JPH0663080B2 - Manufacturing method of carburized parts having fine grain structure - Google Patents

Manufacturing method of carburized parts having fine grain structure

Info

Publication number
JPH0663080B2
JPH0663080B2 JP62169491A JP16949187A JPH0663080B2 JP H0663080 B2 JPH0663080 B2 JP H0663080B2 JP 62169491 A JP62169491 A JP 62169491A JP 16949187 A JP16949187 A JP 16949187A JP H0663080 B2 JPH0663080 B2 JP H0663080B2
Authority
JP
Japan
Prior art keywords
forging
temperature
carburizing
carburized
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62169491A
Other languages
Japanese (ja)
Other versions
JPS6415358A (en
Inventor
進 神原
渉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62169491A priority Critical patent/JPH0663080B2/en
Publication of JPS6415358A publication Critical patent/JPS6415358A/en
Publication of JPH0663080B2 publication Critical patent/JPH0663080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、浸炭処理と温間鍛造とを組み合わせた浸炭
部品の製造方法、特に、結晶粒度が小さく、強度、靭性
に優れた浸炭部品を製造することのできる製造方法、に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a method for producing a carburized part in which carburizing treatment and warm forging are combined, and in particular, a carburized part excellent in strength and toughness with a small grain size. The manufacturing method which can be manufactured.

(従来の技術) 浸炭処理を施されて使用される部品(ここでは浸炭部品
という)の種類は多数にのぼるが、輸送機械、建設産業
機械の軸、歯車などはその代表例である。これらの部品
は疲労強度、耐摩耗性、耐ピッチング性を要求されるの
で、浸炭処理されるのであるが、かかる浸炭部品を製造
する一般的な製造プロセスは次のとおりである。即ち、
第1図に示すとおり、素材となる浸炭用鋼を所定寸法に
裁断し、概ね600〜900℃の温度に加熱して温間鍛造し、
所定の形状とする。その後、必要な機械加工を施してか
ら、Ac点以上の温度に加熱してここで浸炭処理を施
し、焼入れ、焼戻しを行う。この工程における温間鍛造
は、熱間鍛造よりも精密な成形が可能で、また冷間鍛造
よりも小さな負荷で加工できるため、前記のような量産
部品の製造には近年広く採用されている。
(Prior Art) Although there are many kinds of parts (hereinafter referred to as carburized parts) used after being carburized, transportation machines, shafts of construction industrial machines, gears, etc. are typical examples. Since these parts are required to have fatigue strength, wear resistance, and pitting resistance, they are carburized. The general manufacturing process for manufacturing such carburized parts is as follows. That is,
As shown in FIG. 1, carburizing steel, which is a raw material, is cut into a predetermined size, heated to a temperature of approximately 600 to 900 ° C., and warm forged,
It has a predetermined shape. Then, after performing necessary machining, it is heated to a temperature of Ac 3 or higher to carry out a carburizing treatment, and is quenched and tempered. The warm forging in this step can be more precisely formed than the hot forging, and can be processed with a load smaller than that of the cold forging, and thus has been widely adopted in recent years for the production of mass-produced parts as described above.

上記の従来のプロセスでは、浸炭処理は機械加工後の最
終工程で行われる。浸炭処理の温度は、Ac点以上、通
常は920℃前後、であるから、ここでのオーステナイト
結晶粒の粗大化は避け難い。特に、浸炭処理の前に温間
鍛造を受けている部品は、浸炭処理中の結晶粒の粗大化
が著しい。オーステナイト結晶粒が粗大化すると、浸炭
焼入れ、焼戻し後の結晶粒が大きくなり、靭性や静的強
度が低下する。更には、熱処理変形も大きく、製品とし
ての形状が保てないという問題もある。
In the above conventional process, the carburizing process is performed in the final step after machining. Since the temperature of the carburizing treatment is Ac 3 point or higher, usually around 920 ° C., coarsening of the austenite crystal grains here is unavoidable. In particular, the parts that have undergone warm forging prior to the carburizing treatment show significant grain coarsening during the carburizing treatment. When the austenite crystal grains become coarse, the crystal grains after carburizing and tempering become large, and the toughness and static strength decrease. Further, there is a problem that the heat treatment deforms so much that the shape of the product cannot be maintained.

温間鍛造部品の浸炭処理時の結晶粒の粗大化を防止する
方法として、材料組成の改良という面からは特開昭60−
159155号公報、同60−262941号公報に開示されるような
Al、N、Nbを適当量添加し、微細析出物の生成を促して
結晶粒の粗大化を防ぐ方法が、また処理方法の改良とい
う面から、特公昭62−6617号公報に開示されるような浸
炭処理の前に中間熱処理を施こす方法が提案されてい
る。これらのなかで、材料組成を改良する方法では、組
成の僅かなばらつきが結晶粒粗大化挙動に大きく影響
し、必ずしも安定した細粒組織が得られないことがあ
る。また、特公昭62−6617号公報の方法では、浸炭処理
前の中間熱処理という工程が増えるため、製造プロセス
が煩瑣になり生産コストが増大する。
As a method for preventing the coarsening of crystal grains during carburizing of warm forged parts, from the viewpoint of improving the material composition, JP-A-60-
As disclosed in JP 159155 and JP 60-262941
A method of adding appropriate amounts of Al, N, and Nb to promote formation of fine precipitates and prevent coarsening of crystal grains is disclosed in JP-B-62-6617 from the viewpoint of improvement of treatment method. A method has been proposed in which an intermediate heat treatment is performed before various carburizing treatments. Among these, in the method of improving the material composition, a slight variation in the composition greatly affects the crystal grain coarsening behavior, and a stable fine grain structure may not always be obtained. Further, in the method of Japanese Patent Publication No. 62-6617, the number of steps of intermediate heat treatment before carburizing is increased, which complicates the manufacturing process and increases the production cost.

(発明が解決しようとする問題点) 本発明は、温間鍛造の利点を活用しながら、最終浸炭製
品の結晶粒の粗大化を防ぐのみならず、積極的に結晶粒
を微細化し、製品の機械的性質を向上させることを目的
とし、そのための新しい方法を提供するものである。
(Problems to be Solved by the Invention) The present invention not only prevents the coarsening of the crystal grains of the final carburized product while actively utilizing the advantage of warm forging, but also positively refines the crystal grains to improve the product quality. It aims to improve mechanical properties and provides a new method therefor.

(問題点を解決するための手段) 本願の発明は、「浸炭部品用素材鋼に浸炭処理を施して
室温まで冷却した後、Ac点以上950℃以下の温度域に
昇温して、この昇温時間も含めて15分以内の時間保持
し、この温度域で所望の形状に鍛造し、直接焼入れする
ことを特徴とする細粒組織を有する浸炭部品の製造方
法」を要旨とする。
(Means for Solving Problems) According to the invention of the present application, “a steel material for carburizing parts is carburized and cooled to room temperature, and then heated to a temperature range of Ac 1 point or more and 950 ° C. or less, A method for producing a carburized component having a fine grain structure characterized by holding for 15 minutes or less including the temperature rise time, forging into a desired shape in this temperature range, and directly quenching ”.

ここに、上記「浸炭部品用素材鋼」はいわゆる溶製法に
より得られる鋼であって浸炭温度に加熱することで結晶
粒の粗大化がみられる素材鋼であって、粉末冶金法によ
るそれを排除するものである。
Here, the above-mentioned "material steel for carburized parts" is a steel obtained by a so-called melting process and is a material steel in which crystal grains are coarsened by heating to a carburizing temperature, and it is excluded by the powder metallurgy method. To do.

第2図は、上記本発明の方法を説明するヒートパターン
である。前記第1図に示した従来の方法と対比すれば本
発明方法の特徴が明らかになる。即ち、本発明と従来方
法との最も大きな相違は、浸炭処理と温間鍛造の順序で
ある。
FIG. 2 is a heat pattern for explaining the method of the present invention. The features of the method of the present invention become clear by comparing with the conventional method shown in FIG. That is, the biggest difference between the present invention and the conventional method is the order of carburizing and warm forging.

第1図に示す従来のプロセスでは、浸炭処理が温間鍛造
の後になっているから、浸炭処理時の結晶粒の粗大化が
必然的におこる。そしてその影響は焼入れ、焼戻し後の
製品にまで持ちこされ、その機械的性質を損なう。この
ような問題があるにもかかわらず、浸炭処理が温間鍛造
の後で行われていたのは、浸炭処理材を温間鍛造すれ
ば、表面割れが発生しやすく、鍛造荷重も高いという固
定観念があったからである。
In the conventional process shown in FIG. 1, the carburizing treatment is performed after the warm forging, so that the crystal grains are inevitably coarsened during the carburizing treatment. And the effect is carried to the product after quenching and tempering, which impairs its mechanical properties. Despite these problems, carburizing was carried out after warm forging because when the carburized material was warm forged, surface cracks tended to occur and the forging load was high. Because there was an idea.

本発明者は、上記のような従来の常識を再検討して、浸
炭処理を温間鍛造の前に行っても工程上の問題は全くな
く、各工程の条件を適切に選べば製品の機械的性質を大
幅向上させうることを知った。
The present inventor has reexamined the above-mentioned conventional common sense, and even if the carburizing treatment is performed before the warm forging, there is no problem in the process, and if the conditions of each process are appropriately selected, the product machine I learned that it can greatly improve the physical properties.

第2図に示す本発明のプロセスでは、浸炭処理の時にオ
ーステナイト結晶粒が粗大化しても、次の温間鍛造工程
での加工による再結晶の効果で結晶粒は微細化する。こ
の状態から焼入れすれば、微細なマルテンサイト組織が
得られ、後述する優れた機械的性質を持つ製品が得られ
るのである。
In the process of the present invention shown in FIG. 2, even if the austenite crystal grains become coarse during the carburizing treatment, the crystal grains become fine due to the effect of recrystallization due to the processing in the next warm forging step. By quenching from this state, a fine martensite structure can be obtained, and a product having excellent mechanical properties described below can be obtained.

以下、本発明方法の各工程について詳しく説明する。Each step of the method of the present invention will be described in detail below.

素材は、一般の浸炭用鋼である。最終製品の種類とそれ
に必要とされる特性に応じて鋼種を選べばよい。これを
所定のサイズに整えて、素材(ブランク)とする。この
素材を先ず浸炭工程に付す。浸炭処理そのものは、従来
から行われている方法で差支えない。たとえば、バッ式
ガス浸炭炉による浸炭処理、或いは素材をのせたトレー
が炉内を移動する連続式ガス浸炭炉による連続浸炭処理
が望ましい。
The material is general carburizing steel. The steel type should be selected according to the type of final product and the properties required for it. This is prepared into a predetermined size and used as a material (blank). This material is first subjected to a carburizing process. The carburizing process itself may be performed by a conventional method. For example, a carburizing treatment by a batch type gas carburizing furnace or a continuous carburizing treatment by a continuous gas carburizing furnace in which a tray on which a material is placed moves in the furnace is desirable.

浸炭処理が施された素材は、一旦室温まで冷却される
が、冷却方法には特に制約はない。
The carburized material is once cooled to room temperature, but the cooling method is not particularly limited.

次に、素材をAc点以上950℃以下の温度域に加熱す
る。この加熱は鍛造に適当な温度にすることと鍛造後の
焼入れを適正に行うためである。温間鍛造の利点である
低負荷で高精度の寸法形状を得るには、上記の温度範囲
で鍛造する必要がある。温度が低くなるほど鍛造荷重は
大きくなるのは当然であるが、とくに鍛造の前に浸炭さ
れ表層部の炭素含有量が高くなっている素材では、Ac
点より低温になると鍛造荷重の増大が著しく、冷間鍛造
に対する優位性がうしなわれる。更に、加熱温度がAr
点未満では、鍛造後の焼入れによってマルテンサイト組
織を得ることができず、製品に必要な硬さを与えられな
い。一方950℃より高い温度では、表面のスケール生成
が甚だしくなり製品の寸法精度が悪化し、結局、熱間鍛
造にたいする温間鍛造の優位性が失われてしまう。更
に、ここでの加熱温度が高すぎると、前工程の浸炭で表
層部に侵入した炭素の内部への拡散が激しくなるととも
に、表面脱炭現象が著しくなり焼入れ後の表面硬さが低
下する。これらの理由から加熱温度はAc点〜950℃の
範囲とする。
Next, the material is heated to a temperature range from Ac 1 point to 950 ° C. This heating is for making the temperature suitable for forging and for properly performing quenching after forging. In order to obtain a highly accurate dimensional shape with a low load, which is an advantage of warm forging, it is necessary to forge within the above temperature range. It is natural that the lower the temperature, the larger the forging load, but especially in the case of a material that is carburized before forging and has a high carbon content in the surface layer, Ac 1
When the temperature is lower than the point, the forging load increases remarkably, and the superiority to cold forging is lost. Furthermore, the heating temperature is Ar 1
Below the point, the martensite structure cannot be obtained by quenching after forging, and the product cannot have the necessary hardness. On the other hand, if the temperature is higher than 950 ° C, the scale formation on the surface becomes serious and the dimensional accuracy of the product deteriorates, and eventually the advantage of warm forging over hot forging is lost. Further, if the heating temperature here is too high, the diffusion of carbon that has penetrated into the surface layer portion due to the carburization in the previous step becomes severe, and the surface decarburization phenomenon becomes remarkable and the surface hardness after quenching decreases. For these reasons, the heating temperature is in the range of Ac 1 point to 950 ° C.

上記のスケールの生成、炭素の内部拡散、表面脱炭とい
う問題は、加熱温度だけでなく、時間にも影響される。
本発明では、この点も考慮して、昇温開始から鍛造開始
までの時間、即ち、昇温と加熱保持の合計時間を15分以
内に制限する。この範囲であれば、上記の弊害は殆ど無
視できる程度である。
The above-mentioned problems of scale formation, carbon internal diffusion, and surface decarburization are affected not only by heating temperature but also by time.
In consideration of this point, the present invention limits the time from the start of temperature increase to the start of forging, that is, the total time of temperature increase and heat retention within 15 minutes. Within this range, the above-mentioned adverse effects are almost negligible.

温間鍛造は、複雑形状に成形する密閉鍛造のほか、自由
据込み、前方押出、後方押出など加工目的によって各種
の方法が選択できる。この鍛造工程は、所定の製品形状
に成形するという本来の目的とともに、製品組織(結晶
粒)の微細化という目的をもつ。浸炭処理工程で粗大化
したオーステナイト粒は、この温間鍛造によって再結晶
して微細化する。オーステナイトの再結晶温度は、鋼種
によって若干相違するが、一般の浸炭用鋼であればAc
点直上でも部分的に再結晶をおこす。
As for warm forging, in addition to closed forging for forming a complicated shape, various methods such as free upsetting, forward extrusion and backward extrusion can be selected depending on the processing purpose. This forging process has the original purpose of forming into a predetermined product shape and the purpose of refining the product structure (crystal grains). The austenite grains coarsened in the carburizing process are recrystallized and finely divided by the warm forging. The recrystallization temperature of austenite differs slightly depending on the steel type, but if it is a general carburizing steel, Ac 1
Partial recrystallization occurs just above the point.

温間鍛造温度がAc点とAc点の間の温度であれば、材
料の中心部はオーステナイトとフェライトの二相である
が、表層部は浸炭によって炭素含有量が高くなっている
ので、オーステナイト一相である。この状態から焼入れ
を行えば、表層部は完全なマルテンサイト組織となり十
分な硬さが確保される。中心部はオーステナイトとフェ
ライトの二相状態からの焼入れであるため、マルテンサ
イト単層にはならないが、結晶粒は表層部以上に細かく
なる。通常の浸炭部品では、中心までマルテンサイト単
層にする必要はないが、特に中心部の硬さが要求される
場合、鍛造終了温度、即ち、焼入れ温度を高くするよう
に配慮する。
If the warm forging temperature is between Ac 3 point and Ac 1 point, the central part of the material has two phases of austenite and ferrite, but since the carbon content in the surface layer is high due to carburization, It is one phase of austenite. If quenching is performed from this state, the surface layer portion has a perfect martensite structure and sufficient hardness is secured. Since the central part is quenched from the two-phase state of austenite and ferrite, it does not become a martensite single layer, but the crystal grains are finer than the surface layer part. In a normal carburized component, it is not necessary to form a martensite single layer up to the center, but if hardness at the center is required, consideration should be given to raising the forging end temperature, that is, the quenching temperature.

焼入れ温度を高くするように配慮する。Consider increasing the quenching temperature.

温間鍛造の温度がAc点より低くなれば、表層部におい
てもオーステナイトが完全に分解し、パーライトやベイ
ナイトが生成し、これを焼入れしてもマルテンサイト組
織にはならず、所望の硬さは得られない。
If the temperature of warm forging becomes lower than Ac 1 point, austenite is completely decomposed even in the surface layer and pearlite and bainite are formed. Even if this is hardened, the martensite structure does not occur and the desired hardness is obtained. Can't get

温間鍛造の終了後、直ちに焼入れするのは、微細な再結
晶オーステナイトを急冷して微細マルテンサイトを生成
させるためである。第1図をみれば明らかなように、従
来、焼入れは浸炭処理に直結し、浸炭処理終了温度から
急冷されていた。この工程では浸炭処理中に粗大化した
オーステナイトが変態するため、得られるマルテンサイ
ト組織も粗大である。これに対して、本発明方法によれ
ば、浸炭処理中にオーステナイト粒が粗大化しても、後
の鍛造工程で細粒化できる。このことは、従来、結晶粒
粗大化をおそれて抑えられてきた浸炭処理温度をもっと
高くしてもよいということである。浸炭処理温度を高く
すれば、炭素の拡散速度が上がり、処理時間が短縮でき
るという大きな ただし、本発明方法では、浸炭処理後に鍛造成形が行わ
れるから、素材段階での浸炭深さと製品のそれとは必ず
しも一致しない。また最終製品形状に仕上げる機械加工
も最後に行われ、ここで浸炭層の一部が除去されること
もある。このような事情を考慮して浸炭処理の条件、浸
炭深さ等を決定しなければならない。
The reason for quenching immediately after the completion of warm forging is to rapidly cool fine recrystallized austenite to generate fine martensite. As is clear from FIG. 1, in the past, quenching was directly linked to carburizing treatment and was rapidly cooled from the carburizing treatment end temperature. In this process, the austenite coarsened during the carburizing process is transformed, so that the martensite structure obtained is also coarse. On the other hand, according to the method of the present invention, even if the austenite grains become coarse during the carburizing treatment, they can be finely grained in the subsequent forging step. This means that the carburizing temperature, which has been conventionally suppressed by fear of coarsening of crystal grains, may be increased. If the carburizing temperature is raised, the diffusion rate of carbon is increased and the processing time can be shortened.However, in the method of the present invention, since forging is performed after the carburizing treatment, the carburizing depth at the material stage and that of the product are Not necessarily the same. In addition, the final machining process to finish the final product shape is also performed, where a part of the carburized layer may be removed. The carburizing conditions, carburizing depth, etc. must be determined in consideration of such circumstances.

本発明方法を実施する装置としては、鍛造終了後の鍛造
品を直接焼入れする冷却槽が付設された鍛造装置のほか
に特別のものを要しない。浸炭処理と温間鍛造とを別の
ラインで実施しても差支えはない。
The device for carrying out the method of the present invention does not require any special device other than the forging device provided with the cooling tank for directly quenching the forged product after the forging is completed. It does not matter if the carburizing process and the warm forging are performed on different lines.

以下、実施例によって本発明の効果を具体的に説明す
る。
Hereinafter, the effects of the present invention will be specifically described with reference to examples.

(実施例) 第1表の組成を有するSCM420熱間圧延棒鋼(50mmφ)か
ら44mmφ×27.5mmの鍛造用ブランクを機械加工によって
作成し、滴注式浸炭炉を用いてカーボンポテンシャル0.
85%の雰囲気中で950℃×2時間の浸炭処理を施し空冷
で室温まで冷却した。この浸炭済みブランクに黒鉛潤滑
を施し、高周波加熱によって650〜1050℃の範囲の50℃
間隔の各温度に加熱した。昇温時間は1〜2分、保持
(均熱)時間は2分とした。
(Example) A 44 mmφ x 27.5 mm forging blank was machined from SCM420 hot rolled steel bar (50 mmφ) having the composition shown in Table 1, and a carbon potential of 0.
Carburizing treatment was performed at 950 ° C. for 2 hours in an atmosphere of 85%, and the mixture was cooled to room temperature by air cooling. Graphite lubrication is applied to this carburized blank and it is heated to 50 ° C in the range of 650 to 1050 ° C by high frequency heating.
Heated to each temperature in the interval. The temperature raising time was 1 to 2 minutes, and the holding (soaking) time was 2 minutes.

上記各温度のブランクを、鍛造荷重の測定ができる鍛造
機を用いて、第2表に示す諸元の平歯車に鍛造した。鍛
造終了後、5秒おいて120℃の焼入油に浸漬した。ま
た、一部の浸炭ブランクについては、加熱温度を900℃
一定とし、昇温と均熱の合計時間を2〜20分の間で変化
させて鍛造した。
The blank at each temperature was forged into a spur gear having the specifications shown in Table 2 by using a forging machine capable of measuring the forging load. After the forging was completed, it was immersed for 5 seconds in quenching oil at 120 ° C. For some carburizing blanks, the heating temperature is 900 ° C.
Forging was performed while keeping the temperature constant and changing the total time of temperature rise and soaking between 2 and 20 minutes.

上記の工程で製造した歯車に170℃×1時間の焼戻しを
施した後、第3図に示す歯元表層部と歯元中央部の旧オ
ーステナイト粒の結晶粒度(JISによる)と歯元表層部
の硬度分布を測定した。それぞれの歯車の有効硬化層深
さ(Hv550に相当する表面からの距離)はすべて0.55〜
0.58mmの範囲におさまっていた。
After the gear manufactured in the above process was tempered at 170 ° C for 1 hour, the grain size (according to JIS) of the former austenite grains in the root surface layer and the center of the root shown in Fig. 3 and the root surface layer Hardness distribution was measured. The effective hardened layer depth (distance from the surface equivalent to Hv550) of each gear is 0.55 ~
It was within the range of 0.58 mm.

次いで、各歯車にショットブラストをかけてスケールを
除去した後、第10図に示す方法で歯厚マイクロメータを
用いて3枚またぎ歯厚を18個所で測定し、その平均値を
算出した。併せて、歯面中央部の表面粗さ(測定距離2m
m)をも測定した。
Then, after each gear was shot-blasted to remove the scale, the three-tooth bridging tooth thickness was measured at 18 points using a tooth thickness micrometer by the method shown in FIG. 10, and the average value was calculated. In addition, the surface roughness of the tooth flank center (measurement distance 2m
m) was also measured.

更に、これらの歯車について、第11図に示す方法での静
的な歯元折損試験と、シャルピー衝撃試験機を改造した
第12図に示す試験機での衝撃試験を実施した。
Further, with respect to these gears, a static root breakage test by the method shown in FIG. 11 and an impact test by the tester shown in FIG. 12 which is a modified Charpy impact tester were carried out.

一方、比較のため、従来方法によって同様の歯車を製造
した。その条件は次のとおりである。
On the other hand, for comparison, a similar gear was manufactured by the conventional method. The conditions are as follows.

黒鉛潤滑を施したブランクを実施例と同じく高周波炉で
650〜1050℃間の各温度に加熱し、それぞれの温度で鍛
造して平歯車とした後に、機械加工(歯面研磨)、浸
炭、焼入れ、焼戻しを施した。なお、このときの各工程
の条件は、浸炭時間を、有効硬化深さ0.555〜0.58mmに
なるように1.75時間としたこと以外は、全て前記の条件
と同じである。但し、いうまでもなく、ここでは浸炭処
理と鍛造の工程が本発明方法とは逆であり、焼入れは浸
炭後に行われている。こうして得られたものについても
前記と同じ測定を行った。
A graphite lubricated blank was placed in a high frequency furnace as in the example.
After heating to each temperature between 650 and 1050 ° C and forging at each temperature to form a spur gear, machining (tooth surface polishing), carburization, quenching, and tempering were performed. The conditions of each step at this time are all the same as the above-mentioned conditions except that the carburizing time was 1.75 hours so that the effective hardening depth was 0.555 to 0.58 mm. However, needless to say, here, the carburizing and forging steps are opposite to those of the method of the present invention, and the quenching is performed after carburizing. The same measurement as described above was performed for the thus obtained one.

以下、添付の図によって、試験の結果を説明する。Hereinafter, the test results will be described with reference to the accompanying drawings.

第4図は、本発明方法と従来方法で作成した歯車の歯元
表層部と歯元中央部の旧オーステナイト粒の結晶粒度を
鍛造温度で整理したものである。従来方法によるもので
は、どの部分でも粒度番号が小さい(即ち、粗粒であ
る)。本発明方法によるものは、すべて8.5番以上の細
粒で、特に850〜950℃で鍛造したものでは、11番以上の
超微細粒になっている。なお、700℃以下で鍛造したも
のは、フェライト−パーライト組織で鍛造されそこから
急冷されているので、旧オーステナイト粒度は測定でき
ない。また、図中の*印は、フェライト−マルテンサイ
トの二相であるためマルテンサイト部のみ測定したこと
を示す。
FIG. 4 shows the grain sizes of the former austenite grains in the tooth root surface layer portion and the tooth root center portion of the gears produced by the method of the present invention and the conventional method, arranged by forging temperature. In the conventional method, the particle size number is small (that is, coarse particles) in every part. All of the particles produced by the method of the present invention are fine grains of 8.5 or more, and especially those forged at 850 to 950 ° C. have ultrafine grains of 11 or more. The forged austenite grain size cannot be measured because the one forged at 700 ° C or less is forged with a ferrite-pearlite structure and quenched from there. In addition, the mark * in the figure indicates that only the martensite portion was measured because it has two phases of ferrite-martensite.

第5図は、鍛造温度と鍛造荷重の関係を示すものであ
る。ここでは、本発明方法も従来方法も同じ傾向を示
す。即ち、浸炭処理後に鍛造する本発明の方法でも、従
来方法と較べて鍛造荷重が大きく増加することはない。
ただ、Ac点よりも低い温度では鍛造荷重が急激に増大
する。前記第4図の結果とあわせて、鍛造をAc点以上
で行うことの重要性がわかる。
FIG. 5 shows the relationship between the forging temperature and the forging load. Here, the method of the present invention and the conventional method show the same tendency. That is, the method of the present invention in which forging is performed after the carburizing treatment does not significantly increase the forging load as compared with the conventional method.
However, the forging load sharply increases at temperatures lower than the Ac 1 point. From the results shown in FIG. 4 above, it is understood that it is important to carry out forging with Ac 1 point or more.

第6図は、スケール除去後の表面硬さ(表面から0.025m
m位置の硬さ)と鍛造温度の関係である。鍛造温度が高
くなりすぎると、浸炭処理によって浸透した炭素が内部
へ拡散し焼入れ後の硬度は低くなる。
Figure 6 shows the surface hardness after scale removal (0.025m from the surface
It is the relationship between hardness at the m position) and the forging temperature. If the forging temperature becomes too high, the carbon that has permeated by the carburizing process diffuses inside and the hardness after quenching becomes low.

第7図は、またぎ歯厚と表面粗さの測定結果である。鍛
造温度が950℃を越えると、またぎ歯厚の目標値(この
場合、7.63mm)からの逸脱が大きくなり、また表面の荒
れも甚だしくなる。これは、ブランク表面のスケール生
成が激しくなり、これがショットブラストで除去された
からであり、結局、製品の寸法精度を悪化させることに
なる。
FIG. 7 shows the results of measuring the denture thickness and surface roughness. When the forging temperature exceeds 950 ° C, the deviation of the denture thickness from the target value (7.63 mm in this case) becomes large, and the surface becomes rough. This is because the scale formation on the blank surface becomes severe and this is removed by shot blasting, which eventually deteriorates the dimensional accuracy of the product.

第6図と第7図の結果から、鍛造温度の上限は950℃と
すべきことが明らかである。
From the results shown in FIGS. 6 and 7, it is clear that the upper limit of the forging temperature should be 950 ° C.

第8図および第9図は、昇温時間と均熱時間の合計と、
またぎ歯厚、表面粗さおよび表面硬さ(表面から0.025m
m位置の硬さ)との関係である。上記鍛造温度が高すぎ
る場合と同じ理由で、15分を越える長時間は避けるべき
ことが明らかである。
8 and 9 show the sum of the temperature raising time and the soaking time,
False tooth thickness, surface roughness and surface hardness (0.025m from the surface
hardness at m position). It is clear that a long time of more than 15 minutes should be avoided for the same reason that the forging temperature is too high.

第13図、第14図は、本発明方法と従来方法で得た歯車に
ついて静的な折損荷重と衝撃吸収エネルギーを鍛造温度
で整理したものであるが、本発明方法による歯車は従来
方法によるものに較べて大幅に優れていることが明白で
ある。
FIGS. 13 and 14 show the gears obtained by the method of the present invention and the conventional method, in which the static breakage load and the impact absorption energy are arranged at the forging temperature. It is clearly superior to.

(発明の効果) 実施例の試験結果から明らかなとおり、本発明によれば
従来方法では得られない微細結晶粒組織の浸炭部品が得
られる。本発明方法によって得られる微細マルテンサイ
ト組織の浸炭部品は、表面硬度においては従来方法によ
るものと同等で、静的強度、靭性においては、それを遥
かに凌ぐものとなる。
(Effects of the Invention) As is clear from the test results of the examples, according to the present invention, a carburized component having a fine grain structure that cannot be obtained by the conventional method can be obtained. The carburized component having a fine martensite structure obtained by the method of the present invention is equivalent in surface hardness to that obtained by the conventional method, and far exceeds static strength and toughness.

【図面の簡単な説明】[Brief description of drawings]

第1図は、従来の温間鍛造−浸炭処理の方法を示すヒー
トパターン図、 第2図は、本発明方法を示すヒートパターン図、 第3図は、実施例において製造した歯車の結晶粒度と硬
さの測定位置を示す図、 第4図〜第9図は、同じく各種の試験結果を示すグラ
フ、 第10図は、またぎ歯厚の測定方法、第11図は歯元折損試
験方法、第12図は歯車の衝撃試験方法をそれぞれ説明す
る図、そして、 第13図と第14図は、それぞれ本発明方法と従来方法によ
って得られた歯車の折損試験と衝撃試験の結果を示すグ
ラフ、である。
FIG. 1 is a heat pattern diagram showing a conventional warm forging-carburizing method, FIG. 2 is a heat pattern diagram showing the method of the present invention, and FIG. 3 is a crystal grain size of gears manufactured in Examples. The figure which shows the measurement position of hardness, FIGS. 4-9 is a graph which shows various test results similarly, FIG. 10 is a measuring method of a bristle tooth thickness, FIG. 11 is a root fracture test method, FIG. FIG. 12 is a diagram explaining the impact test method of the gear, and FIGS. 13 and 14 are graphs showing the results of the breakage test and the impact test of the gear obtained by the method of the present invention and the conventional method, respectively. is there.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】浸炭部品用素材鋼に浸炭処理を施して室温
まで冷却した後、Ac点以上950℃以下の温度域に昇温
して、この昇温時間も含めて15分以内の時間保持し、こ
の温度域で所望の形状に鍛造し、直接焼入れすることを
特徴とする細粒組織を有する浸炭部品の製造方法。
1. A material steel for carburized parts is carburized, cooled to room temperature, and then heated to a temperature range of 1 Ac or higher and 950 ° C. or lower, and the time is 15 minutes or less including this temperature rise time. A method for producing a carburized component having a fine grain structure, which is characterized by holding, forging to a desired shape in this temperature range, and directly quenching.
JP62169491A 1987-07-07 1987-07-07 Manufacturing method of carburized parts having fine grain structure Expired - Fee Related JPH0663080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62169491A JPH0663080B2 (en) 1987-07-07 1987-07-07 Manufacturing method of carburized parts having fine grain structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62169491A JPH0663080B2 (en) 1987-07-07 1987-07-07 Manufacturing method of carburized parts having fine grain structure

Publications (2)

Publication Number Publication Date
JPS6415358A JPS6415358A (en) 1989-01-19
JPH0663080B2 true JPH0663080B2 (en) 1994-08-17

Family

ID=15887512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62169491A Expired - Fee Related JPH0663080B2 (en) 1987-07-07 1987-07-07 Manufacturing method of carburized parts having fine grain structure

Country Status (1)

Country Link
JP (1) JPH0663080B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100654695B1 (en) * 2006-05-04 2006-12-06 주식회사 성도 Method for heat treatment of cam and the parts for a large ship

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044362B2 (en) * 1976-08-23 1985-10-03 フエデラル・モ−ガル・コ−ポレ−シヨン How to obtain fully dense and carburized low alloy ferrous powder metal parts
JPS5368608A (en) * 1976-11-30 1978-06-19 Honda Motor Co Ltd Carburizing and forging of ferrous powder molded article

Also Published As

Publication number Publication date
JPS6415358A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
JP4872846B2 (en) Rough shape for nitriding gear and nitriding gear
JP5567747B2 (en) Soft nitriding steel, soft nitriding component and manufacturing method thereof
JP2019218633A (en) Steel for soft nitriding and article
JP5660259B2 (en) Carburized parts
JP5561436B2 (en) Rolled steel bar or wire rod for hot forging
CN104024444A (en) Method for producing steel part
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP2003193137A (en) Carburized and quenched member and production method therefor
JP6225965B2 (en) Soft nitriding steel and parts, and methods for producing them
JP2012001774A (en) Case-hardening steel with little heat-treatment strain
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JPS6223930A (en) Production of high-strength spur gear
JP2016188421A (en) Carburized component
JP7264117B2 (en) Steel part and its manufacturing method
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH0663080B2 (en) Manufacturing method of carburized parts having fine grain structure
JPH07138613A (en) Production of heat-treated ferrous sintered alloy parts
JP3623313B2 (en) Carburized gear parts
JP4821582B2 (en) Steel for vacuum carburized gear
JP2001032037A (en) Low distortion steel for gear, excellent in pitting resistance, and manufacture of gear using the steel
JPH0663079B2 (en) Method and apparatus for manufacturing carburized parts having fine grain structure
JP4778626B2 (en) Manufacturing method of steel parts with low heat treatment strain
JP7323850B2 (en) Steel and carburized steel parts
JP6881496B2 (en) Parts and their manufacturing methods

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees