JPH0663133B2 - Carbonaceous fiber having acidic groups - Google Patents

Carbonaceous fiber having acidic groups

Info

Publication number
JPH0663133B2
JPH0663133B2 JP60058818A JP5881885A JPH0663133B2 JP H0663133 B2 JPH0663133 B2 JP H0663133B2 JP 60058818 A JP60058818 A JP 60058818A JP 5881885 A JP5881885 A JP 5881885A JP H0663133 B2 JPH0663133 B2 JP H0663133B2
Authority
JP
Japan
Prior art keywords
fiber
carbonaceous
gas
carbonaceous fiber
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60058818A
Other languages
Japanese (ja)
Other versions
JPS61225326A (en
Inventor
克之 中村
行成 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60058818A priority Critical patent/JPH0663133B2/en
Publication of JPS61225326A publication Critical patent/JPS61225326A/en
Publication of JPH0663133B2 publication Critical patent/JPH0663133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸性基を有する炭素質繊維に関し、さらに詳
しくは酸性基を安定に保有した気相法、特に浮遊法によ
る炭素質繊維に関するものである。
TECHNICAL FIELD The present invention relates to a carbonaceous fiber having an acidic group, and more specifically to a carbonaceous fiber having a stable acidic group, particularly a carbonaceous fiber by a floating method. Is.

(従来の技術) 炭素質繊維はその優れた機械的物性から各種複合材料と
して近年急速に伸びつつある原料材料である。従来の炭
素繊維は有機繊維を焼結して炭化させる等の方法により
製造されていたが、最近炭化水素類の熱分解および触媒
反応によって炭素質繊維を生成させる気相法による炭素
繊維の製造が試みられている(例えば工業材料、昭和57
年7月号、109頁、遠藤、小山および特開昭58−180615
号公報)。
(Prior Art) Carbonaceous fiber is a raw material that has been rapidly expanding in recent years as various composite materials due to its excellent mechanical properties. Conventional carbon fibers have been manufactured by a method such as sintering organic carbon to carbonize, but recently carbon fiber has been manufactured by a vapor phase method in which carbonaceous fibers are produced by thermal decomposition and catalytic reaction of hydrocarbons. Attempted (eg industrial materials, Showa 57)
July issue, p.109, Endo, Koyama and JP-A-58-180615
Issue).

気相法で得られた炭素繊維は、従来のものに比較して優
れた結晶性、配向性および高強度を有し、また該繊維か
ら得られた不織布、積層体等は、電気伝導性を有してい
るので、電池の電極材、発熱体等に、またその耐熱、耐
薬品性を利用してフイルターや触媒担持体等に用いられ
ようとしている。
Carbon fibers obtained by the vapor phase method have excellent crystallinity, orientation and high strength as compared with conventional ones, and nonwoven fabrics, laminates and the like obtained from the fibers have electrical conductivity. Therefore, it is about to be used for an electrode material of a battery, a heating element, etc., and a filter, a catalyst carrier, etc. by utilizing its heat resistance and chemical resistance.

(発明が解決しようとする問題点) しかしながら、従来の気相法による炭素質繊維は、基板
状で炭素繊維を成長させたり、または基板に散布した金
属の超微粉で炭素質繊維を成長させるために、得られる
繊維径が比較的大きく、かつ、樹脂との複合材に用いる
場合、樹脂との接着性がよくなく、実用上問題があっ
た。
(Problems to be solved by the invention) However, the conventional carbonaceous fiber by the vapor phase method is for growing the carbonaceous fiber on the substrate or for growing the carbonaceous fiber with the ultrafine powder of the metal dispersed on the substrate. In addition, the obtained fiber diameter is relatively large, and when it is used in a composite material with a resin, the adhesiveness with the resin is not good and there is a problem in practical use.

また一般に、従来の炭素質繊維は、ぬれ性が悪いために
樹脂との接着性が重要な問題となる。このため、既存の
種々の炭素繊維について表面改質の方法が研究されてお
り、例えば液相または気相下の化学反応、またはプラズ
マ処理などが検討されているが、いずれも反応性の高い
酸性基を安定に保有するものとはいえず、充分な接着性
を得ることができなかった。
Further, in general, conventional carbonaceous fibers have poor wettability, and therefore the adhesiveness with a resin becomes an important issue. For this reason, surface modification methods have been studied for various existing carbon fibers, and for example, chemical reactions in a liquid phase or a gas phase, plasma treatment, and the like have been investigated. It cannot be said that the group has a stable group, and sufficient adhesiveness could not be obtained.

本発明者らは、炭化水素類および特定の有機金属化合物
をキヤリアガスと共に加熱帯域に導入し、該炭化水素類
を熱分解、触媒反応させることによって極めて細く、か
つ特異な構造を有する炭素質繊維が合成されることを見
出し、特許出願をした(特願昭59−83495号、特願昭59
−231967号、59−253550号など)。
The present inventors introduced a hydrocarbon and a specific organometallic compound together with a carrier gas into a heating zone, and thermally decomposed and catalytically reacted the hydrocarbon to obtain a carbonaceous fiber having an extremely thin and unique structure. We found that it could be synthesized and filed a patent application (Japanese Patent Application No. 59-83495 and Japanese Patent Application No. 59-83495).
-231967, 59-253550, etc.).

(問題点を解決するための手段) 本発明者らは、上記炭素質繊維について種々の化学反応
性について検討したところ、この繊維が極めて反応性に
富むことを見出し、特に酸性官能基を安定に保有し得る
ことを見出し、本発明に到達したものである。
(Means for Solving Problems) The inventors of the present invention have investigated various chemical reactivity of the carbonaceous fiber, and found that the fiber has extremely high reactivity, and particularly stabilizes an acidic functional group. The inventors have found that they can hold the present invention and arrived at the present invention.

本発明の炭素質繊維は、繊維の直径が0.01〜4μm、繊
維の長さ/繊維径が20以上、捲縮数が1以上、捲縮度が
10〜50%、滴定法による酸性官能基量が0.5〜500μmol
/g、X線光分光法(ESCA)による酸素濃度Os/C
sが0.05以上で、黒鉛または黒鉛に容易に転化する炭
素の層が長手軸に平行に年輪状に配列して形成された、
酸性基を有することを特徴とする。
The carbonaceous fiber of the present invention has a fiber diameter of 0.01 to 4 μm, a fiber length / fiber diameter of 20 or more, a crimp number of 1 or more, and a crimp degree.
10 to 50%, the amount of acidic functional group by titration method is 0.5 to 500 μmol
/ G, oxygen concentration O 1 s / C by X-ray spectroscopy (ESCA)
1 s is 0.05 or more, and a layer of graphite or a carbon that is easily converted into graphite is formed by arranging in a ring shape parallel to the longitudinal axis,
It is characterized by having an acidic group.

本発明の炭素質繊維の直径は0.01〜4μm、好ましくは
0.05〜3μm(特に0.07〜2.5μm)である。繊維の直
径がこれより大きいと、繊維の交絡度が低下し、好まし
い性質が得られなくなる。また繊維の長さ(L)/繊維
径(D)は20以上、好ましくは50以上(特に100以上)
である。L/Dが20未満では、繊維を集合させた時に充
分な絡合が得られず好ましい性質が低下する。
The carbonaceous fiber of the present invention has a diameter of 0.01 to 4 μm, preferably
It is 0.05 to 3 μm (particularly 0.07 to 2.5 μm). When the diameter of the fiber is larger than this, the degree of entanglement of the fiber is lowered and the desired properties cannot be obtained. The fiber length (L) / fiber diameter (D) is 20 or more, preferably 50 or more (especially 100 or more).
Is. If the L / D is less than 20, sufficient entanglement cannot be obtained when the fibers are assembled, and the desirable properties deteriorate.

本発明の炭素質繊維は捲縮数1以上、捲縮度10〜50%の
捲縮を有する。この場合の捲縮数とは、走査型電顕の観
察写真を用い、繊維長20μmの屈曲の山と谷の総数をい
い、また捲縮度とは、繊維の2点間a、bを直線距離で
40μmとり、その間の実際の繊維長a、bをプラニメー
ターで測定し、次式によって計算したものである(ラン
ダムに5回測定の平均値)。
The carbonaceous fiber of the present invention has a crimp number of 1 or more and a crimp degree of 10 to 50%. In this case, the number of crimps means the total number of peaks and troughs of a fiber having a fiber length of 20 μm using an observation photograph of a scanning electron microscope, and the degree of crimp means a straight line between a and b between two points of the fiber. At a distance
40 μm is taken, and the actual fiber lengths a and b in the meantime are measured by a planimeter and calculated by the following formula (average value of 5 measurements at random).

上記捲縮数および捲縮度が小さすぎると集合体または堆
積物とした時に繊維間の交絡が少くなり、電導性その他
が低下する。
If the number of crimps and the degree of crimp are too small, the entanglement between the fibers becomes less when the aggregate or the deposit is formed, and the electrical conductivity and the like decrease.

本発明の炭素質繊維は、電子顕微鏡で観察すると、形態
的に黒鉛または黒鉛に容易に転化する炭素の層が長手軸
に平行に年輪状に配列して形成されたものであることが
分かった。本発明の炭素質繊維は炭素繊維と黒鉛化繊維
を総称する。
When observed with an electron microscope, it was found that the carbonaceous fiber of the present invention was formed by arranging graphite or a layer of carbon which is easily converted into graphite in an annual ring shape parallel to the longitudinal axis. . The carbonaceous fiber of the present invention is a generic term for carbon fiber and graphitized fiber.

また本発明の炭素質繊維は、滴定法による酸性官能基量
は0.5〜200(特に1〜50)μmol/gである。この滴定
法による酸性官能基量は下記の方法で求められる。すな
わち、試料約5gを500ml共栓三角フラスコに秤量し、水1
00ml、1/50NaOH40mlをホールピペットで正確に加えさ
らに水60mlを加えて200mlとし、時々振りまぜながら20
分放置後超音波加振器に15分間浸し、溶液50mlをホール
ピペットでダルマフラスコに採取し、1/50NのHClで滴
定する。滴定はメトローム電位差滴定装置を用い滴定曲
線から官能基量を求める。
Further, the carbonaceous fiber of the present invention has an amount of acidic functional groups of 0.5 to 200 (particularly 1 to 50) μmol / g as determined by a titration method. The amount of acidic functional group by this titration method is determined by the following method. That is, about 5 g of the sample is weighed in a 500 ml stoppered Erlenmeyer flask, and water 1
Accurately add 00 ml, 1/50 NaOH 40 ml with a whole pipette, and add 60 ml of water to make 200 ml.
After leaving it for a minute, it is immersed in an ultrasonic shaker for 15 minutes, 50 ml of the solution is taken into a Dharma flask with a whole pipette, and titrated with 1/50 N HCl. For the titration, the amount of functional groups is determined from the titration curve using a Metrohm potentiometric titrator.

この酸性官能基量が0.5に達しないと、樹脂、バインダ
ー等と混合した時に充分な接着性が得られず、また200
μmol/gを超えると前記炭素質繊維の特異な性質が劣
化するので好ましくない。
If the amount of this acidic functional group does not reach 0.5, sufficient adhesiveness cannot be obtained when mixed with resin, binder, etc.
When it exceeds μmol / g, the peculiar properties of the carbonaceous fiber are deteriorated, which is not preferable.

本発明の炭素質繊維のX線光電子分光法(ESCA)による
酸素濃度、すなわちCsに対するOsの相対積分強
度(Os/Cs)は0.05以上、好ましくは0.07以
上、さらに好ましくは0.1以上である。この場合の相対
積分強度(Os/Cs)は、X線光電子分光装置を
用い、励起X線としてAlKα1486.6eVを用い、X線出力1
0kV、20mA、温度40℃真空度10 torrで測定したもの
である。得られたスペクトルからCsに対するO
の相対積分強度を計算し、炭素繊維表面の酸素含有官能
基量の指標とした。この値が0.05未満では、酸性基が充
分ではなく、樹脂等との接着性が低下する。
The oxygen concentration of the carbonaceous fiber of the present invention by X-ray photoelectron spectroscopy (ESCA), that is, the relative integrated intensity of O 1 s with respect to C 1 s (O 1 s / C 1 s) is 0.05 or more, preferably 0.07 or more, It is preferably 0.1 or more. The relative integrated intensity (O 1 s / C 1 s) in this case was measured using an X-ray photoelectron spectrometer, using AlKα1486.6eV as the excitation X-ray, and measuring the X-ray output 1
0 kV, 20 mA, temperature 40 ° C. vacuum degree of 10 - was measured at 9 torr. O 1 s from the obtained spectra for C 1 s
Was calculated as the index of the amount of oxygen-containing functional groups on the carbon fiber surface. If this value is less than 0.05, the acidic groups are not sufficient, and the adhesiveness with the resin or the like decreases.

また、本発明の繊維は、ESCAにおけるCsバンドの半
値巾が1.6eV以下、特に1.5eV以下のシャープなバンドピ
ークを示し、均質な構造を有するものである。
The fiber of the present invention, the half width of the C 1 s band in ESCA is 1.6eV or less, in particular shows the following sharp band peak 1.5 eV, and has a homogeneous structure.

本発明の炭素質繊維は、炭化水素類と特定の有機金属化
合物の混合液を必要に応じてキヤリアガスと共に加熱帯
域に導入し、炭化水素類を熱分解、触媒反応させ、得ら
れた繊維を必要に応じて熱処理した後、酸性官能基を導
入することにより製造される。
The carbonaceous fiber of the present invention requires a fiber obtained by introducing a mixed liquid of a hydrocarbon and a specific organometallic compound into a heating zone together with a carrier gas, if necessary, to thermally decompose and catalytically react the hydrocarbon. It is produced by introducing an acidic functional group after heat treatment according to the above.

上記炭化水素類は、特に制限されるものではなく、アン
トラセン、ナフタレン等を含む室温で固体状の炭化水
素、ベンゼン、トルエン、、キシレン、スチレン、ヘキ
サン、イソオクタンシクロヘキサン、シクロペンタジエ
ン、等を含む室温で液体状の炭化水素、またはメタン、
エタン、プロパン、ブタン、エチレン、プロピレン、ブ
チレン、ブタジエン、アセチレン等を含む気体状の炭化
水素のいずれでもよい。
The hydrocarbons are not particularly limited, at room temperature including anthracene, naphthalene, etc. solid hydrocarbons at room temperature, benzene, toluene, xylene, styrene, hexane, isooctane cyclohexane, cyclopentadiene, etc. Liquid hydrocarbons, or methane,
It may be any of gaseous hydrocarbons including ethane, propane, butane, ethylene, propylene, butylene, butadiene, acetylene and the like.

本発明に用いる有機金属化合物としては、周期律表の第
IVa族(特にTi、Zr)、第Va族(特にV)、特VIa族(特
にCr、Mo、W)、第VIIb族(特にMn)、第VIII族(特に
Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt)に属する金属の
化合物、特にシクロペンタジエニル系金属化合物、カル
ボニル系金属化合物、ベンゼン−金属化合物、アルキ
ル、アリルまたはアルキニル金属化合物、β−ジケトン
金属錯体、ケト酸エステル金属錯体、金属カルボン酸
塩、これらのうち、特にビス(シクロペンタジエニル)
鉄などの鉄、ニッケルまたはコバルト等のシクロペンタ
ジエニル化合物、鉄カルボニル、ニッケルカルボニル、
コバルトカルボニル、シクロペンタジエニルカルボニル
鉄、などの鉄、ニッケルまたはコバルト等のカルボニル
化合物、ジまたはトリアセチルアセトンの鉄錯体などの
鉄、ニッケルまたはコバルト等のβ−ジケトン金属錯
体、ジまたはトリアセト酢酸エステルの鉄錯体などの
鉄、ニッケルまたはコバルト錯体、フマル酸鉄、ナフテ
ン酸鉄などの鉄、ニッケルまたはコバルト等のフマル酸
塩、高級炭化水素のカルボン酸塩、もしくはこれらの誘
導体等が好結果を与える。
Examples of the organometallic compound used in the present invention include those listed in the periodic table.
Group IVa (especially Ti, Zr), Group Va (especially V), Special group VIa (especially Cr, Mo, W), Group VIIb (especially Mn), Group VIII (especially
Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt) compounds, especially cyclopentadienyl metal compounds, carbonyl metal compounds, benzene-metal compounds, alkyl, allyl or alkynyl metal compounds , Β-diketone metal complexes, keto acid ester metal complexes, metal carboxylates, among these, especially bis (cyclopentadienyl)
Iron such as iron, cyclopentadienyl compound such as nickel or cobalt, iron carbonyl, nickel carbonyl,
Cobalt carbonyl, iron such as cyclopentadienylcarbonyl iron, carbonyl compounds such as nickel or cobalt, iron such as iron complex of di- or triacetylacetone, β-diketone metal complex such as nickel or cobalt, di- or triacetoacetic acid ester Iron such as iron complex, nickel or cobalt complex, iron such as iron fumarate and iron naphthenate, fumarate such as nickel or cobalt, carboxylate of higher hydrocarbon, or a derivative thereof gives good results.

前記有機金属化合物の供給方法としては、これらを直接
加熱して反応系に気体状態で供給したり、または該有機
金属化合物を炭化水素の液体中に溶解または微分散さ
せ、それを加熱して反応系に供給または噴出させたりす
る等の方法が用いられる。
As the method of supplying the organometallic compound, these are directly heated to be supplied to the reaction system in a gas state, or the organometallic compound is dissolved or finely dispersed in a liquid of hydrocarbon and heated to react. A method of supplying or jetting to the system is used.

上記有機金属化合物の供給量(毎分当たりの供給重量
%)は炭化水素との混合物に対して0.01重量%以上、好
ましくは0.05重量%以上、特に0.2%以上である。有機
金属化合物の量が少なすぎると繊維状物ができにくく、
粒状物が増加する傾向にある。
The amount of the organometallic compound supplied (% by weight supplied per minute) is 0.01% by weight or more, preferably 0.05% by weight or more, and particularly 0.2% or more with respect to the mixture with the hydrocarbon. If the amount of organometallic compound is too small, it will be difficult to form fibrous substances,
Granules tend to increase.

炭化水素および有機金属化合物の導入温度帯域は1500℃
以下、好ましくは100〜1300℃、特に好ましくは100〜50
0℃の位置が適当である。該導入位置の温度が低すぎる
と、原料が気相状態を維持しにくく、また有機金属化合
物の活性化のためにも好ましくない。また1500℃を超え
ると炭化して粒状物の生成が多くなり、詰まりを起こし
て繊維の収率が低下する傾向にある。また、反応加熱温
度帯域は500〜1800℃、特に800〜1500℃が好適である。
反応部の温度が上記範囲外ではいずれも粒状物が生成し
易くなる。
The temperature range for introducing hydrocarbons and organometallic compounds is 1500 ° C
The following, preferably 100 ~ 1300 ℃, particularly preferably 100 ~ 50
A position of 0 ° C is suitable. If the temperature at the introduction position is too low, it is difficult to maintain the gas phase of the raw material, and it is not preferable for activation of the organometallic compound. Further, if it exceeds 1500 ° C, carbonization is likely to occur to increase the production of particulates, causing clogging and decreasing the fiber yield. The reaction heating temperature range is preferably 500 to 1800 ° C, particularly 800 to 1500 ° C.
If the temperature of the reaction part is out of the above range, particulate matter is likely to be produced.

本発明において、炭素質繊維に酸性官能基を導入するに
は、公知の方法、例えば気相酸化法、電解液相酸化法、
酸化剤液相酸化法、プラズマ処理法等を用いることがで
きる。例えば空気、酸素、オゾン等を用いる気相酸化法
において、オゾンを用いる場合は、オゾン濃度として0.
1〜5重量%、処理温度は30〜300℃が好ましい。また空
気を用いる場合は、通常350〜800℃の加熱空気中で行な
うことが望ましい。また必要に応じて空気に不活性ガス
で希釈した酸素を混入し、酸素濃度を調整することがで
きる。電解液相酸化法を用いる場合は、炭素質繊維を陽
極とし、電解液中で陰極板との間に電圧を印加させるこ
とにより行われる。また酸化剤液相酸化法による場合
は、例えば硝酸、次亜塩素酸、クロム酸塩、重クロム酸
塩、無水クロム酸、過マンガン酸塩等の酸化剤を水また
は有機溶剤で溶解し、必要に応じて加温したもので炭素
質繊維を処理すればよい。またプラズマ処理法は、例え
ば対放電電極を有する内部電極型低温プラズマ発生装置
に減圧下に酸素を含むガス、酸素と一酸化炭素、二酸化
炭素、必要に応じて有機物を含むガスを流通させながら
グロー放電を行えばよい。この場合のガス中の酸素濃度
は10重量%以上であることが好ましい。またヘリウム、
ネオン、アルゴン、窒素等の不活性ガスでプラズマ処理
した後、不飽和カルボン酸と接触させることによっても
酸性官能基を導入することができる。プラズマ装置内の
雰囲気圧の圧力は、例えば0.001〜10torrの範囲が好ま
しく、このようなガス圧力下で対放電電極間に例えば周
波数10KHz〜10MHzの高周波で10W〜100KWの電力を与える
ことにより、安定なグロー放電を行わせることができ
る。なお、放電周波数帯としては、上記高周波の他に低
周波、マイクロ波、直流等を用いることができる。この
ような酸性官能基の導入は、原料として用いる炭素質繊
維の反応性が高いので、温和な条件下で、重量ロスな
く、多量の酸性官能基(例えばカルボキシル基、フエノ
ール性水酸基等)を導入することができる。
In the present invention, in order to introduce an acidic functional group into the carbonaceous fiber, a known method, for example, a gas phase oxidation method, an electrolytic solution phase oxidation method,
An oxidant liquid phase oxidation method, a plasma treatment method or the like can be used. For example, in the gas phase oxidation method using air, oxygen, ozone, etc., when ozone is used, the ozone concentration is 0.
The treatment temperature is preferably 1 to 5% by weight, and the treatment temperature is preferably 30 to 300 ° C. When air is used, it is usually desirable to carry out in heated air at 350 to 800 ° C. If necessary, oxygen diluted with an inert gas may be mixed into the air to adjust the oxygen concentration. When the electrolytic solution-phase oxidation method is used, it is performed by using a carbonaceous fiber as the anode and applying a voltage between the carbon fiber and the cathode plate in the electrolytic solution. In the case of the oxidant liquid phase oxidation method, for example, nitric acid, hypochlorous acid, chromate, dichromate, chromic anhydride, permanganate, etc. are dissolved in water or an organic solvent, and necessary. The carbonaceous fiber may be treated with the heated material according to the above. Further, the plasma treatment method is, for example, a glow method in which a gas containing oxygen, oxygen and carbon monoxide, carbon dioxide, and a gas containing an organic matter as necessary are circulated under reduced pressure in an internal electrode type low temperature plasma generator having a pair of discharge electrodes. It suffices to discharge. In this case, the oxygen concentration in the gas is preferably 10% by weight or more. Helium,
The acidic functional group can also be introduced by contacting with an unsaturated carboxylic acid after plasma treatment with an inert gas such as neon, argon or nitrogen. The atmosphere pressure in the plasma device is preferably in the range of, for example, 0.001 to 10 torr, and stable under such gas pressure by applying 10 W to 100 KW of power at a high frequency of 10 KHz to 10 MHz between the discharge electrodes. Glow discharge can be performed. In addition to the above high frequencies, low frequencies, microwaves, direct current, etc. can be used as the discharge frequency band. Since the introduction of such acidic functional groups has high reactivity of the carbonaceous fiber used as a raw material, a large amount of acidic functional groups (eg, carboxyl group, phenolic hydroxyl group, etc.) is introduced under mild conditions without weight loss. can do.

(発明の効果) 本発明の酸性基を有する炭素質繊維は、炭素質繊維自体
の特性を低下させることなく、多量の酸性官能基を有し
ているので、複合材料用とした場合に母材樹脂との接着
性(特にエポキシ樹脂等との反応性)に優れ、例えばOA
機器などの制電性部品、電極材等の電気伝導性を要求さ
れる分野、高熱を発生する分野(自動車エンジン関連)
の部品、熱伝導性を要する分野の部品等の複合材料用の
繊維として有効に利用される。
(Effects of the Invention) The carbonaceous fiber having an acidic group of the present invention has a large amount of acidic functional groups without deteriorating the characteristics of the carbonaceous fiber itself, and thus when used as a composite material, the base material Excellent adhesion to resin (especially reactivity with epoxy resin), eg OA
Anti-static parts such as equipment, fields requiring electrical conductivity such as electrode materials, fields generating high heat (automobile engine related)
It is effectively used as a fiber for composite materials, such as the above-mentioned parts, parts in the field requiring thermal conductivity, and the like.

以下、本発明を実施例により具体的に説明する。Hereinafter, the present invention will be specifically described with reference to examples.

(実施例1) 第1図に示す装置を用い、本発明の酸性基を有する炭素
質繊維を製造した。この装置は、触媒を混合した原料液
11をキャリアガス(水素およびアルゴン)9により噴出
させるノズル(例えば2流体ノズル)3、ヒーター5お
よび冷却用ノズル15を順次設けた反応塔(反応部)7
と、該反応塔7の下部に連通部21を介して連通する回収
部(バッグフィルター)17とから構成される。なお図
中、13は冷却用ガス(例えば窒素ガス)、19は排ガスを
示す。反応塔7の体積が40である上記装置を用い、原
料としてスチレンにペンタカルボニル鉄0.5重量%、ビ
スアセチルアセトナト鉄0.1重量%を添加した混合液を
水素50容量%、アルゴン50容量%の混合ガスをキャリア
ガスとしてノズル3から反応塔7内に噴出させた。塔内
の加熱部付近の温度は1050℃とし、噴霧された原料が直
接ヒーター5に衝突しないように噴霧状態が調節され
た。反応塔7の下部のノズル15から冷却用ガスとして窒
素ガスを噴出させ、生成した炭素繊維を冷却するととも
に、連通部21を通してバッグフィルター17の方に同伴さ
せ、生成した炭素繊維を捕集するようにした。原料スチ
レンを4g/min、水素とアルゴンの混合ガス0.5/mi
n、冷却用ガス1/minで反応時間30分間反応させたと
ころ、直径が0.23μm、L/D200以上、捲縮度12%、X
線回折による(002)平面間隔d が3.52Å、c軸
方向の結晶サイズLc( )が35Å、およびX線光電
子分光法(ESCA)におけるCsの半値巾1.44eVの炭素
質繊維が得られた。
(Example 1) Using the apparatus shown in FIG. 1, carbonaceous fibers having an acidic group of the present invention were produced. This device is a raw material liquid mixed with a catalyst.
A reaction tower (reaction part) 7 in which a nozzle (for example, a two-fluid nozzle) 3 for ejecting 11 with a carrier gas (hydrogen and argon) 9, a heater 5 and a cooling nozzle 15 are sequentially provided.
And a recovery part (bag filter) 17 communicating with the lower part of the reaction tower 7 via a communication part 21. In the figure, 13 is a cooling gas (for example, nitrogen gas), and 19 is an exhaust gas. Using the above-mentioned apparatus in which the volume of the reaction tower 7 is 40, a mixture of styrene containing 0.5% by weight of iron pentacarbonyl and 0.1% by weight of bisacetylacetonato iron is mixed as a raw material with 50% by volume of hydrogen and 50% by volume of argon. The gas was jetted from the nozzle 3 into the reaction tower 7 as a carrier gas. The temperature in the vicinity of the heating section in the tower was 1050 ° C., and the spraying state was adjusted so that the sprayed raw material did not directly collide with the heater 5. Nitrogen gas is ejected as a cooling gas from the nozzle 15 in the lower part of the reaction tower 7 to cool the produced carbon fibers and to entrain the produced carbon fibers in the bag filter 17 through the communicating portion 21 so as to collect the produced carbon fibers. I chose Raw material styrene 4g / min, mixed gas of hydrogen and argon 0.5 / mi
When the reaction time was 30 minutes with a cooling gas of 1 / min, the diameter was 0.23 μm, L / D200 or more, crimping degree 12%, X
The (002) plane spacing d 0 0 2 is 3.52 Å, the crystal size Lc ( 0 0 2 ) in the c-axis direction is 35 Å, and the half-width of C 1 s is 1.44 eV in X-ray photoelectron spectroscopy (ESCA). A carbonaceous fiber was obtained.

この炭素繊維を68%の濃硝酸で所定時間処理した。処理
条件は第1表に示す通りである。なお、処理後の炭素繊
維はイオン交換水により約1時間水洗した後、120℃の
オーブン中で30分間乾燥し、処理物の評価を行った。X
線光電子分光法(ESCA)による酸素濃度(Os/C
s)および滴定法による酸性官能基量の測定法は前述の
とおりである。
This carbon fiber was treated with 68% concentrated nitric acid for a predetermined time. The processing conditions are as shown in Table 1. The treated carbon fiber was washed with ion-exchanged water for about 1 hour and then dried in an oven at 120 ° C. for 30 minutes to evaluate the treated product. X
Oxygen concentration (O 1 s / C 1 by line photoelectron spectroscopy (ESCA)
s) and the method for measuring the amount of acidic functional group by the titration method are as described above.

(比較例1) 電気炉内にアルミナ質炉芯管(内径10cm、長さ100cm)
を水平に装備し、その中にFeの超微粉(300Å下)を散
布した黒鉛製基板をセットした。基板は巾5cm、長さ30c
m、厚さ0.5cmで、超微粉の散布は、これをエチルアルコ
ール中に懸濁させ、スプレーにより行った。散布は基板
上、ほぼ一様に行い、その散布した超微粉量は約1mgで
あった。炉芯管の1端にはガス導入管、他端には排出管
を接続し、ガス導入管にはベンゼン蒸気を10容量%含む
水素ガスを毎分1000cc(常温)流した。そして温度を10
00℃に昇温し、その温度で180分間保持した。次いで温
度を1200℃に昇温し、その温度で60分間保持した。その
後ガスを窒素に切換えて冷却し基板を取出した。生成し
た炭素繊維を基板から取り出して秤量した。その結果、
繊維径10μmの炭素繊維が0.033g/cm・hr得られた
(特開昭57−117622号)。
(Comparative Example 1) Alumina furnace core tube (inner diameter 10 cm, length 100 cm) in an electric furnace.
Was installed horizontally, and a graphite substrate with ultrafine Fe powder (300 Å under) sprinkled therein was set. The board is 5 cm wide and 30 c long
The particle size was 0.5 m, the thickness was 0.5 cm, and the ultrafine powder was sprayed by suspending it in ethyl alcohol. The spraying was performed almost uniformly on the substrate, and the amount of the ultrafine powder sprayed was about 1 mg. A gas introduction pipe was connected to one end of the furnace core tube, and a discharge pipe was connected to the other end, and 1000 cc (normal temperature) of hydrogen gas containing 10% by volume of benzene vapor was passed through the gas introduction pipe. And temperature 10
The temperature was raised to 00 ° C. and the temperature was maintained for 180 minutes. Then, the temperature was raised to 1200 ° C. and the temperature was maintained for 60 minutes. After that, the gas was switched to nitrogen and cooled, and the substrate was taken out. The produced carbon fiber was taken out from the substrate and weighed. as a result,
A carbon fiber having a fiber diameter of 10 μm was obtained at 0.033 g / cm 2 · hr (JP-A-57-117622).

炭素繊維の径は10μm、d は3.52Å、ESCAにおけ
るCsの半値巾は1.72eVであった。この繊維について
68%の濃硝酸で第1表に示す通り処理を行った。
Half width of the diameter of the carbon fibers 10μm, d 0 0 2 is 3.52Å, C 1 s in ESCA was 1.72 eV. About this fiber
Treatment was performed with 68% concentrated nitric acid as shown in Table 1.

(比較例2) アクリロニトリル(AN)99.5モル%とイタコン酸0.5モ
ル%からなる固有粘度(η)が1.80の共重合体に、アン
モニアを吹き込み共重合体のカルボキシル基末端水素を
アンモニウム基で置換して、変性ポリマを作成し、この
変性ポリマの濃度が20重量%のジメチルスルホキシド
(DMSO)溶液を作成した。この溶液を炉材として、目び
らきが5μの焼結金属フイルターを用いて濾過した後、
温度60℃に調整し、温度60℃濃度50%のDMSO水溶液中に
吐出した。口金としては、孔径0.05mm、ホール数4500の
ものを用い、凝固引取り速度を18m/分とした。凝固糸
条を水洗後、熱水中で4倍に延伸した後、シリコーン系
油剤処理を行った後、130〜160℃に加熱されたローラ表
面に接触させて乾燥緻密化後、40kg/cmの加圧スチー
ム中で、3倍に延伸して単糸繊度0.7dトータル・デニー
ル3150Dの繊維束を得た(特開昭58−214527号)。
(Comparative Example 2) A copolymer consisting of 99.5 mol% of acrylonitrile (AN) and 0.5 mol% of itaconic acid and having an intrinsic viscosity (η) of 1.80 was blown with ammonia to substitute the carboxyl group-terminated hydrogen of the copolymer with an ammonium group. Then, a modified polymer was prepared, and a dimethyl sulfoxide (DMSO) solution having a concentration of the modified polymer of 20% by weight was prepared. This solution was used as a furnace material and filtered using a sintered metal filter having an eyelid of 5μ,
The temperature was adjusted to 60 ° C, and the mixture was discharged into a DMSO aqueous solution having a temperature of 60 ° C and a concentration of 50%. The die used had a hole diameter of 0.05 mm and the number of holes was 4500, and the solidification take-off speed was 18 m / min. After washing the coagulated yarn with water and stretching it 4 times in hot water, after treating it with a silicone-based oil agent, it was dried and densified by contact with the roller surface heated to 130 to 160 ° C, and then 40 kg / cm 3 Was stretched three times in a pressure steam of No. 58 to obtain a fiber bundle having a single yarn fineness of 0.7d and a total denier of 3150D (Japanese Patent Laid-Open No. 58-214527).

炭素繊維の( )平面間隔d は3.68Å、ESCA
におけるCsの半値巾は1.85eVであった。この繊維に
ついて濃硝酸で第1表に示す通り処理を行った。
The carbon fiber ( 0 0 2 ) plane spacing d 0 0 2 is 3.68Å, ESCA
The full width at half maximum of C 1 s at 1.85 eV was 1.85 eV. This fiber was treated with concentrated nitric acid as shown in Table 1.

上記実施例1、比較例1および2で得られた炭素繊維の
酸性官能基の導入のし易さを比較するために、68%の濃
硝酸で所定時間処理した。処理条件は第1表に示す通り
である。なお、処理後の炭素繊維はイオン交換水により
約1時間水洗した後、120℃のオーブン中で30分間乾燥
し、処理物の評価を行った。評価の内X線電子分光法
(ESCA)による酸素濃度(Os/Cs)は、X線光
電子分光装置を用い、励起X線としてAlKα1486.6eVを
用い、X線出力10kV、20mA、温度40℃真空度10 torr
で測定したものである。得られたスペクトルからC
に対するOsの相対積分強度を計算し、炭素繊維表面
の酸素含有官能基量の指標とした。
In order to compare the ease of introduction of acidic functional groups in the carbon fibers obtained in Example 1 and Comparative Examples 1 and 2, the carbon fibers were treated with 68% concentrated nitric acid for a predetermined time. The processing conditions are as shown in Table 1. The treated carbon fiber was washed with ion-exchanged water for about 1 hour and then dried in an oven at 120 ° C. for 30 minutes to evaluate the treated product. The oxygen concentration (O 1 s / C 1 s) by the internal X-ray electron spectroscopy (ESCA) of the evaluation was measured by using an X-ray photoelectron spectrometer, using AlKα1486.6eV as an excited X-ray, and an X-ray output of 10 kV, 20 mA, temperature 40 ° C. vacuum 10 - 9 torr
It was measured in. From the obtained spectrum, C 1 s
The relative integrated intensity of O 1 s was calculated and used as an index of the amount of oxygen-containing functional groups on the carbon fiber surface.

また滴定法による酸性官能基量は次の方法で求めた値で
ある。すなわち試料約5gを300ml共栓三角フラスコに秤
量し、水500ml、1/50NaOH20mlをホールピペットで正
確に加えさらに水30mlを加えて100mlとし、時々振りま
ぜながら20分放置後超音波加振器に15分間浸し、溶液50
mlをホールピペットでダルマフラスコに採取し、1/50
NHClで滴定する。滴定はメトローム電位差滴定装置を用
い滴定曲線から官能基量を求めた。
The amount of acidic functional group by the titration method is the value obtained by the following method. That is, weigh about 5 g of a sample into a 300 ml Erlenmeyer flask with ground stopper, add 500 ml of water and 20 ml of 1/50 NaOH accurately with a whole pipette, add 30 ml of water to make 100 ml, and leave it for 20 minutes while shaking occasionally, and then put it on an ultrasonic shaker. Soak for 15 minutes, solution 50
Collect 1 ml in a Dharma flask with a whole pipette and
Titrate with NH Cl. For the titration, the amount of functional groups was determined from the titration curve using a Metrohm potentiometric titrator.

次に前記酸性基を導入した炭素質繊維とエポキシ樹脂と
の反応性を試験した。すなわち、エポキシ樹脂(ビスフ
エノールA型)DER661(ダウケミカル社製)の10%(重
量)キシレン溶液500mlを150℃に加熱し、これに前記濃
硝酸で処理した炭素質繊維5gを浸漬した。1時間処理後
繊維を炉別し、アセトンで未反応エポキシ樹脂を洗浄し
た後、減圧下で乾燥した。得られた繊維の重量を精秤
し、重量増加(単位100重量当たり)を求め炭素質繊維
と結合したエポキシ樹脂の量を測定した。その結果を第
2表に示す。
Next, the reactivity of the carbonaceous fiber introduced with the acidic group with the epoxy resin was tested. That is, 500 ml of a 10% (by weight) xylene solution of an epoxy resin (bisphenol A type) DER661 (manufactured by Dow Chemical Co., Ltd.) was heated to 150 ° C., and 5 g of the carbon fiber treated with the concentrated nitric acid was immersed in this. After the treatment for 1 hour, the fibers were separated by furnace, the unreacted epoxy resin was washed with acetone, and then dried under reduced pressure. The weight of the obtained fiber was precisely weighed, the weight increase (per 100 weight) was determined, and the amount of the epoxy resin bonded to the carbonaceous fiber was measured. The results are shown in Table 2.

実施例2〜5 第3表に示す有機金属化合物および原料炭化水素、キャ
リアガスおよび冷却ガスを用いる以外は実施例1と同様
の条件で炭素繊維を製造した。得られた炭素繊維の諸物
性を第4表に示す。
Examples 2 to 5 Carbon fibers were produced under the same conditions as in Example 1 except that the organometallic compounds shown in Table 3 and the raw material hydrocarbons, carrier gas and cooling gas were used. Table 4 shows the physical properties of the obtained carbon fibers.

上記実施例4で得られた繊維について実施例1と同様の
濃硝酸処理を行なった。得られた繊維のOs/C
は1.85、滴定による酸性基は、45μmol/gであった。
The same concentrated nitric acid treatment as in Example 1 was performed on the fibers obtained in Example 4 above. O 1 s / C 1 s of the obtained fiber
Was 1.85 and the acidic group by titration was 45 μmol / g.

上記実施例5の繊維について空気中、450℃で1分間処
理した。得られた繊維のOs/Csは0.63、滴定に
よる酸性基は5.2μmol/gであった。
The fiber of Example 5 was treated in air at 450 ° C. for 1 minute. The O 1 s / C 1 s of the obtained fiber was 0.63, and the acidic group by titration was 5.2 μmol / g.

上記実施例2の繊維について、濃硝酸処理を120℃で10
分間行った。得られた繊維のOs/Csは0.54、滴
定による酸性基は4.9μmol/gであった。
The fibers of Example 2 above were treated with concentrated nitric acid at 120 ° C for 10
I went for a minute. The O 1 s / C 1 s of the obtained fiber was 0.54, and the acid group by titration was 4.9 μmol / g.

上記実施例3の繊維について、濃硝酸処理を120℃で20
分間行った。滴定による酸性基は95μmol/gであっ
た。
The fiber of Example 3 was treated with concentrated nitric acid at 120 ° C. for 20
I went for a minute. The titratable acidic group was 95 μmol / g.

【図面の簡単な説明】 第1図は、本発明の炭素質繊維の製造に用いる装置の一
例を示す説明図である。 1……装置本体、3……ノズル、5……ヒーター、7…
…反応塔(反応部)、9……キャリアガス、11……原料
液、13……冷却用ガス、15……冷却ガス用ノズル、17…
…バッグフイルター(回収部)、19……排ガス、21……
連通部。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing an example of an apparatus used for producing the carbonaceous fiber of the present invention. 1 ... Device body, 3 ... Nozzle, 5 ... Heater, 7 ...
… Reaction tower (reaction part), 9 …… Carrier gas, 11 …… Raw material liquid, 13 …… Cooling gas, 15 …… Cooling gas nozzle, 17…
… Bag filter (collection section), 19 …… Exhaust gas, 21 ……
Communication section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】繊維の直径が0.01〜4μm、繊維の長さ/
繊維径が20以上、捲縮数が1以上、捲縮度が10〜50%、
滴定法による酸性官能基量が0.5〜200μmol/g、X線
光分光法(ESCA)による酸素濃度Os/Csが0.05
以上で黒鉛または黒鉛に容易に転化する炭素の層が長手
軸に平行に年輪状に配列して形成された酸性基を有する
炭素質繊維。
1. A fiber having a diameter of 0.01 to 4 μm and a fiber length /
Fiber diameter is 20 or more, crimp number is 1 or more, crimp degree is 10 to 50%,
The amount of acidic functional groups measured by the titration method is 0.5 to 200 μmol / g, and the oxygen concentration O 1 s / C 1 s measured by X-ray optical spectroscopy (ESCA) is 0.05.
A carbonaceous fiber having an acidic group formed by arranging graphite or a layer of carbon easily converted to graphite in a ring shape parallel to the longitudinal axis as described above.
JP60058818A 1985-03-23 1985-03-23 Carbonaceous fiber having acidic groups Expired - Lifetime JPH0663133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60058818A JPH0663133B2 (en) 1985-03-23 1985-03-23 Carbonaceous fiber having acidic groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058818A JPH0663133B2 (en) 1985-03-23 1985-03-23 Carbonaceous fiber having acidic groups

Publications (2)

Publication Number Publication Date
JPS61225326A JPS61225326A (en) 1986-10-07
JPH0663133B2 true JPH0663133B2 (en) 1994-08-17

Family

ID=13095196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058818A Expired - Lifetime JPH0663133B2 (en) 1985-03-23 1985-03-23 Carbonaceous fiber having acidic groups

Country Status (1)

Country Link
JP (1) JPH0663133B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940000623B1 (en) * 1989-05-15 1994-01-26 히페리온 카탈리시스 인터내셔날 Surface treatment of carbon microfibers
JP2664819B2 (en) * 1991-07-05 1997-10-22 日機装株式会社 Graphite fiber and method for producing the same
US20020085974A1 (en) 1992-01-15 2002-07-04 Hyperion Catalysis International, Inc. Surface treatment of carbon microfibers
JPH05339818A (en) * 1992-06-11 1993-12-21 Mitsui Eng & Shipbuild Co Ltd Carbon fiber made by activated vapor phase
JP5179979B2 (en) 2008-04-16 2013-04-10 日信工業株式会社 Carbon nanofiber and method for producing the same, method for producing carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
JP5112202B2 (en) * 2008-07-11 2013-01-09 日信工業株式会社 Carbon fiber composite material excellent in chlorine resistance and method for producing the same

Also Published As

Publication number Publication date
JPS61225326A (en) 1986-10-07

Similar Documents

Publication Publication Date Title
EP2631331B1 (en) Production of agglomerates from gas phase
KR101262827B1 (en) Carbon nanotubes functionalized with fullerenes
KR101176128B1 (en) Production of agglomerates from gas phase
US4816289A (en) Process for production of a carbon filament
US7879300B2 (en) Method and device for depositing carbon nanotubes or nitrogen-doped carbon nanotubes by pyrolysis
US7575733B2 (en) Plasma-treated carbon fibrils and method of making same
US8221830B2 (en) Method of manufacturing cellulose electrode for fuel cells, cellulose electrode manufactured thereby, and use of cellulose fibers as fuel cell electrodes
JP2002266170A (en) Branched vapor grown carbon fiber, transparent electrically conductive composition and use thereof
US20120107221A1 (en) Method for the synthesis of carbon nanotubes on long particulate micrometric materials
CN101428813B (en) Process for producing ultra-fine boron nitride continuous nano-fibre
JPH0663133B2 (en) Carbonaceous fiber having acidic groups
WO2001077423A1 (en) Fine carbon fiber and process for producing the same, and conductive material comprising the same
JP5551817B2 (en) Carbon fiber, carbon fiber production catalyst, and carbon fiber evaluation method.
EP1407064A4 (en) Method and apparatus for producing vapor grown carbon fiber
JPS61225325A (en) Carbonaceous fiber
JP3888317B2 (en) Coating liquid for manufacturing ceramic tube and method for manufacturing ceramic tube
JPS61225319A (en) Carbonaceous fiber
JPS61132630A (en) Carbonaceous fiber
JPS61225320A (en) Metal-containing carbonaceous fiber and production thereof
Islam et al. High electrical conductivity and oxidation reduction reaction activity of tungsten carbide/carbon nanocomposite synthesized from palm oil by solution plasma process
JPS639044B2 (en)
Hirahara Carbon Nanocoils
KR20110075096A (en) Method of preparing carbon nanotube complex structures
Islam et al. Materials Express
JPS61219710A (en) Activated carbonaceous fiber