ベアリングをいかにしてムダな
く嵌合させるかについて鋭意検討して得られたものであ
る。本発明のキャスター用ゴム車輪に用いられる樹脂ホ
イルは、液状熱硬化性樹脂100重量部、平均粒径20
0μm以下の架橋若しくは部分架橋されたゴム粒子5〜
20重量部、補強繊維、無機充填材、可塑剤及び架橋剤
を含む原料を混合し、所定形状に成形し、その後硬化さ
せて製造され、表面側に上記ゴム粒子が濃縮されて存在
することを特徴とする。Means for Solving the Problems The inventors of the present invention diligently studied how to fit a commercially available bearing having a large outer diameter variation to a reinforced thermosetting resin foil used for an ideal industrial caster without waste. It was obtained by doing. The resin foil used in the rubber wheel for casters of the present invention has 100 parts by weight of liquid thermosetting resin and an average particle size of 20.
Cross-linked or partially cross-linked rubber particles of 0 μm or less 5
20 parts by weight, reinforcing fibers, an inorganic filler, a plasticizer and a raw material containing a cross-linking agent are mixed, molded into a predetermined shape, and then cured to produce the rubber particles on the surface side in a concentrated form. Characterize.
【0006】上記「液状熱硬化樹脂」とは、加熱前は液
状を示すオリゴマーであり、例えば、不飽和ポリエステ
ル樹脂、ビニルエステル樹脂、エポキシアクリレート樹
脂等の液状のものを挙げることができる。熱硬化樹脂と
するのは、加熱後においては、引張り強度、圧縮強度を
向上させるものである。また、「液状」のものとするの
は、その原料素材同志が容易に混じり合い、またゴム粒
子をミキサーにて混合するときこのゴム粒子を容易に均
一分散させることができ、更に同一の架橋機構を有する
のでブレンドが可能であるためである。The above-mentioned "liquid thermosetting resin" is an oligomer which shows a liquid state before heating, and examples thereof include liquid polyester resins such as unsaturated polyester resin, vinyl ester resin and epoxy acrylate resin. The thermosetting resin improves the tensile strength and the compressive strength after heating. In addition, "liquid" means that the raw material materials are easily mixed with each other, and when the rubber particles are mixed with a mixer, the rubber particles can be easily and uniformly dispersed, and the same crosslinking mechanism is used. This is because the blending is possible because it has
【0007】上記「補強繊維」は、耐久性を向上させる
ために配合されるものであり、例えば、ガラス繊維、ア
ラミド繊維、カーボン繊維、ビニロン繊維等を挙げるこ
とができる。この繊維としては、一般に長さ12〜24
mm程度の長繊維が好ましい。この繊維の配合量は、熱
硬化樹脂100部に対し50〜200部程度が好まし
い。この50部未満では十分な強度が得られず、具体的
にいえば、JISK6911法によるシャルピー衝撃強
度(以下、衝撃強度という。)が衝撃強度の目安となる
35kgfcm/cm2 以下となる。また、200部を
越える場合は、破断伸びが0.5%以下にまで低下する
ことがあるので、好ましくない。尚、無強化熱硬化性樹
脂の破断時伸びは1%前後であり、衝撃強度は10kg
fcm/cm2 以下である。The above-mentioned "reinforcing fiber" is added to improve durability, and examples thereof include glass fiber, aramid fiber, carbon fiber and vinylon fiber. This fiber generally has a length of 12 to 24.
Long fibers of about mm are preferable. The blending amount of this fiber is preferably about 50 to 200 parts with respect to 100 parts of the thermosetting resin. If it is less than 50 parts, sufficient strength cannot be obtained, and specifically, the Charpy impact strength (hereinafter referred to as impact strength) according to JIS K6911 method is 35 kgfcm / cm 2 or less, which is a standard of impact strength. If it exceeds 200 parts, the elongation at break may decrease to 0.5% or less, which is not preferable. The elongation at break of the unreinforced thermosetting resin is around 1% and the impact strength is 10 kg.
It is not more than fcm / cm 2 .
【0008】また、上記「無機充填材」としては、炭酸
カルシウム、クレー等を、「硬化剤」としては、ジクミ
ルパーオキサイド、t−ブチルベンゾエート等を、「可
塑剤」としてはスチレンモノマー、アセトン等を用いる
ことができる。他に、カーボンブラック等の顔料、酸化
マグネシウム等の増粘剤、ステアリン酸亜鉛等の離型剤
等を、必要に応じて配合する。The "inorganic filler" may be calcium carbonate, clay or the like, the "hardener" may be dicumyl peroxide, t-butylbenzoate or the like, and the "plasticizer" may be styrene monomer or acetone. Etc. can be used. In addition, a pigment such as carbon black, a thickener such as magnesium oxide, a release agent such as zinc stearate, and the like are added as necessary.
【0009】上記「ゴム粒子」は、平均粒径200μm
以下の架橋若しくは部分架橋したものである。ここでい
う「ゴム」の素材としては、NBR、SBR、EPD
M、更にIR、天然ゴム等を挙げることができる。この
内、NBR、SBRが強度及び耐候性のバランスに優れ
るので、好ましい。一方、ゴム粒子のかわりに微粒子化
したポリスチレンやポリエチレン等のエラストマー的な
挙動を示す熱可塑性樹脂粒子を用いた場合は、ホイルの
嵌合性についてはほぼ満足できるものの、耐熱性の劣化
即ち耐久性の低下が生じ、またこの熱可塑性樹脂粒子が
成形表面へ移行した場合、ホイル表面とゴム部との接着
性が低下するためである。また、「架橋若しくは部分架
橋された」ゴム粒子を使用するのは、成形材料配合後に
上記液状樹脂によるゴム粒子の膨潤、溶解が生じ、その
ためゴム分が液状化することを防止し、元来のゴム粒子
の機能を長期間維持して、成形材料の特性を保持するた
めである。The "rubber particles" have an average particle size of 200 μm.
The following are crosslinked or partially crosslinked. The material of "rubber" here is NBR, SBR, EPD
M, IR, natural rubber and the like can be mentioned. Among these, NBR and SBR are preferable because they have a good balance of strength and weather resistance. On the other hand, when thermoplastic resin particles that show elastomeric behavior such as polystyrene or polyethylene are used instead of rubber particles, the fitability of the foil is almost satisfied, but the deterioration of heat resistance or durability. When the thermoplastic resin particles migrate to the molding surface, the adhesiveness between the foil surface and the rubber portion decreases. In addition, the use of "crosslinked or partially crosslinked" rubber particles prevents swelling and dissolution of the rubber particles by the liquid resin after compounding the molding material, and thus prevents the rubber component from liquefying. This is because the function of the rubber particles is maintained for a long time and the characteristics of the molding material are maintained.
【0010】更に、ゴム粒子を「平均粒径200μm以
下」とするのは、これを越える粒径になると成形条件だ
けでは、ゴム粒子のホイル表層への移行が難しくなるた
めである。また、粒径が細かければ細かい程、均一分散
が可能となるので、好ましいが、工業的には100μm
程度のものが供給されており、これ以下のものは入手し
にくい。更に、平均粒子径を大きくすれば、移行には好
都合であるが、それだけ異物としての効果が高まり、そ
のため機械強度、衝撃強度に優れない場合が生ずる。ま
た、このゴム粒子の配合量は、液状樹脂100部に対し
5〜20部とするのは、これが5部未満では添加効果に
乏しく、一方20部を越える場合はマトリックスレジン
がゴム的性質を持ち始め、そのため衝撃強度がやはり3
5kgfcm/cm2 以下になるためである。Further, the reason why the rubber particles have an average particle diameter of 200 μm or less is that if the particle diameter exceeds this, it is difficult to transfer the rubber particles to the surface layer of the foil only by molding conditions. Also, the finer the particle size, the more uniform the dispersion becomes possible, which is preferable, but industrially 100 μm.
Something is supplied, and less than this is difficult to obtain. Further, if the average particle diameter is increased, it is convenient for migration, but the effect as a foreign substance is increased accordingly, and therefore, mechanical strength and impact strength may not be excellent in some cases. Further, the compounding amount of the rubber particles is set to 5 to 20 parts with respect to 100 parts of the liquid resin. If it is less than 5 parts, the addition effect is poor, while if it exceeds 20 parts, the matrix resin has rubber-like properties. The impact strength is still 3
This is because it becomes 5 kgfcm / cm 2 or less.
【0011】本発明の樹脂ホイルは、所定の原料組成物
を用いて成形、硬化する場合、通常、140〜160℃
で1〜5分間の硬化条件の下で50kg/cm2 以上の
圧力をかけて金型内で行う。本発明では、このとき熱硬
化性樹脂は硬化直前には、素材の半固形状態から液状に
近い状態に溶融し、その後固まるという性質を利用した
ものである。即ち、通常の熱硬化性樹脂の成形、特に圧
縮成形においては、そのマトリックス中に極端に相溶性
の悪いもの(例えばポリエチレン微粒子や表面処理のさ
れていないガラスバルーン等)を含んでいる場合、バン
ピング成形(ガス抜成形)を行うと硬化直前の低粘性状
態下でその加圧により、これ等は異物として表層に移行
してくるという性質があり、熱硬化樹脂の成形において
はこの様な状態を起こさないことが本来の好ましい成形
である。一方、本発明はこの性質に着目し、傾斜機能的
性質を有するホイル用樹脂を製造するものである。即
ち、所定の液状樹脂内に均一に混合されたゴム粒子は、
まさに前述の非相溶性の異物であり、成形の結果、ゴム
粒子が樹脂ホイルの表層に移行した状態になる(図
1)。その表層の厚さは成形条件にもよるが、通常、数
mm未満程度である。When the resin foil of the present invention is molded and cured using a predetermined raw material composition, it is usually 140 to 160 ° C.
In the mold, a pressure of 50 kg / cm 2 or more is applied under curing conditions of 1 to 5 minutes. In the present invention, at this time, the thermosetting resin utilizes the property that the material is melted from a semi-solid state to a liquid state immediately before curing and then solidified. That is, in the usual molding of thermosetting resin, particularly in compression molding, when the matrix contains extremely poor compatibility (for example, polyethylene fine particles or glass balloons not surface-treated), bumping When molding (gas demolding), there is a property that when pressed under a low-viscosity state immediately before curing, these will migrate to the surface layer as foreign matter. Not causing it is the original preferable molding. On the other hand, the present invention focuses on this property and produces a resin for foil having a functionally graded property. That is, the rubber particles uniformly mixed in the predetermined liquid resin,
It is exactly the above-mentioned incompatible foreign matter, and as a result of molding, the rubber particles are in a state of being transferred to the surface layer of the resin foil (Fig. 1). The thickness of the surface layer depends on the molding conditions, but is usually less than several mm.
【0012】本第2発明のキャスター用ゴム車輪は、上
記第1発明に示す樹脂ホイルと、該樹脂ホイルの側周面
に、接着剤層を介して接合されるゴム部と、からなるこ
とを特徴とする。使用する接着剤は、特に限定されず、
例えば、合成ゴム系、フェノール樹脂系等のものを使用
できる。このゴム部を構成するゴム成分は、特に限定さ
れないが、NR、BR等が好ましく、成形、加硫されて
製造される。The rubber wheel for casters according to the second aspect of the present invention comprises the resin foil according to the first aspect of the present invention and a rubber portion joined to the side peripheral surface of the resin foil via an adhesive layer. Characterize. The adhesive used is not particularly limited,
For example, synthetic rubber type, phenol resin type and the like can be used. The rubber component constituting the rubber portion is not particularly limited, but NR, BR and the like are preferable, and they are manufactured by molding and vulcanization.
【0013】[0013]
【実施例】以下、実施例により本発明を具体的に説明す
る。 (1)樹脂ホイルの製造 実施例1〜7 先ず、表1(実施例1〜7)に示す不飽和ポリエステル
樹脂、可塑剤、硬化剤、離型剤、増粘剤及びゴム粒子を
同表に示す組成割合にて配合し、ミキサーにて充分に混
合、分散を行った。その後、ニーダーにてその混合物
に、同表に示す補強繊維及び増量剤を同表に示す組成割
合にて加え混練して、成形材料を調製した。EXAMPLES The present invention will be specifically described below with reference to examples. (1) Production of Resin Foil Examples 1 to 7 First, the unsaturated polyester resin, plasticizer, curing agent, release agent, thickener and rubber particles shown in Table 1 (Examples 1 to 7) are shown in the same table. The ingredients were blended in the composition ratios shown below and thoroughly mixed and dispersed by a mixer. After that, a reinforcing fiber and an extender shown in the same table were added to the mixture in a kneader at a composition ratio shown in the same table and kneaded to prepare a molding material.
【0014】[0014]
【表1】 [Table 1]
【0015】尚、同表に示す組成成分は、以下に示すも
のを用いた。また、その配合量を示す数値は、重量部で
ある。 「不飽和ポリエステル樹脂」;日本ユピカ社製、商品名
「ユピカ」 「ビニルエステル樹脂」;昭和高分子社製、商品名「リ
ポキシ」 「エポキシアクリレート樹脂」;日本ユピカ社製、商品
名「ネオポール」The composition components shown in the same table were as shown below. The numerical value showing the blending amount is parts by weight. "Unsaturated polyester resin"; Japan Yupica, trade name "Yupica""Vinyl ester resin"; Showa High Polymer Co., Ltd., trade name "lipoxy""Epoxy acrylate resin"; Japan Yupica, trade name "Neopol"
【0016】「ゴム粒子」; 実施例1、4、6及び7=ポリサー社製、商品名「クラ
イナック」 実施例2=SBR100部、シリカ30部、亜鉛華5
部、ステアリン酸1部、加硫促進剤0.5部、イオウ2
部を配合したゴム配合物を160℃にて10分間架橋さ
せたゴム硬化物を液体窒素にて冷凍後、粉砕機により微
粉砕して得られるゴム粉を200メッシュのふるいに通
した平均粒子径160μmのゴム粒子 実施例3=EPDM100部、炭酸カルシウム40部、
ステアリン酸1部、亜鉛華5部、ジクミルパーオキサイ
ド5部を160℃にて15分間架橋させて得たゴム硬化
物を、実施例2に従って微粉化した平均粒径160μm
のもの 実施例5=実施例2と同様に製造し、その後微粉砕して
得たゴム粉を250メッシュのふるいに通して、平均粒
子径を100μmとしたもの 「ガラス繊維」;旭ファイバーグラス社製、商品名「フ
ァイバーグラス」 「ビニロン繊維」;倉レ社製、商品名「クラロン」 「アラミド繊維」;日本アラミド社製、商品名「トワロ
ン」"Rubber particles"; Examples 1, 4, 6 and 7 = manufactured by Polycer, trade name "Clinac" Example 2 = SBR 100 parts, silica 30 parts, zinc white 5
Parts, stearic acid 1 part, vulcanization accelerator 0.5 parts, sulfur 2
The rubber powder obtained by cross-linking the rubber compound containing 10 parts of the rubber composition at 160 ° C. for 10 minutes is frozen in liquid nitrogen and then finely ground by a pulverizer to obtain rubber powder, which is then passed through a 200-mesh sieve to obtain an average particle diameter. 160 μm rubber particles Example 3 = 100 parts EPDM, 40 parts calcium carbonate,
A rubber cured product obtained by crosslinking 1 part of stearic acid, 5 parts of zinc oxide and 5 parts of dicumyl peroxide at 160 ° C. for 15 minutes was pulverized according to Example 2 to give an average particle size of 160 μm.
Example 5 = manufactured in the same manner as in Example 2 and then finely pulverized to obtain rubber powder, which was passed through a 250-mesh sieve to have an average particle size of 100 µm "glass fiber"; Asahi Fiber Glass Co., Ltd. Made, product name "Fiberglass""Vinylonfiber"; Kurare Co., product name "Claron""Aramidfiber"; Nippon Aramid Co., product name "Twaron"
【0017】上記各成形材料を圧縮成形法にて圧力15
0kg/cm2 、温度155℃で5分間硬化させて、図
2(縦断面図)及び図3(正面図)に示す樹脂ホイル1
を製造した。このホイル1の全体形状は、55mmφ×
32mmであり、各部位の肉厚(図3のL1 、L2 及び
L3 )はいずれも4mmであり、その中央にはベアリン
グ用孔(孔径=ホイル内径;19.90mmφ)11を
有する。また、このベアリング用孔の周辺部のゴム粒子
の存在状態を目視で観察した所、、図1の縦断面図に示
すように、ゴム粒子12が表面側に行くに従って濃縮さ
れていることを示した。このことは、異物であるゴム粒
子が成形時に表面側に移行したことを示している。その
後、このホイルの、ゴム部と接着する外周面を、バフが
けにて接着前処理を行い、脱脂洗浄後、接着剤(ロード
ファーイースト社製:商品名「ケムロック」)を塗布し
た。その後、NR50部、BR50部、カーボンブラッ
ク100部、プロセス油100部、亜鉛華5部、ステア
リン酸1部、イオウ3部及び加硫促進剤0.5部からな
るタイヤ用配合ゴム組成物を、所定型を用いて、圧力1
50kg/cm2 、温度160℃で20分間加硫接着し
て、図4に示すゴム車輪を作製した。この車輪の外径は
75mmφである。A pressure of 15 is applied to each of the above molding materials by a compression molding method.
Resin foil 1 shown in FIG. 2 (longitudinal sectional view) and FIG. 3 (front view) after being cured at 0 kg / cm 2 and a temperature of 155 ° C. for 5 minutes.
Was manufactured. The overall shape of this foil 1 is 55 mmφ ×
The thickness of each part (L1, L2 and L3 in FIG. 3) is 4 mm, and a bearing hole (hole diameter = foil inner diameter; 19.90 mmφ) 11 is provided in the center thereof. Further, when the presence state of the rubber particles in the peripheral portion of the bearing hole is visually observed, it is shown that the rubber particles 12 are concentrated toward the surface side, as shown in the longitudinal sectional view of FIG. It was This indicates that the rubber particles, which are foreign substances, migrated to the surface side during molding. Thereafter, the outer peripheral surface of the foil, which is bonded to the rubber portion, was subjected to a bonding pretreatment by buffing, and after degreasing and cleaning, an adhesive (manufactured by Road Far East Co .: trade name "Chemrock") was applied. Then, a compounded rubber composition for a tire comprising 50 parts of NR, 50 parts of BR, 100 parts of carbon black, 100 parts of process oil, 5 parts of zinc white, 1 part of stearic acid, 3 parts of sulfur and 0.5 part of a vulcanization accelerator, Using a predetermined mold, pressure 1
The rubber wheel shown in FIG. 4 was manufactured by vulcanization adhesion at 50 kg / cm 2 and a temperature of 160 ° C. for 20 minutes. The outer diameter of this wheel is 75 mmφ.
【0018】比較例1〜5 表2に示す組成をもつ成形材料にて実施例1と同様にし
て樹脂ホイル及びゴム輪を製造した。尚、比較例4にて
使用したゴム粒子は、実施例3と同様な方法にて得られ
たEPDMゴム粉を80メッシュのふるいに通して製造
したものである。比較例5にて使用したゴム粒子は、未
架橋のSBR粉末(日本合成ゴム社製、平均粒子径;1
00μm)である。比較例6にて使用したゴム粒子は、
ポリエチレン粉末(三菱油化社製、平均粒子径;200
μm)である。また、同表中、*印を付した値は、本発
明範囲から外れるものである。Comparative Examples 1 to 5 Resin foils and rubber rings were produced in the same manner as in Example 1 using molding materials having the compositions shown in Table 2. The rubber particles used in Comparative Example 4 were produced by passing the EPDM rubber powder obtained by the same method as in Example 3 through a 80 mesh sieve. The rubber particles used in Comparative Example 5 were uncrosslinked SBR powder (manufactured by Japan Synthetic Rubber Co., Ltd., average particle diameter; 1).
00 μm). The rubber particles used in Comparative Example 6 are
Polyethylene powder (Mitsubishi Yuka Co., Ltd., average particle size: 200
μm). Further, in the table, the values marked with * are outside the scope of the present invention.
【0019】[0019]
【表2】 [Table 2]
【0020】(2)性能評価 以上の各実施例及び比較例のゴム車輪について、樹脂ホ
イルのゴム接着性、樹脂ホイルの衝撃強度、ベアリング
の嵌合性について評価した。ゴム接着性はJISK63
01に準拠した90°剥離試験を用いた。衝撃強度はJ
ISK6911のシャルピー衝撃強度に準拠した。ベア
リングの嵌合性については、作製したゴム車輪に対し、
外径を切削加工にて1/1000まで精度を出したニー
ドルベアリングを実際に圧入し、どの位のしまりばめ量
まで樹脂ホイルを破損させずに圧入できるかについて試
験した。その結果を表3及び表4に示す。尚、これらの
表中のベアリング嵌合性評価の欄は、しまりばめ量を変
えたベアリングを圧入しホイルの破損の有無を確認した
ものである。(2) Performance Evaluation With respect to the rubber wheels of each of the above examples and comparative examples, the rubber adhesion of the resin foil, the impact strength of the resin foil, and the fitting property of the bearing were evaluated. Rubber adhesion is JISK63
A 90 ° peel test according to 01 was used. Impact strength is J
It was based on the Charpy impact strength of ISK6911. Regarding the fitability of the bearing,
A needle bearing having an accuracy of 1/1000 obtained by cutting the outer diameter was actually press-fitted, and it was tested to what extent the tight fit amount could be press-fitted without damaging the resin foil. The results are shown in Tables 3 and 4. In the column of bearing fitting evaluation in these tables, bearings with different tight fits were press-fitted and the presence or absence of damage to the foil was confirmed.
【0021】[0021]
【表3】 [Table 3]
【0022】[0022]
【表4】 [Table 4]
【0023】(3)実施例の効果 実施例1〜7についてはいずれも、優れた各性能を示し
た。即ち、ゴム部と樹脂ホイル表面との接着力は剥離試
験の結果、ゴム材質破壊を示し、優れた接着性を示し
た。樹脂ホイルの耐衝撃性は、シャルピー衝撃強度にて
53〜58kgfcm/cm2 を示し、35kgfcm
/cm2 を大きく越えた値を示した。また、このテスト
にて使用した3インチ用樹脂ホイルの図2の重量はわず
か85gであったが、このホイルより作製したゴム車輪
に3インチ用ゴム車輪の耐えるべき下限衝撃力の58.
8ジュールの衝撃エネルギーを与えても破損はなく、軽
量且つ高強度であることが判った。ベアリングの嵌合性
については0.20mm以上のしまりばめ量にてベアリ
ングを圧入してもホイルに破損はなかった。この結果、
図2に示すバラツキ(ベアリング外径φ20mm±0.
1)を有する一般の産業用ベアリングの全てを嵌合でき
ることとなった。(3) Effects of the Examples In each of Examples 1 to 7, excellent performance was shown. That is, as a result of the peeling test, the adhesive force between the rubber portion and the surface of the resin foil showed the destruction of the rubber material and showed excellent adhesiveness. The impact resistance of the resin foil shows a Charpy impact strength of 53 to 58 kgfcm / cm 2 , and 35 kgfcm.
The value greatly exceeded / cm 2 . Although the weight of the resin foil for 3 inches used in this test in FIG. 2 was only 85 g, the rubber wheel made from this foil had a lower limit impact force of 58.
It was found that even if an impact energy of 8 joules was applied, there was no damage, and it was lightweight and had high strength. Regarding the fitability of the bearing, even if the bearing was press-fit with a tight fit amount of 0.20 mm or more, the foil was not damaged. As a result,
The variation shown in FIG. 2 (bearing outer diameter φ20 mm ± 0.
All of the general industrial bearings having 1) can be fitted.
【0024】尚、補強繊維の配合量が50部と少ない場
合(実施例6)は、衝撃強度が36kgfcm/cm2
であり、実用的な範囲には含まれる。また、補強繊維の
配合量が200部と多い場合(実施例7)は、衝撃強度
は65kgfcm/cm2 、破断伸びが1.2%、しま
りばめ量は0.20mmであり、上記と同様に嵌合性に
優れる。When the content of the reinforcing fiber was as small as 50 parts (Example 6), the impact strength was 36 kgfcm / cm 2.
Therefore, it is included in the practical range. When the content of the reinforcing fiber was as large as 200 parts (Example 7), the impact strength was 65 kgfcm / cm 2 , the elongation at break was 1.2%, and the interference fit amount was 0.20 mm. It has excellent fitting properties.
【0025】一方、各比較例のゴム車輪については次の
結果を得た。比較例1及び2については、ゴム粒子配合
量が少ない(又は含まれない)ため、しまりばめ量が
0.10mmであり、ホイルにワレの生じベアリング嵌
合性が劣った。比較例3については、ゴム粒子配合量が
多いため、衝撃強度が26kgfcm/cm2 と低くな
り、衝撃によるワレが起こり易く、そのため産業用ゴム
車輪として使用不適当であることが判った。また、ホイ
ル表面にゴム粒子が浮いており外観的にも不良であっ
た。比較例4についても、比較例3と同様に衝撃強度が
28kgfcm/cm2 と低く。これは、配合したゴム
粒子径が大きいために、ゴム粒子自体の空間が、樹脂に
とってボイド効果を与えたためと考えられる。On the other hand, the following results were obtained for the rubber wheels of each comparative example. In Comparative Examples 1 and 2, the amount of rubber particles blended was small (or not included), so the amount of interference fit was 0.10 mm, and cracking occurred on the foil, and the bearing fitting property was poor. In Comparative Example 3, it was found that the impact strength was as low as 26 kgfcm / cm 2 due to the large amount of rubber particles blended, and cracking easily occurred due to impact, and therefore it was unsuitable for use as an industrial rubber wheel. In addition, rubber particles were floating on the surface of the foil, and the appearance was poor. The impact strength of Comparative Example 4 is as low as 28 kgfcm / cm 2 as in Comparative Example 3. It is considered that this is because the compounded rubber particles have a large diameter and the voids of the rubber particles themselves give a void effect to the resin.
【0026】比較例5については、未架橋のゴム粒子を
用いたため、成形材料中でゴム粒子の形状が保持され
ず、成形中にゴム成分自体は表面方向への移行を生じる
が、一部熱硬化性樹脂と相溶したような状態となり、十
分にゴム粒子添加の効果が現れず、そのため、しまりば
め量が0.15mmにてホイルにワレが発生した。即
ち、ベアリング嵌合性が若干劣った。また、衝撃強度に
ついてもやや低い値(33kgfcm/cm2 )を示し
た。比較例6については、ゴム粒子の替わりにポリエチ
レン粒子を配合したために、成形中にポリエチレン成分
の大部分が車輪表面付近へ浮き出し、そのポリエチレン
成分の接着不活性のため、接着界面において界面剥離を
生じ、ゴム車輪用ホイルとして使用不可であることが判
った。また、衝撃強度についてもやや低く、更にベアリ
ング嵌合性についても改善の効果がなかった。In Comparative Example 5, since uncrosslinked rubber particles were used, the shape of the rubber particles was not retained in the molding material, and the rubber component itself migrated toward the surface during molding, but some heat was generated. The resin was in a state of being compatible with the curable resin, and the effect of adding the rubber particles was not sufficiently exhibited. Therefore, the foil was cracked when the interference fit amount was 0.15 mm. That is, the bearing fitting property was slightly inferior. The impact strength also showed a slightly low value (33 kgfcm / cm 2 ). In Comparative Example 6, since polyethylene particles were blended in place of rubber particles, most of the polyethylene component floated out near the wheel surface during molding, and the polyethylene component was inactive in adhesion, resulting in interfacial peeling at the adhesion interface. It turned out that it cannot be used as a wheel for rubber wheels. Moreover, the impact strength was also slightly low, and there was no improvement in bearing fitability.
【0027】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。即ち、
ゴム粒子は架橋した固形ゴムを物理的に微粉砕したもの
でもゴムの重合中に架橋、微粉化処理したものでもよ
く、また、その見かけ比重は小さい方が好ましい。The present invention is not limited to the specific examples described above, but various modifications may be made within the scope of the present invention depending on the purpose and application. That is,
The rubber particles may be those obtained by physically pulverizing a crosslinked solid rubber or by subjecting the rubber to crosslinking and pulverization during polymerization of the rubber, and it is preferable that the apparent specific gravity is small.
【0028】[0028]
【発明の効果】本発明のホイルは、樹脂製であるととも
に、ゴム粒子がその表面側に移行されて濃縮されるの
で、防錆性、軽量性に優れるとともに、ベアリングの外
径のバラつきを容易に吸収でき、且つ衝撃強度に優れ、
更にその外周側に形成されるゴム部との接着性にも優れ
る。従って、これを用いたゴム車輪は、キャスター性能
として大変優れる。EFFECT OF THE INVENTION The foil of the present invention is made of resin, and since rubber particles are transferred to the surface side of the foil and concentrated, it is excellent in rust resistance and lightweight, and the outer diameter of the bearing can be easily varied. Can be absorbed into, and has excellent impact strength,
Further, it has excellent adhesiveness with the rubber portion formed on the outer peripheral side thereof. Therefore, the rubber wheel using this is very excellent in caster performance.
【図1】樹脂ホイル中においてゴム粒子が分散している
状態を示す説明図である。FIG. 1 is an explanatory view showing a state in which rubber particles are dispersed in a resin foil.
【図2】実施例において製造された樹脂ホイルの縦断面
図である。FIG. 2 is a vertical sectional view of a resin foil manufactured in an example.
【図3】図2に示す樹脂ホイルの正面図である。FIG. 3 is a front view of the resin foil shown in FIG.
【図4】実施例において製造されたゴム車輪の一部を破
断した縦断面図である。FIG. 4 is a vertical sectional view in which a part of a rubber wheel manufactured in an example is cut away.
【図5】一般に使用するベアリングの外径のバラツキ状
態を示す説明図である。FIG. 5 is an explanatory diagram showing a variation in outer diameter of a commonly used bearing.
1;樹脂ホイル、11;ベアリング用孔、12;ゴム粒
子、2;ゴム部、3;ベアリング、31;シャフト用
孔。1; Resin foil, 11; Bearing hole, 12; Rubber particles, 2; Rubber part, 3; Bearing, 31; Shaft hole.
Claims (2)
径200μm以下の架橋若しくは部分架橋されたゴム粒
子5〜20重量部、補強繊維、無機充填材、可塑剤及び
架橋剤を含む原料を混合し、所定形状に成形し、その後
硬化させて製造され、表面側に上記ゴム粒子が濃縮され
て存在することを特徴とする、キャスター用ゴム車輪に
用いられる樹脂ホイル。1. A raw material containing 100 parts by weight of a liquid thermosetting resin, 5 to 20 parts by weight of crosslinked or partially crosslinked rubber particles having an average particle size of 200 μm or less, reinforcing fibers, an inorganic filler, a plasticizer and a crosslinking agent. A resin foil used for a rubber wheel for casters, which is manufactured by mixing, molding into a predetermined shape, and then curing, and having the rubber particles concentrated on the surface side.
イルの側周面に、接着剤層を介して接合されるゴム部
と、からなることを特徴とするキャスター用ゴム車輪。2. A rubber wheel for casters, comprising the resin foil according to claim 1 and a rubber portion joined to a side peripheral surface of the resin foil via an adhesive layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24576192A JPH0664405A (en) | 1992-08-21 | 1992-08-21 | Resin wheel for caster rubber wheel and caster rubber wheel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24576192A JPH0664405A (en) | 1992-08-21 | 1992-08-21 | Resin wheel for caster rubber wheel and caster rubber wheel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0664405A true JPH0664405A (en) | 1994-03-08 |
Family
ID=17138412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24576192A Pending JPH0664405A (en) | 1992-08-21 | 1992-08-21 | Resin wheel for caster rubber wheel and caster rubber wheel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0664405A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327782A (en) * | 2001-04-27 | 2002-11-15 | Nsk Warner Kk | Production method for friction board |
JPWO2015072183A1 (en) * | 2013-11-12 | 2017-03-16 | 株式会社ブリヂストン | Non pneumatic tire |
-
1992
- 1992-08-21 JP JP24576192A patent/JPH0664405A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327782A (en) * | 2001-04-27 | 2002-11-15 | Nsk Warner Kk | Production method for friction board |
JPWO2015072183A1 (en) * | 2013-11-12 | 2017-03-16 | 株式会社ブリヂストン | Non pneumatic tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9249283B2 (en) | Reduced density glass bubble polymer composite | |
CA2260350C (en) | Rubber composition and method for producing the same | |
KR20010034392A (en) | Rubber composition for tire tread having improved running performance on ice and pneumatic tire using the same | |
JP2000507660A (en) | Composite building materials from recycled waste | |
JPS63501726A (en) | Elastomeric-PTFE compositions, articles and manufacturing methods | |
US20080015305A1 (en) | Composites having an improved resistance to fatigue | |
Hulme et al. | Cost effective reprocessing of polyurethane by hot compression moulding | |
US6187420B1 (en) | Fender | |
JPH09188766A (en) | Composite resin composition and production thereof | |
KR102015486B1 (en) | rubber adhesive composition for outsole and midsole, shoes sole using the same and manufacturing method of shoes sole | |
JPH0267333A (en) | Fiber-reinforced composite material filled with resin particle | |
KR930017954A (en) | How to incorporate chitosan reinforced tires and chitosan into elastomers | |
JPH0664405A (en) | Resin wheel for caster rubber wheel and caster rubber wheel | |
ZA200104848B (en) | Method of producing an elastomeric alloy that is similar to thermoplastic elastomers, on the basis of reclaimed rubber or waste rubber. | |
JPH10128752A (en) | Reclamation of used tire rubber | |
De | Re-use of ground rubber waste-A review | |
EP3882022B1 (en) | Laminate body, manufacturing method therefor, and airless tire | |
JPH01502033A (en) | Low specific gravity pressure resistant rubber composition | |
CN103589104B (en) | A kind of automobile damping product | |
JPH0721113B2 (en) | Elastomer PTFE composition and method for producing the same | |
JPH05262918A (en) | Cured rubber composition excellent in vibrational energy-absorbing ability | |
EP1424189A1 (en) | PROCESS FOR PRODUCTION OF VULCANIZED RUBBER−RESIN COMPOSITES | |
JP2841168B2 (en) | Resin valve body and method of manufacturing the same | |
CN114085541B (en) | Rubber composite modified asphalt stabilizer and preparation method and application thereof | |
CN115141581B (en) | High-scour-resistance single-coated metal-rubber hot vulcanized adhesive and use method thereof |