JPH0662876A - Method for processing lipid - Google Patents

Method for processing lipid

Info

Publication number
JPH0662876A
JPH0662876A JP4245505A JP24550592A JPH0662876A JP H0662876 A JPH0662876 A JP H0662876A JP 4245505 A JP4245505 A JP 4245505A JP 24550592 A JP24550592 A JP 24550592A JP H0662876 A JPH0662876 A JP H0662876A
Authority
JP
Japan
Prior art keywords
fatty acid
reaction
raw material
lipase
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4245505A
Other languages
Japanese (ja)
Other versions
JPH0736B2 (en
Inventor
Toshimitsu Nakajima
敏光 中嶋
Susumu Kyotani
晋 京谷
Hideki Fukuda
秀樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4245505A priority Critical patent/JPH0736B2/en
Publication of JPH0662876A publication Critical patent/JPH0662876A/en
Publication of JPH0736B2 publication Critical patent/JPH0736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to produce a lipid having arbitrary fatty acid composition in high purity and efficiently produce lipids having high value added. CONSTITUTION:When a mixture consisting of a raw material oil and fat and a raw material fatty acid is made to react with, a lipase enzyme to carry out ester interchange reaction, the raw material fatty acid is continuously or intermittently added to the reaction system as the ester interchange reaction proceeds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酵素による脂質の加工
法に関し、更に詳しくはリパーゼを用いて原料油脂と原
料脂肪酸を反応させ、油脂中のアシル基を原料脂肪酸の
それと交換するエステル交換反応を用いた脂質の加工法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a lipid by an enzyme, more specifically, a transesterification reaction in which a raw fat and oil is reacted with a raw fatty acid using a lipase, and an acyl group in the fat is exchanged with that of the raw fatty acid. The present invention relates to a lipid processing method using.

【0002】[0002]

【従来の技術】脂質加工の基本的手段としては、水素添
加、分別、エステル交換などが従来より知られている。
このうちエステル交換反応については、近年脂質分解酵
素であるリパーゼを用いる方法が活発に研究、報告され
ている。この方法は、リパーゼの作用位置特異性を利用
することで、従来のアルカリ金属触媒を用いるエステル
交換では困難であったトリグリセライドの特定部位に特
定の脂肪酸を導入することが容易であるので、油脂化学
工業界で注目されているポテンシャルの高い脂質加工技
術の一つである。
2. Description of the Related Art Hydrogenation, fractionation, transesterification and the like have been conventionally known as basic means for lipid processing.
Regarding the transesterification reaction, a method using lipase, which is a lipolytic enzyme, has been actively studied and reported in recent years. This method makes it easy to introduce a specific fatty acid into a specific site of triglyceride, which was difficult by transesterification using a conventional alkali metal catalyst, by utilizing the action site specificity of lipase. It is one of the high-potential lipid processing technologies that has received attention in the industrial world.

【0003】この加水分解酵素であるリパーゼは、その
反応系に多量の水が存在すると加水分解反応が主として
進行し、トリグリセライドである脂質を脂肪酸とジグリ
セライド、モノグリセライドあるいはグリセリンに分解
する。一方、蛋白質である酵素はその活性な立体構造を
維持するために最低量の水の存在が不可欠であることが
最近、多くの研究によって明らかになりつつある。例え
ば、Dordick, J. S. :Enzyme Microbiol. Technol., 1
1,194(1989)、 Zaks,A.et al.:J.Biotechnol.,8, 259
(1988) 、Klivanov, A. M.: Chemtechnology,16, 354(1
986) 参照。したがって、脂質の加工技術として高いポ
テンシャルを有するエステル交換反応を効率的に実施す
るには、リパーゼ酵素のまわりにその活性な立体構造を
維持するに必要な最低量の本質的な水を保持しつつ、反
応系全体でみれば水分量の非常に低い状態を実現する、
いわゆる微水反応系を構築することが非常に重要とな
る。
The lipase which is a hydrolase undergoes a hydrolysis reaction mainly when a large amount of water is present in the reaction system, and decomposes a lipid which is a triglyceride into a fatty acid and a diglyceride, a monoglyceride or glycerin. On the other hand, many studies have recently revealed that the presence of a minimum amount of water is indispensable for maintaining the active three-dimensional structure of a protein enzyme. For example, Dordick, JS: Enzyme Microbiol. Technol., 1
1 , 194 (1989), Zaks, A. et al .: J. Biotechnol., 8, 259
(1988), Klivanov, AM: Chemtechnology, 16 , 354 (1
986). Therefore, in order to efficiently carry out a transesterification reaction, which has a high potential as a lipid processing technique, it is necessary to maintain the minimum amount of essential water necessary for maintaining the active conformation around the lipase enzyme. Achieves a very low water content in the entire reaction system,
It is very important to construct a so-called slightly water reaction system.

【0004】このような微水反応系を工業的に実現する
には、既にセライト、パーライト、セルロースパウダ
ー、カオリナイト、活性炭などの担体をリパーゼ水溶液
に加え、リパーゼをこれらの担体に物理吸着させたの
ち、水溶液から分離し、乾燥させて担体内水分を調整す
るという手段が開示されている。また、このような担体
固定化リパーゼを用いてエステル交換反応を実施する反
応器としては、これらの担体が微粒子であるという性格
から、充填槽型のカラム反応器が一般的に用いられてい
る。例えば、特公昭57-27159号公報、特公昭63-22795号
公報、特公昭63-22798号公報、特公平3-44757 号公報、
特公昭62-43678号公報、特開昭62-61591号公報、特開昭
62-61582号公報、特公昭57-6480 号公報、特公平3-3143
8 号公報、特開昭57-198798 号公報参照。
In order to industrially realize such a fine water reaction system, carriers such as celite, perlite, cellulose powder, kaolinite and activated carbon have already been added to the aqueous lipase solution, and the lipase is physically adsorbed on these carriers. After that, means for separating water from the aqueous solution and drying to adjust the water content in the carrier is disclosed. As a reactor for carrying out a transesterification reaction using such a carrier-immobilized lipase, a packed tank type column reactor is generally used because of the nature of these carriers being fine particles. For example, Japanese Patent Publication No. 57-27159, Japanese Patent Publication No. 63-22795, Japanese Patent Publication No. 63-22798, Japanese Patent Publication No. 3-44757,
JP-B-62-43678, JP-A-62-61591, JP-A
62-61582, Japanese Patent Publication No. 57-6480, Japanese Patent Publication No. 3143
See JP-A No. 8 and JP-A-57-198798.

【0005】しかしながら、上記のようなセライトなど
の担体に固定化したリパーゼを用いるカラム反応方式の
エステル交換反応プロセスを、工業的に実施する場合、
以下に示すような問題を有している。その一つは、この
分野の多くの研究者が指摘しているように、市販のリパ
ーゼ酵素の価格は他の加水分解酵素、例えばアミラー
ゼ、プロテアーゼなどに比べて高価であり、エステル交
換反応によって付加価値を付与された製品、例えばカカ
オバター代用脂の市場価格が際立って高価格というわけ
ではない現状においては、生産コストに占めるリパーゼ
酵素コストが如何にしても割高になってしまうという問
題を有しており、例えば、Macrae, A. R.:Biochem. So
c. Transactions, 17, 1146(1989)、Yamane, T.: J. A
m. Oil Chem.Soc., 64, 1657(1987)、橋本征雄 :バイオ
サイエンスとバイオインダストリー,47, 36 (1989) 、
間瀬民夫ら :バイオインダストリー, 7, 455(1990)参
照。したがって、安価なリパーゼ酵素の供給法の開発が
切望されていた。
However, when industrially carrying out the transesterification reaction process of the column reaction system using the lipase immobilized on a carrier such as Celite as described above,
It has the following problems. First, as many researchers in this field have pointed out, the prices of commercially available lipase enzymes are higher than those of other hydrolases such as amylase and protease, and they are added by transesterification reaction. In the current situation where the market price of value-added products, such as cocoa butter substitute fats, is not significantly high, there is the problem that the lipase enzyme cost in the production cost is inevitably high. , For example, Macrae, AR: Biochem. So
c. Transactions, 17 , 1146 (1989), Yamane, T .: J. A.
m. Oil Chem. Soc., 64 , 1657 (1987), Hashimoto S .: Bioscience and Bioindustry, 47 , 36 (1989),
See Tamase Mase et al .: Bioindustry, 7, 455 (1990). Therefore, development of an inexpensive method for supplying a lipase enzyme has been earnestly desired.

【0006】第2に、カラム反応方式のエステル交換反
応では、反応器内の反応液の流れがプラグフローとな
り、その反応率は流れ方向に増大して行く。エステル交
換反応では副反応である加水分解反応とのバランスから
反応系の水分量が重要な操作因子となることは既に述べ
たとおりである。しかしながら、カラム反応方式では、
反応液がプラグフロー流れとなるので、カラム内で水分
濃度を一定値に制御することは装置の特性上、極めて困
難であり、如何にしてもカラム内に水分濃度の分布が生
じることは避けられない。本発明者らの検討結果によれ
ば、このような水分濃度分布の存在は副反応である加水
分解反応に影響があるばかりではなく、担体に固定化さ
れたリパーゼ酵素の失活にも顕著な影響があることが明
らかになり(Kyotani,et al.: J. Ferment. Bioeng.,71
286, (1991)) 、エステル交換反応において反応系の水
分濃度を一定値にコントロールできる反応システムの構
築、また、そのために必要かつ適切なリパーゼ酵素の使
用形態(固定化方法)の開発が望まれていた。
Second, in the transesterification reaction of the column reaction system, the flow of the reaction solution in the reactor becomes a plug flow, and the reaction rate increases in the flow direction. As described above, in the transesterification reaction, the water content of the reaction system is an important operating factor in view of the balance with the hydrolysis reaction which is a side reaction. However, in the column reaction system,
Since the reaction liquid becomes a plug flow flow, it is extremely difficult to control the water concentration in the column to a constant value due to the characteristics of the device.In any case, it is possible to avoid the water concentration distribution in the column. Absent. According to the results of studies conducted by the present inventors, the presence of such a water concentration distribution not only affects the hydrolysis reaction which is a side reaction, but is also remarkable in deactivating the lipase enzyme immobilized on the carrier. (Kyotani, et al . : J. Ferment. Bioeng., 71
286, (1991)), construction of a reaction system capable of controlling the water concentration of the reaction system to a constant value in the transesterification reaction, and development of a necessary and appropriate use form of the lipase enzyme (immobilization method) are desired. Was there.

【0007】そこで、本発明者らはこれらの欠点を克服
するためにリパーゼ酵素として、微生物保持材に固定化
した菌体の菌体内リパーゼを利用するエステル交換反応
システム(以下、固定化菌体法という)を既に提案して
いる(特開昭60-34189号公報、特開昭62-118883 号公
報、特開昭63-146782 号公報、特開昭64-63385号公報、
特開平2-49582 号公報、特開平1-309689号公報、特開平
1-59078 号公報)。このような固定化菌体法では、培養
条件を調整することにより、安価に固定化リパーゼ酵素
剤を調製できる(特開昭62-118883 号公報、特開昭63-1
46782 号公報、特開平2-49582 号公報、特開平1-309689
号公報) 。また、固定化菌体法では、その特性を利用し
て、プラグフロー型、完全混合型のいかなる反応形式も
採用することが可能になり、固定化菌体を充填した反応
器内に反応液を高速で循環することにより、完全混合型
のプロセスを構築でき、更には菌体内(リパーゼ酵素近
傍)の水分濃度を任意にコントロールできる工業的に有
利なエステル交換反応プロセスを既に報告している(特
開昭64-63385号公報、特開平1-59078 号公報)。
[0007] In order to overcome these drawbacks, the present inventors have used, as a lipase enzyme, an ester exchange reaction system (hereinafter referred to as the immobilized microbial cell method) which utilizes intracellular lipase of the microbial cells immobilized on a microbial support material. Has already been proposed (JP-A-60-34189, JP-A-62-118883, JP-A-63-146782, JP-A-64-63385,
JP 2-49582 JP, JP 1-309689 JP, JP
1-59078). In such an immobilized cell method, an immobilized lipase enzyme preparation can be inexpensively prepared by adjusting the culture conditions (Japanese Patent Laid-Open Nos. 62-118883 and 63-1).
46782, JP2-49582, JP1-309689
Issue). Also, in the immobilized cell method, it is possible to use any of the plug flow type and complete mixed type reaction formats by utilizing its characteristics, and the reaction solution is placed in the reactor filled with the immobilized cell. We have already reported an industrially advantageous transesterification process in which a completely mixed process can be constructed by circulating at high speed, and the water concentration inside the cells (near the lipase enzyme) can be controlled arbitrarily (special features). JP-A-64-63385, JP-A-1-59078).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、更にエ
ステル交換反応にはそれ自身の反応特性に由来する工業
的な問題が1つある。エステル交換反応の本質は作用す
る部位間の脂肪酸分布のランダム化(無秩序化)であ
る。よって、加工しようとする原料トリグリセライドと
目的とするトリグリセライドの間の作用部位の構成脂肪
酸の差が大きければ大きいほど大量の導入原料脂肪酸源
を必要とする(エステル交換反応は平衡反応である)。
即ち、一般的な工業プロセスでは、目的生成物の濃度は
高ければ高いほど、その回収工程での効率が良くなり望
ましいが、エステル交換反応では反応生成物を高濃度で
得ようとすれば、そのために導入しなければならない原
料脂肪酸量が極端に増加し、結局のところ回収工程で多
量に導入した原料脂肪酸を分離する必要が生じ、工業的
には際立った効果を奏しない。例えば、2−不飽和トリ
グリセリドとステアリン酸あるいはパルミチン酸のよう
な飽和脂肪酸の混合物に1,3−位置特異性リパーゼを
作用させて、エステル交換反応を実施し、カカオバター
代用脂を生産する場合、製品であるカカオバター代用脂
の全グリセライド中での濃度を高めようとすると反応系
に多量の飽和脂肪酸を導入しなければならない。しかし
ながら実際問題として、これらの飽和脂肪酸はヘキサン
のような溶剤に対する溶解度が小さく、反応系に多量に
加えるのは困難である。また、反応系に多量の飽和脂肪
酸を導入するためには多量の溶剤を必要とし、結果的に
は反応器の容積効率の低下、大量の溶剤の回収が必要に
なるなど、工業的には不都合が生ずる。
However, the transesterification reaction further has one industrial problem derived from its own reaction characteristics. The essence of the transesterification reaction is the randomization (disordering) of the fatty acid distribution between the sites of action. Therefore, the larger the difference in the constituent fatty acids at the action site between the raw material triglyceride to be processed and the target triglyceride, the larger the amount of the introduced raw material fatty acid source required (the transesterification reaction is an equilibrium reaction).
That is, in a general industrial process, the higher the concentration of the target product, the higher the efficiency in the recovery step, which is desirable. However, in the transesterification reaction, if the reaction product is to be obtained in a high concentration, The amount of the raw material fatty acid that must be introduced into the product extremely increases, and in the end, it becomes necessary to separate the raw material fatty acid introduced in a large amount in the recovery step, which is not industrially remarkable. For example, when a 1,3-regiospecific lipase is allowed to act on a mixture of 2-unsaturated triglyceride and a saturated fatty acid such as stearic acid or palmitic acid to carry out a transesterification reaction to produce a cocoa butter substitute fat, In order to increase the concentration of the product cocoa butter substitute fat in the total glyceride, a large amount of saturated fatty acid must be introduced into the reaction system. However, as a practical matter, these saturated fatty acids have low solubility in a solvent such as hexane, and it is difficult to add them in large amounts to the reaction system. Further, in order to introduce a large amount of saturated fatty acid into the reaction system, a large amount of solvent is required, and as a result, the volumetric efficiency of the reactor is reduced, and it is necessary to recover a large amount of solvent. Occurs.

【0009】このような問題を回避するために、無溶媒
系でのエステル交換反応が多く試みられているが、現在
のところ十分な耐熱性を有するリパーゼは得られておら
ず、また反応器全体を高温に保つために多量のエネルギ
ーを必要とするなど、工業的には不都合な点が多い。更
に本発明者らの検討結果によれば、高温でエステル交換
反応を実施すると、グリセライド分子内でのアシル基移
転速度が加速され、生産物収率の低下、製品の品質に対
し悪影響を及ぼすなど、工業的には新たに多くの課題が
生じ、好ましくないことがわかった。したがって、工業
的なエステル交換反応においては反応器の容積効率を低
下させずに目的生産物であるトリグリセライドの濃度を
高める方法の開発がその生産性を高める上で重要な検討
課題であった。
In order to avoid such problems, many attempts have been made to carry out a transesterification reaction in a solvent-free system, but at present, a lipase having sufficient heat resistance has not been obtained, and the whole reactor has not been obtained. There are many industrial disadvantages such as requiring a large amount of energy to maintain the temperature at high temperature. Further, according to the results of studies by the present inventors, when the transesterification reaction is carried out at a high temperature, the rate of acyl group transfer in the glyceride molecule is accelerated, the yield of the product is lowered, and the quality of the product is adversely affected. However, it was found to be unfavorable industrially because of many new problems. Therefore, in the industrial transesterification reaction, the development of a method for increasing the concentration of the target product triglyceride without lowering the volumetric efficiency of the reactor has been an important subject for study in order to increase the productivity.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記のよう
な観点から鋭意検討を重ねた結果、原料油脂および原料
脂肪酸からなる混合物にリパーゼ酵素を作用させ、エス
テル交換反応を実施するに際し、エステル交換反応の進
行に伴い原料脂肪酸を連続的あるいは断続的に反応系に
添加することにより、反応器の容積効率を低下させるこ
となく、全トリグリセライド中の目的トリグリセライド
の濃度を高め得ることを見出し、本発明を完成するに至
った。このような脂肪酸を添加しながらエステル交換反
応を実施し、目的トリグリセライドの生産性を向上させ
る方法は、本発明者らの提案した固定化菌体を用いるよ
うな完全混合型のエステル交換反応プロセスにおいて極
めて効果的である。
Means for Solving the Problems As a result of intensive studies from the above viewpoints, the present inventors have conducted a transesterification reaction by causing a lipase enzyme to act on a mixture of raw fats and oils and fatty acids, By continuously or intermittently adding the raw material fatty acid to the reaction system along with the progress of the transesterification reaction, it was found that the concentration of the target triglyceride in the total triglyceride can be increased without lowering the volumetric efficiency of the reactor, The present invention has been completed. The method of carrying out the transesterification reaction while adding such a fatty acid to improve the productivity of the target triglyceride is carried out in a completely mixed transesterification reaction process using immobilized cells proposed by the present inventors. It is extremely effective.

【0011】エステル交換反応では、原料脂肪酸が原料
油脂中に取り込まれるため、反応系の脂肪酸組成、油脂
組成は反応の進行に伴い変化する。本発明は、このよう
な反応系の油脂組成、脂肪酸組成の変化に伴って、エス
テル交換反応開始時にはその溶解度が低いため多量、反
応系に導入することができなかった原料脂肪酸の溶解度
が増加する現象を利用し、反応系に原料脂肪酸をエステ
ル交換反応開始時の溶解度以上に導入し、目的生成物で
ある油脂の高濃度化を実現するものである。
In the transesterification reaction, since the raw material fatty acid is incorporated into the raw material fat and oil, the fatty acid composition and the fat and oil composition of the reaction system change with the progress of the reaction. According to the present invention, with such changes in the oil and fat composition and the fatty acid composition of the reaction system, the solubility of the raw material fatty acid that could not be introduced into the reaction system increases due to its low solubility at the start of the transesterification reaction. By utilizing this phenomenon, the raw material fatty acid is introduced into the reaction system at a concentration higher than the solubility at the start of the transesterification reaction to achieve a high concentration of the target product, oil or fat.

【0012】本発明には原料脂肪酸として、自然界に存
在する炭素数2〜30の飽和、不飽和のあらゆる脂肪酸
を用いることが出来るが、本発明の効果が顕著に見出さ
れるのは炭素数12〜30の飽和脂肪酸を原料脂肪酸と
して用いた場合である。具体的には、ラウリン酸、ミリ
スチン酸、パルミチン酸、ステアリン酸、アラキジン
酸、ベヘニン酸、リグノセリン酸、セロチン酸、モンタ
ン酸、メリシン酸などをその代表的なものとして挙げる
ことができる。
In the present invention, any saturated or unsaturated fatty acid having 2 to 30 carbon atoms existing in nature can be used as a raw material fatty acid, but the effect of the present invention is remarkably found. This is the case where 30 saturated fatty acids were used as raw material fatty acids. Specific examples thereof include lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid and melicinic acid.

【0013】また、本発明には原料油脂類として、通常
の動植物油脂あるいは合成油脂が用いられる。具体的に
は、オリーブ油、パーム油、シア脂、大豆油、綿実油、
サフラワー油、サンフラワー油、ハイオレイックサンフ
ラワー油、ハイオレイックサフラワー油、椿油、山茶花
油、茶油、牛脂、ラード、魚油、サル脂、イリッペ脂、
マンゴ脂、コーカム脂、マウア脂、フルワラ脂、トリオ
レイン、トリパルミチン、トリステアリン、ジオレイ
ン、ジパルミチン、ジステアリン、モノオレイン、モノ
パルミチン、モノステアリンなどである。また、これら
の油脂が通常の分別晶析工程を経たのち得られるこれら
油脂の高融点部、中融点部、低融点部もまたそれぞれ原
料油脂として用いることができる。
In the present invention, as the raw material fats and oils, usual animal and vegetable fats and oils or synthetic fats and oils are used. Specifically, olive oil, palm oil, shea butter, soybean oil, cottonseed oil,
Safflower oil, sunflower oil, high oleic sunflower oil, high oleic safflower oil, camellia oil, mountain tea flower oil, tea oil, beef tallow, lard, fish oil, monkey fat, illipe fat,
Examples thereof include mango butter, coke butter, mauer butter, fluwara butter, triolein, tripalmitin, tristearin, diolein, dipalmitin, distearin, monoolein, monopalmitin, monostearin and the like. Further, the high melting point portion, the medium melting point portion and the low melting point portion of these oils and fats obtained after these oils and fats have been subjected to a normal fractional crystallization step can also be used as the starting oils and fats.

【0014】そして、本発明においては、上記の原料油
脂、原料脂肪酸はn−ヘキサン、イソオクタン、アセト
ン、エタノール、メタノール、石油エーテル、酢酸エチ
ルのような有機溶媒に希釈してエステル交換反応に供さ
れる。
In the present invention, the above-mentioned raw material fats and oils and raw material fatty acids are diluted with an organic solvent such as n-hexane, isooctane, acetone, ethanol, methanol, petroleum ether, ethyl acetate and subjected to a transesterification reaction. It

【0015】本発明において、エステル交換反応の進行
に伴い原料脂肪酸を反応系に添加する場合の添加方法
は、連続的、断続的のいずれの方法も適用できる。原料
脂肪酸が常温において固体あるいは粉末状である場合、
断続的に供給する場合はそのままの状態で添加できる
が、連続的に供給する場合は融点以上に加熱するか、あ
るいは上記の有機溶媒に溶かすなどして液体状態で添加
した方が操作上便宜である。しかし、この有機溶媒に溶
解して添加する方法は、反応器の容積効率の低下を引き
起こすことから、工業的には粉末状態のまま断続的に、
あるいは融点以上に加熱して液状とし、断続的または連
続的に供給する方が好ましい。
In the present invention, when the raw material fatty acid is added to the reaction system along with the progress of the transesterification reaction, either a continuous method or an intermittent method can be applied. When the raw material fatty acid is solid or powder at room temperature,
In the case of intermittent supply, it can be added as it is, but in the case of continuous supply, it is convenient for operation to add it in a liquid state by heating it to a temperature above its melting point or dissolving it in the above organic solvent. is there. However, the method of adding by dissolving in this organic solvent causes a decrease in the volumetric efficiency of the reactor, so industrially, intermittently in a powder state,
Alternatively, it is preferable that the liquid be heated to a temperature equal to or higher than the melting point to be in a liquid state and supplied intermittently or continuously.

【0016】本発明の方法において、エステル交換反応
を実施する際の反応触媒であるリパーゼの使用形態は、
エステル交換反応に要求される微水環境を実現できるも
のであれば特に限定されるものではない。例えば、リパ
ーゼ酵素を粉末状態で直接、あるいは公知の方法でセラ
イト、活性アルミナ、活性白土、ケイソウ土、活性炭、
パーライト、セルロースパウダー、カオリナイトのよう
な担体に物理的に吸着固定化した固定化リパーゼ、ウレ
タンプレポリマー、カラギーナン、アルギン酸ゲル、光
硬化性樹脂に包括固定化したもの、あるいはグルタルア
ルデヒドなどの架橋剤を用い、リパーゼを架橋固定化し
たものなどが適用される。更には、先に本発明者らが提
案したリパーゼを菌体内に包蔵した乾燥菌体も使用可能
である。乾燥菌体の場合は、乾燥菌体を直接、あるいは
既に報告しているように微生物保持材とともに培養し、
該保持材に培養と同時に固定化した後、乾燥した微生物
保持材固定化乾燥菌体として利用することも可能であ
る。
In the method of the present invention, the use form of the lipase which is a reaction catalyst when carrying out the transesterification reaction is as follows:
The material is not particularly limited as long as it can realize the slightly water environment required for the transesterification reaction. For example, lipase enzyme directly in powder form, or by a known method, Celite, activated alumina, activated clay, diatomaceous earth, activated carbon,
Immobilized lipase physically adsorbed and immobilized on a carrier such as perlite, cellulose powder, kaolinite, urethane prepolymer, carrageenan, alginic acid gel, entrapped and immobilized on photocurable resin, or cross-linking agent such as glutaraldehyde And a cross-linked and immobilized lipase is used. Furthermore, a dry microbial cell containing the lipase previously proposed by the present inventors can also be used. In the case of dried bacterial cells, the dried bacterial cells are directly cultured or, as previously reported, cultured with a microorganism retaining material,
It is also possible to immobilize it on the holding material at the same time as culturing, and then use the dried microorganism holding material-immobilized dry cells.

【0017】本発明の方法では、原料脂肪酸をエステル
交換反応の進行に伴って連続的あるいは断続的に添加す
るため、適用される反応器内は完全混合流れとなるのが
好ましい。上記の吸着固定化リパーゼ、包括固定化リパ
ーゼ、架橋固定化リパーゼを用いる場合、一般的にはプ
ラグフロー流れのカラム反応器が用いられるが、これら
の固定化リパーゼを用いても、例えば攪拌槽内あるいは
カラムを多段化して各段を攪拌するなどして、エステル
交換反応を実施すれば、本発明の方法は適用できる。強
攪拌条件下では固定化担体の破壊が起こり、高価なリパ
ーゼ酵素の回収利用、繰り返し利用が困難となるなどの
不都合が予想されるため、工業的には上記の公知の方法
でセライト、活性アルミナ、活性白土、ケイソウ土、活
性炭、パーライト、セルロースパウダー、カオリナイト
のような担体に物理的に吸着固定化した固定化リパー
ゼ、ウレタンプレポリマー、カラギーナン、アルギン酸
ゲル、光硬化性樹脂に包括固定化したもの、あるいはグ
ルタルアルデヒドなどの架橋剤を用い、リパーゼを架橋
固定化したものなどを完全混合流れ条件下で利用する際
に反応操作条件に留意する必要がある。
In the method of the present invention, since the raw material fatty acid is continuously or intermittently added as the transesterification reaction progresses, it is preferable that the inside of the reactor to be applied be in a completely mixed flow. When using the adsorption-immobilized lipase, entrapment-immobilized lipase, and cross-linking immobilized lipase, a plug flow flow column reactor is generally used, but even if these immobilized lipases are used, for example, in a stirring tank. Alternatively, the method of the present invention can be applied if the transesterification reaction is carried out by making the column multistage and stirring each stage. Under vigorous stirring conditions, destruction of the immobilized carrier occurs, and recovery and use of expensive lipase enzyme are expected to cause inconveniences such as difficulty in repeated use. Immobilized lipase physically adsorbed and immobilized on a carrier such as activated clay, diatomaceous earth, activated carbon, perlite, cellulose powder, kaolinite, urethane prepolymer, carrageenan, alginate gel, entrapped and immobilized on photocurable resin. It is necessary to pay attention to the reaction operation conditions when using a substance or a substance in which a cross-linking agent such as glutaraldehyde is used and a lipase is cross-linked and immobilized under a completely mixed flow condition.

【0018】一方、本発明者らが提案した菌体内リパー
ゼを利用する方法、とりわけ微生物保持材固定化菌体を
用いる方法では、該固定化菌体を充填した反応器内を高
速で反応液を循環させたり、循環液量を適当量に設定す
ることにより、固定化微生物を流動させる事ができるの
で、攪拌機などの特別な設備を導入せずとも容易に完全
混合流れを実現でき、本発明の方法を適用するのに極め
て好都合である。更に、微生物保持材固定化菌体の場
合、既に報告しているように固定化操作によって菌体内
リパーゼ活性が著しく増幅されること(特開昭63-14678
2 号公報)、流加培養を行うことによって増幅された活
性が更に増幅されること(特開昭62-18883号公報、特開
平2-49582 号公報)、また、その反応システムではエス
テル交換反応で最も重要な操作因子である反応液中の水
分濃度のコントロールが容易である(特開昭64-63385号
公報、特開平1-309689号公報、特開平1-59078 号公報)
など、リパーゼ酵素が高価である現状において、工業
的、経済的に有利なエステル交換反応システムの構築が
可能であり、極めて好都合である。
On the other hand, in the method using the intracellular lipase proposed by the present inventors, particularly the method using the microorganism-supporting material-immobilized cells, the reaction liquid is rapidly fed into the reactor filled with the immobilized cells. By circulating or by setting the circulating liquid amount to an appropriate amount, the immobilized microorganisms can be made to flow, so that a complete mixed flow can be easily realized without introducing special equipment such as a stirrer. It is very convenient to apply the method. Furthermore, in the case of the microorganisms on which the microorganism-retaining material is immobilized, the intracellular lipase activity is remarkably amplified by the immobilization procedure as previously reported (JP-A-63-14678).
2), that the activity amplified by fed-batch culture is further amplified (JP-A-62-18883, JP-A-2-49582), and the transesterification reaction in the reaction system. It is easy to control the water concentration in the reaction solution, which is the most important operating factor in JP-A-64-63385, JP-A-1-309689, and JP-A-1-59078.
In such a situation that the lipase enzyme is expensive, it is possible to construct an industrially and economically advantageous transesterification reaction system, which is extremely convenient.

【0019】本発明の方法によって高濃度にまで高めら
れた目的生成物(トリグリセライド)は常法に従い、蒸
発によって溶剤を回収し、減圧蒸留、例えば水蒸気蒸留
によって残存する原料脂肪酸および原料油脂よりエステ
ル交換反応の結果遊離してきた脂肪酸を分離した後、溶
剤分別晶析工程を経て、製品として回収される。このよ
うにして得られた脂肪酸混合物(残存原料脂肪酸および
原料油脂よりエステル交換反応の結果、遊離してきた脂
肪酸)あるいは製品として目的生産物を回収した残りの
油脂類は本発明の方法において再びそれぞれ原料油脂、
原料脂肪酸として利用した方が工業的には好ましい。と
りわけ、本発明の方法では反応液中に含まれる飽和脂肪
酸量が従来法に比べて多くなるので、飽和脂肪酸を回収
し、再利用する事が工業的には必要となってくる。した
がって、本発明の方法においては、上記の蒸留して得ら
れた脂肪酸混合物(残存原料脂肪酸および原料油脂より
エステル交換反応の結果、遊離してきた脂肪酸)から原
料油脂よりエステル交換反応の結果、遊離してきた脂肪
酸の中から不飽和脂肪酸を取り除き再利用した方が目的
生産物の収率を高める上で好ましい。このような飽和脂
肪酸と不飽和脂肪酸の混合物から不飽和脂肪酸を分離す
るには公知の方法、例えば、溶剤分別、無溶媒分別、分
子蒸留、ゾーンメルティング、尿素付加法、吸着分離な
どの方法が利用できる。
The target product (triglyceride), which has been increased to a high concentration by the method of the present invention, is subjected to a conventional method to recover the solvent by evaporation, and is subjected to transesterification from the remaining raw material fatty acid and raw material fat by vacuum distillation, for example steam distillation. After separating the fatty acid liberated as a result of the reaction, it is recovered as a product through a solvent fractionation crystallization step. The fatty acid mixture thus obtained (fatty acids liberated as a result of the transesterification reaction from the remaining raw material fatty acids and raw material fats or oils) or the remaining fats and oils obtained by recovering the target product as a product are again used as raw materials in the method of the present invention. Fats and oils,
It is industrially preferable to use it as a raw material fatty acid. In particular, in the method of the present invention, the amount of saturated fatty acid contained in the reaction solution is larger than that in the conventional method, so it is industrially necessary to recover and reuse the saturated fatty acid. Therefore, in the method of the present invention, the fatty acid mixture obtained by the above-mentioned distillation (fatty acid that has been liberated as a result of the transesterification reaction from the residual raw material fatty acid and raw material fat) is liberated from the raw material fat as a result of the transesterification reaction. It is preferable to remove the unsaturated fatty acid from the fatty acid and reuse it in order to increase the yield of the target product. Known methods for separating unsaturated fatty acids from such a mixture of saturated fatty acids and unsaturated fatty acids include, for example, solvent fractionation, solvent-free fractionation, molecular distillation, zone melting, urea addition method, adsorption separation and the like. Available.

【0020】また一方では、不飽和脂肪酸を分離せず、
公知の水素添加法により不飽和脂肪酸を飽和脂肪酸に変
換して再利用することも可能である。この水素添加法
は、例えば、脂肪酸混合物に適当な触媒を加え、加熱攪
拌しながら水素ガスを通じることによって行われる。こ
の際、温度、圧力、触媒の種類、水素の量などをうまく
選ぶと水素添加反応は迅速に起こり、そのまま進行させ
ると最後には全ての不飽和脂肪酸の2重結合が飽和し
て、完全に水素添加してしまう。このような場合は、水
素添加して得られた飽和脂肪酸を本発明のエステル交換
反応の原料脂肪酸として再利用することもできる。しか
しながら、本発明の方法では、水素添加プロセスに供給
される脂肪酸混合物の大部分は飽和脂肪酸であり、水素
添加しなければならない不飽和脂肪酸の含有量は少ない
にもかかわらず、これらを同時に水素添加反応に供しな
ければならないため反応器容量がいたずらに大きくな
り、工業的には好ましくない。むしろ、上記の公知の方
法、例えば溶剤分別、無溶媒分別、分子蒸留、ゾーンメ
ルティング、尿素付加法、吸着分離などの方法で飽和脂
肪酸と不飽和脂肪酸をまず分離した後、不飽和脂肪酸の
みを水素添加した方が工業的には効率的である。
On the other hand, the unsaturated fatty acid is not separated,
It is also possible to convert unsaturated fatty acids into saturated fatty acids and reuse them by a known hydrogenation method. This hydrogenation method is carried out, for example, by adding an appropriate catalyst to the fatty acid mixture and passing hydrogen gas while heating and stirring. At this time, if the temperature, pressure, type of catalyst, amount of hydrogen, etc. are properly selected, the hydrogenation reaction will occur rapidly, and if it is allowed to proceed as it is, all the unsaturated fatty acid double bonds will be saturated and the hydrogenation reaction will be completely completed. Hydrogen is added. In such a case, the saturated fatty acid obtained by hydrogenation can be reused as a raw material fatty acid for the transesterification reaction of the present invention. However, in the method of the present invention, the majority of the fatty acid mixture fed to the hydrogenation process is saturated fatty acids, and despite the low content of unsaturated fatty acids that must be hydrogenated, they are simultaneously hydrogenated. Since it has to be used for the reaction, the capacity of the reactor becomes unnecessarily large, which is not industrially preferable. Rather, the above-mentioned known methods, for example, solvent fractionation, solvent-free fractionation, molecular distillation, zone melting, urea addition, adsorption separation, etc., first separate saturated fatty acids and unsaturated fatty acids, then only unsaturated fatty acids. It is industrially more efficient to add hydrogen.

【0021】本発明者らの経験によれば、水素添加反応
においては、不飽和脂肪酸含有量が少なくなればなるほ
どその反応速度が減少するため、処理時間が膨大とな
り、工業的には完全に飽和脂肪酸にまで水添硬化するの
はむずかしい。水素添加が完全に完了していない時点で
得られた脂肪酸混合物を本発明の方法に限らずエステル
交換反応の原料脂肪酸として再利用した場合、目的生産
物の収率低下のみならず、目的生産物の品質をも低下さ
せるというような問題を引き起こすことになる。このよ
うな問題を引き起こす原因物質は、不飽和脂肪酸を水素
添加する際に生ずる異性化した不飽和脂肪酸であり、例
えばオレイン酸を水素添加する際に生ずる幾何異性体で
あるエライジン酸、オレイン酸の中央にある2重結合が
他の位置に移動した位置異性体などである。本発明者ら
の検討結果によれば、例えばエステル交換反応でカカオ
バター代用脂を生産する場合に、これらの異性化した不
飽和脂肪酸を含む脂肪酸混合物を原料脂肪酸として用い
ると、異性化した不飽和脂肪酸が目的生産物であるカカ
オバター代用脂内に取り込まれ、シャープな溶融性が損
なわれるなど、カカオバター代用脂の製品価値を低下さ
せる。本発明者らの経験によれば、このような現象は原
料脂肪酸中に異性化した脂肪酸がわずかに数%程度存在
すれば発現し、工業的には水素添加法により不飽和脂肪
酸を飽和脂肪酸に変換して本発明の方法に原料脂肪酸と
して再利用する場合は、異性化反応が起こらないように
その反応条件に留意しなければならない。上記の方法の
うち、異性化反応を抑制できる方法、例えば溶剤分別、
無溶媒分別、ゾーンメルティング、尿素付加法、吸着分
離などが工業的にはむしろ好ましい。
According to the experience of the present inventors, in the hydrogenation reaction, the reaction rate decreases as the unsaturated fatty acid content decreases, so that the processing time becomes enormous and industrially completely saturated. It is difficult to hydrocure even fatty acids. When the fatty acid mixture obtained when the hydrogenation is not completely completed is reused as the raw material fatty acid for the transesterification reaction not only in the method of the present invention, not only the yield of the target product is lowered but also the target product is obtained. It also causes problems such as deterioration of the quality of. The causative substance causing such a problem is an isomerized unsaturated fatty acid produced when hydrogenating an unsaturated fatty acid. For example, geometric isomers of elaidic acid and oleic acid produced when hydrogenating oleic acid are used. For example, a positional isomer in which the double bond at the center is moved to another position. According to the results of studies conducted by the present inventors, for example, when a cocoa butter substitute fat is produced by a transesterification reaction, when a fatty acid mixture containing these isomerized unsaturated fatty acids is used as a raw material fatty acid, isomerized unsaturated Fatty acids are incorporated into the cocoa butter substitute fat, which is the target product, and sharp melting properties are impaired, which reduces the product value of the cocoa butter substitute fat. According to the experience of the present inventors, such a phenomenon occurs when only a few percent of the isomerized fatty acid is present in the raw material fatty acid, and industrially, the unsaturated fatty acid is converted into a saturated fatty acid by the hydrogenation method. When it is converted and reused as a raw material fatty acid in the method of the present invention, the reaction conditions must be taken into consideration so that the isomerization reaction does not occur. Among the above methods, a method capable of suppressing the isomerization reaction, for example, solvent fractionation,
Solvent-free fractionation, zone melting, urea addition method, adsorption separation and the like are industrially preferable.

【0022】[0022]

【実施例】次に、本発明を実施例を用いて説明するが、
もとより本発明はこれらの実施例により何ら限定される
ものではない。
EXAMPLES Next, the present invention will be explained using examples.
Of course, the present invention is not limited to these examples.

【0023】尚、以下の実施例において、微生物保持材
に固定化された菌体は、培養液より分離後、水道水で2
回洗浄し、次いでアセトンで2回洗浄した後、常温で4
8時間真空乾燥し、固定化乾燥菌体を調製した。
In the following examples, the bacterial cells immobilized on the microbial support were separated from the culture solution and then washed with tap water.
Wash twice, then twice with acetone, then at room temperature for 4
It was vacuum dried for 8 hours to prepare immobilized dry cells.

【0024】また、リパーゼのエステル交換活性につい
ては未だ一般的な測定法が確立されていないので、本発
明においてはオリーブオイル:ステアリン酸メチル:ヘ
キサン=1:4:2.5(重量比)からなる混合物を用
い、リパーゼ酵素剤を適量加えて40℃で一定時間反応
せしめ、生成したオレイン酸メチル量より、1分間当た
り1μmolのオレイン酸メチルを生成する酵素量を1
ユニット(1U)とした。
Further, since a general method for measuring the transesterification activity of lipase has not been established yet, in the present invention, olive oil: methyl stearate: hexane = 1: 4: 2.5 (weight ratio) Using a mixture of the following, an appropriate amount of lipase enzyme agent was added, and the mixture was reacted at 40 ° C. for a certain period of time, and the amount of the enzyme that produced 1 μmol of methyl oleate per minute was 1% from the amount of methyl oleate produced
A unit (1U) was used.

【0025】オレイン酸メチルおよびトリグリセライド
の組成は公知の方法によりそれぞれガスクロマトグラフ
ィー、高速液体クロマトグラフィーにより分析した。
The compositions of methyl oleate and triglyceride were analyzed by gas chromatography and high performance liquid chromatography, respectively, according to known methods.

【0026】固定化酵素あるいは乾燥菌体内に含まれる
水分量は公知のカールフィッシャー法により測定した。
The amount of water contained in the immobilized enzyme or dried cells was measured by the known Karl Fischer method.

【0027】(実施例1)市販のRhizopus delemarのリ
パーゼ(生化学工業(製))1部とケイソウ土2部を混
合したのち、冷水を適当量攪拌しながら散布して粒状と
なし、これを常温で真空乾燥し、水分2.3%のケイソ
ウ土固定化リパーゼを得た。同様の操作を市販のRhizop
us niveus のリパーゼ(天野製薬(製))とセライト、
Rhizopusjaponicus のリパーゼ(大阪研究所(製))
とパーライト、Aspergillus nigarのリパーゼ(天野製
薬(製))とカオリナイトに対して実施し、それぞれ水
分3.3%のセライト固定化リパーゼ、水分2.8%の
パーライト固定化リパーゼ、水分4.1%のカオリナイ
ト固定化リパーゼを得た。これらの固定化リパーゼ酵素
のエステル交換活性は表1に示すとおりであった。
Example 1 1 part of a commercially available lipase of Rhizopus delemar (Seikagaku Kogyo Co., Ltd.) and 2 parts of diatomaceous earth were mixed, and then cold water was sprayed with stirring to form granules. It was vacuum dried at room temperature to obtain a diatomaceous earth-immobilized lipase having a water content of 2.3%. The same operation is performed on the commercially available Rhizop
us niveus lipase (Amano Pharmaceutical Co., Ltd.) and Celite,
Rhizopus japonicus lipase (Osaka Institute (made))
And perlite, Aspergillus nigar lipase (Amano Pharmaceutical Co., Ltd.) and kaolinite, respectively, with a celite-immobilized lipase having a water content of 3.3%, a perlite-immobilized lipase having a water content of 2.8%, and a water content of 4.1. % Kaolinite immobilized lipase was obtained. The transesterification activities of these immobilized lipase enzymes are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】これらの固定化リパーゼ500mgとオリ
ーブオイル:パルミチン酸:ヘキサン=1:4:10
(重量比)からなる反応混合物15gを50mlの容器
に加え、マグネチィックスタラーで攪拌しながら、40
℃で24時間エステル交換反応を行った。反応開始後、
6時間、12時間、18時間目にそれぞれ0.25gず
つパルミチン酸を粉末状態で加えて溶解し、エステル交
換反応を継続した。表2に各固定化リパーゼについてパ
ルミチン酸の添加回数をそれぞれ0回、1回、2回、3
回とした場合の24時間後のトリグリセライド中の反応
生成物である1,3−ジパルミトイル−2−オレオイル
グリセロール(POP)の生成量を示した。
500 mg of these immobilized lipases and olive oil: palmitic acid: hexane = 1: 4: 10
15 g of the reaction mixture consisting of (weight ratio) was added to a 50 ml container and stirred with a magnetic stirrer while stirring 40 times.
The transesterification reaction was carried out at 24 ° C. for 24 hours. After starting the reaction
At 6 hours, 12 hours, and 18 hours, 0.25 g of palmitic acid was added in powder form and dissolved, and the transesterification reaction was continued. Table 2 shows the numbers of additions of palmitic acid for each immobilized lipase, 0 times, 1 time, 2 times, 3 times, respectively.
The amount of 1,3-dipalmitoyl-2-oleoylglycerol (POP), which is a reaction product in the triglyceride after 24 hours when the number of times is indicated, is shown.

【0030】[0030]

【表2】 [Table 2]

【0031】パルミチン酸はヘキサンに溶けにくく、反
応開始時の反応液組成としては、オリーブオイル:パル
ミチン酸:ヘキサン=1:4:10(重量比)以上溶解
するのは困難であるが、反応途中に逐次、添加すること
によりトータル量を増加させることが出来、目的生産物
をより高濃度とすることが出来た。
Palmitic acid is hardly soluble in hexane, and it is difficult to dissolve olive oil: palmitic acid: hexane = 1: 4: 10 (weight ratio) or more in the reaction solution composition at the start of the reaction, but during the reaction It was possible to increase the total amount by sequentially adding to, and to make the target product a higher concentration.

【0032】(実施例2)特開昭63-146782 号公報の実
施例1に記載の方法と同様にして、Rhizopuschinensis
IFO 4768を1辺6mmのブロック状ポリウレタン微生物
保持材(ブリジストン(製)、商品名:エバーライトス
コットHR−40)に固定化し、固定化乾燥菌体を調製
した(エステル交換活性:15U/g−担体)。この固
定化乾燥菌体および市販の固定化リパーゼ(ノボ社
(製)、商品名:リポザイム;エステル交換活性:20
U/g−担体)を用いて、トリオレイン(和光純薬
(製))とベヘニン酸のエステル交換反応を実施した。
固定化乾燥菌体およびリポザイム300mgにトリオレ
イン:ベヘニン酸:ヘキサン=1:2:20(重量比)
の組成をもつ反応液を15g加え、本願の実施例1と同
様の要領で40℃で反応させた。途中、6時間、12時
間、18時間目にそれぞれ0.15gずつベヘニン酸を
添加した。表3に結果を示した。
Example 2 Rhizopus chinensis was prepared in the same manner as in Example 1 of JP-A-63-146782.
IFO 4768 was immobilized on a block-shaped polyurethane microbial support material (Bridgestone (product name), Everlite Scott HR-40) having a side length of 6 mm to prepare immobilized dry cells (transesterification activity: 15 U / g-). Carrier). The immobilized dried bacterial cells and commercially available immobilized lipase (Novo Co., Ltd., trade name: lipozyme; transesterification activity: 20)
U / g-carrier) was used to carry out the transesterification reaction between triolein (Wako Pure Chemical Industries, Ltd.) and behenic acid.
Immobilized dry cells and lipozyme (300 mg) in triolein: behenic acid: hexane = 1: 2: 20 (weight ratio)
15 g of the reaction solution having the composition of was added and reacted at 40 ° C. in the same manner as in Example 1 of the present application. On the way, 0.15 g of behenic acid was added at 6 hours, 12 hours, and 18 hours. The results are shown in Table 3.

【0033】[0033]

【表3】 [Table 3]

【0034】表3より、ヘキサンに対する溶解度が極端
に低いベヘニン酸に対しても、本発明の方法は反応液の
容積効率を低下させず、目的生産物の濃度を高めるのに
効果的であることがわかる。この反応系では、反応開始
時の反応液組成としてトリオレイン:ベヘニン酸:ヘキ
サン=1:2:20(重量比)以上にベヘニン酸を溶解
するのは極めて困難であった。
It can be seen from Table 3 that the method of the present invention is effective for increasing the concentration of the target product without reducing the volumetric efficiency of the reaction solution even for behenic acid having extremely low solubility in hexane. I understand. In this reaction system, it was extremely difficult to dissolve behenic acid at a reaction liquid composition at the start of the reaction of at least triolein: behenic acid: hexane = 1: 2: 20 (weight ratio).

【0035】(実施例3)リパーゼ生産菌Rhizopus niv
eus IFO 4759を特開平2-49582 号公報の第1図に示され
た気泡塔(Circulating bed fermentor )を用いて、1
辺10mmのブロック状セルロース微生物保持材(酒伊
エネックス(株)、商品名:SIC−CS)とともに培
養し、固定化菌体を調製した。ただし、気泡塔の通気口
としては特開平2-49582 号公報の第2図に示された多孔
板の代わりに焼結金属板(日本精線(株)製、商品名:
ナスロンフィルターメディアファインポア NF-06)を使
用した。培養方法は、特開平2-49582 号公報の実施例2
に記載の方法と同様にして行い、特開平2-49582 号公報
の参考例1に示された菌体濃度の予測実験式に基づいて
比基質(肉エキス)供給速度を0.06(g−肉エキ
ス)(g−cell)-1(h)-1に制御して培養した。
このようにして得られたセルロース微生物保持材固定化
乾燥菌体は19U/g−担体のエステル交換活性を有し
ていた。このセルロース固定化菌体を、特開平1-309689
号公報の第5図に示されたエステル交換反応装置内に充
填し、ハイオレイックサンフラワー油:ステアリン酸:
ヘキサン=1:3:12(重量比)の組成をもつ反応液
を仕込み、カカオバター代用脂の生産を行った。反応液
中の水分濃度は特開昭64-63385号公報、ならびに特開平
1-309689号公報に開示されている方法で反応全般を通じ
て、100ppmにコントロールした。RUN−1では
ステアリン酸を途中追加せず18時間回分反応を行い、
RUN−2ではRUN−1と同様の反応条件下、初期反
応液中に含まれるステアリン酸の30%相当量のステア
リン酸を溶融状態で反応開始後3時間目から15時間目
まで一定流量で連続的に反応系に添加し、18時間回分
反応を行った。表4にRUN−1、RUN−2の各反応
時間の目的生成物であるカカオバター代用脂(SOS:
1,3−ジステアロイル−2−オレオイルグリセロー
ル)の濃度変化を比較した。
Example 3 Lipase-producing bacterium Rhizopus niv
Using the bubble column (Circulating bed fermentor) shown in FIG. 1 of Japanese Patent Application Laid-Open No. 2-49582, eus IFO 4759
Immobilized cells were prepared by culturing with a block-shaped cellulosic microorganism-holding material having a side of 10 mm (Sakai Enex Co., Ltd., trade name: SIC-CS). However, as a vent for the bubble column, a sintered metal plate (manufactured by Nippon Seisen Co., Ltd., trade name: instead of the perforated plate shown in FIG. 2 of JP-A-2-49582) is used.
Naslon Filter Media Finepore NF-06) was used. The culturing method is described in Example 2 of JP-A-2-49582.
The specific substrate (meat extract) feed rate is 0.06 (g-) based on the empirical formula for predicting the bacterial cell concentration shown in Reference Example 1 of JP-A-2-49582. Meat extract) (g-cell) -1 (h) -1 was controlled and cultured.
The dried bacterial cells on which the cellulose microorganism-supporting material was thus obtained had a transesterification activity of 19 U / g-carrier. This cellulose-immobilized microbial cell was prepared as described in JP-A-1-309689.
Filled in the transesterification reactor shown in FIG. 5 of Japanese Patent Publication No. Heiolaik Sunflower Oil: Stearic Acid:
A reaction liquid having a composition of hexane = 1: 3: 12 (weight ratio) was charged to produce a cocoa butter substitute fat. The water concentration in the reaction solution is described in JP-A-64-63385,
It was controlled to 100 ppm throughout the reaction by the method disclosed in JP-A 1-309689. In RUN-1, stearic acid was not added in the middle and the batch reaction was performed for 18 hours.
In RUN-2, under the same reaction conditions as in RUN-1, stearic acid equivalent to 30% of stearic acid contained in the initial reaction liquid was continuously melted at a constant flow rate from the 3rd to 15th hours after the reaction was started. Was added to the reaction system, and batch reaction was performed for 18 hours. Table 4 shows the cocoa butter substitute fat (SOS: SOS: which is the target product at each reaction time of RUN-1 and RUN-2).
The changes in the concentration of 1,3-distearoyl-2-oleoylglycerol) were compared.

【0036】[0036]

【表4】 [Table 4]

【0037】本実施例で使用したようなエステル交換反
応バイオリアクターでは、原料脂肪酸を溶融状態で連続
的に反応の進行に伴い添加して行くことによって、煩雑
な操作を要することなく、バイオリアクターの容積効率
はそのままで生産性を10数%上昇させることが出来
た。
In the transesterification reaction bioreactor as used in this example, the raw material fatty acid is continuously added in the molten state as the reaction progresses, so that the bioreactor of the bioreactor can be obtained without complicated operations. We were able to increase productivity by 10% with volume efficiency unchanged.

【0038】(実施例4)実施例3におけるRUN−
1、RUN−2の反応終了後のそれぞれの反応混合物よ
り、常法に従い溶剤であるヘキサンを蒸発させて回収し
た。更に常法の減圧蒸留で脂肪酸と脂質であるトリグリ
セライドを分離した。分離されたトリグリセライドを更
に常法の分別晶析で高融点部、中融点部、低融点部に分
離し、製品であるカカオバター代用脂を中融点部に回収
した。この分別晶析の際の歩留り(収率)はカカオバタ
ー代用脂の濃度が高められたRUN−2の方が10数%
高く、本発明の方法はエステル交換反応工程での生産性
が上昇するばかりでなく、晶析などの後処理工程におけ
る回収率にも効果を奏した。
(Example 4) RUN- in Example 3
From each reaction mixture after the reaction of 1 and RUN-2, hexane as a solvent was evaporated and collected according to a conventional method. Further, the fatty acid and the lipid triglyceride were separated by a conventional vacuum distillation. The separated triglyceride was further separated into a high melting point portion, a medium melting point portion and a low melting point portion by a conventional fractional crystallization, and the product cocoa butter substitute fat was recovered in the medium melting point portion. The yield (yield) in this fractional crystallization was 10% or more in RUN-2 in which the concentration of the cocoa butter substitute fat was increased.
In addition, the method of the present invention not only increased the productivity in the transesterification reaction step, but also had an effect on the recovery rate in the post-treatment step such as crystallization.

【0039】次に、上記の回収された脂肪酸を以下に示
す2種類の処理にかけ、エステル交換反応の結果、原料
油脂から遊離した不飽和脂肪酸を取り除いた。これらの
処理を施した脂肪酸を再び原料脂肪酸とし、上記のトリ
グリセライドの分別晶析で得られた低融点部を再び原料
油脂として、実施例3と同じバイオリアクターを用い、
同様の手順でカカオバター代用脂生産のためのエステル
交換反応を実施した。
Next, the above-mentioned recovered fatty acid was subjected to the following two kinds of treatments to remove the unsaturated fatty acid liberated from the raw material fat as a result of the transesterification reaction. Using the same bioreactor as in Example 3, the fatty acid that had been subjected to these treatments was again used as a raw material fatty acid, and the low melting point portion obtained by the fractional crystallization of triglyceride was used as a raw material oil and fat again.
The transesterification reaction for producing cocoa butter substitute fat was carried out by the same procedure.

【0040】(処理1)回収した脂肪酸を、再びヘキサ
ンに溶解し、晶析温度40℃、30℃、25℃で3段晶
析を行い、ステアリン酸を含む飽和脂肪酸を回収した。
沈澱したケーキ中に巻き込まれる不飽和脂肪酸を除くた
め、ろ過の際、ケーキをヘキサンで数回洗浄した。
(Process 1) The recovered fatty acid was dissolved in hexane again, and three-stage crystallization was performed at crystallization temperatures of 40 ° C., 30 ° C. and 25 ° C. to recover a saturated fatty acid containing stearic acid.
The cake was washed several times with hexane during filtration to remove the unsaturated fatty acids entrained in the precipitated cake.

【0041】(処理2)攪拌槽(実容量:10L)型の
水添装置で、ニッケル金属触媒を用い、温度160〜1
80℃で圧力3Kg/cm2が維持されるように水素を加え、
1時間水素添加反応を実施した。
(Processing 2) A stirring tank (actual capacity: 10 L) type hydrogenation apparatus using a nickel metal catalyst at a temperature of 160 to 1
Add hydrogen to maintain a pressure of 3 kg / cm 2 at 80 ° C,
The hydrogenation reaction was carried out for 1 hour.

【0042】初期反応液組成を中融点部:回収脂肪酸:
ヘキサン=1:2:8(重量比)とし、実施例3と同様
に処理1を施した脂肪酸を反応の進行に伴い、添加した
場合と添加しない場合の結果を表5、処理2を施した脂
肪酸を反応の進行に伴い、添加した場合としない場合の
結果を表6にそれぞれ示した。
The composition of the initial reaction solution was set to the mid-melting point: recovered fatty acid:
With hexane = 1: 2: 8 (weight ratio), the fatty acid treated in the same manner as in Example 3 was treated with the fatty acid, and the results with and without addition were shown in Table 5 and Treatment 2. The results with and without addition of fatty acid are shown in Table 6 as the reaction progressed.

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】実施例3で得られたカカオバター代用脂、
実施例4の処理1、処理2を施した脂肪酸を用いて得ら
れたカカオバター代用脂の品質を比較したところ、実施
例3、実施例4の処理1のものは従来品(シア脂より分
別晶析したもの)と比べ特に遜色はなく、むしろ従来品
よりもシャープな溶融性を示し良好であった。一方、実
施例4の処理2のものは、溶融性のシャープさが低下す
るなど好ましくない挙動を示した。
The cocoa butter substitute fat obtained in Example 3,
When the quality of the cocoa butter substitute fat obtained by using the fatty acids subjected to the treatments 1 and 2 of Example 4 was compared, it was found that the treatment 1 of Examples 3 and 4 was a conventional product (fractionated from shea butter). It was not inferior to that of the crystallized product), but rather showed sharper meltability than the conventional product and was good. On the other hand, the treatment 2 of Example 4 exhibited unfavorable behavior such as a decrease in melt sharpness.

【0046】[0046]

【発明の効果】本発明の方法によれば、カカオバター代
用脂の生産のようにヘキサンなどの有機溶媒に対し溶解
度が低い飽和脂肪酸を原料脂肪酸として使用するエステ
ル交換反応において、反応器の容積効率を低下させるこ
となく目的生産物の高濃度化を実現し、その生産性を向
上させることができる。また、このような目的生産物の
高濃度化は、その後処理工程での歩留り(収率)の向上
につながり、工業的に極めて好都合である。
INDUSTRIAL APPLICABILITY According to the method of the present invention, in the transesterification reaction using a saturated fatty acid having a low solubility in an organic solvent such as hexane as a raw material fatty acid in the production of cocoa butter substitute fat, the volumetric efficiency of the reactor is increased. It is possible to increase the concentration of the target product and improve its productivity without decreasing Further, such a high concentration of the target product leads to an improvement in the yield (yield) in the subsequent treatment step, which is extremely convenient industrially.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料油脂および原料脂肪酸からなる混合
物にリパーゼ酵素を作用させ、エステル交換を実施する
に際し、エステル交換反応の進行に伴い原料脂肪酸を連
続的あるいは断続的に反応系に添加することを特徴とす
る脂質の加工法。
1. When a lipase enzyme is allowed to act on a mixture of raw fats and oils and raw fatty acids to carry out transesterification, the raw fatty acids are added to the reaction system continuously or intermittently along with the progress of the transesterification reaction. Characteristic lipid processing method.
【請求項2】 原料脂肪酸が炭素数12〜30の範囲内
にある飽和脂肪酸である請求項1記載の脂質の加工法。
2. The method for processing a lipid according to claim 1, wherein the raw material fatty acid is a saturated fatty acid having a carbon number of 12 to 30.
【請求項3】 エステル交換した反応混合物よりトリグ
リセライドである油脂と脂肪酸を分離し、該脂肪酸から
エステル交換反応により原料油脂より放出された不飽和
脂肪酸を更に除去したのち得られる飽和脂肪酸を原料脂
肪酸として再利用することを特徴とする請求項1または
請求項2記載の脂質の加工法。
3. A saturated fatty acid obtained as a raw material fatty acid by separating a fat and a fatty acid which are triglycerides from a transesterified reaction mixture and a fatty acid, and further removing an unsaturated fatty acid released from the raw material fat and oil by a transesterification reaction from the fatty acid. The lipid processing method according to claim 1 or 2, which is reused.
JP4245505A 1992-08-20 1992-08-20 Lipid processing method Expired - Fee Related JPH0736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4245505A JPH0736B2 (en) 1992-08-20 1992-08-20 Lipid processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4245505A JPH0736B2 (en) 1992-08-20 1992-08-20 Lipid processing method

Publications (2)

Publication Number Publication Date
JPH0662876A true JPH0662876A (en) 1994-03-08
JPH0736B2 JPH0736B2 (en) 1995-01-11

Family

ID=17134674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4245505A Expired - Fee Related JPH0736B2 (en) 1992-08-20 1992-08-20 Lipid processing method

Country Status (1)

Country Link
JP (1) JPH0736B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000832A1 (en) * 2001-06-26 2003-01-03 Fuji Oil Company, Limited Process for producing processed glyceride fat
WO2011132804A1 (en) * 2010-04-22 2011-10-27 씨제이제일제당(주) Method of manufacturing hard butter similar to cacao butter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000832A1 (en) * 2001-06-26 2003-01-03 Fuji Oil Company, Limited Process for producing processed glyceride fat
US6969771B2 (en) 2001-06-26 2005-11-29 Fuji Oil Company, Limited Process for producing processed glyceride fat
WO2011132804A1 (en) * 2010-04-22 2011-10-27 씨제이제일제당(주) Method of manufacturing hard butter similar to cacao butter

Also Published As

Publication number Publication date
JPH0736B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
CA1210409A (en) Rearrangement process
EP0035883B1 (en) Method for enzymatic interesterification of lipid and enzyme used therein
Schmid et al. Highly selective synthesis of 1, 3‐oleoyl‐2‐palmitoylglycerol by lipase catalysis
JPH0439995B2 (en)
JPH0665311B2 (en) Method for producing diglyceride
JP2005287510A (en) Method for enzymatically synthesizing triglyceride of unsaturated fatty acid
EP0257388A2 (en) Process for transesterifying fats
JP2719667B2 (en) Method for producing transesterified fat
Patel et al. Lipase-catalyzed biochemical reactions in novel media: A review
EP0666925B1 (en) Enzymic triglyceride conversion
JPH0662876A (en) Method for processing lipid
Kurashige et al. Modification of fats and oils by lipases
JPH0543354B2 (en)
JP3844671B2 (en) Fat hydrolysis method
JP3510422B2 (en) Method for producing glycerin fatty acid ester
JP3509124B2 (en) Method for transesterification of fats and oils using immobilized lipase
US8173403B2 (en) Process for producing useful substance using immobilized enzyme
KR101150433B1 (en) Preparation method of lipid composition
JPS6222597A (en) Production of saccharide glycerol and fatty acid
JPH04258291A (en) Immobilized enzyme and its production
JPH01174384A (en) Method for immobilizing lipid hydrolase
JPH0638753A (en) Immobilized lipase, its production and method for ester-interchanging fat and oil with the lipase
US9896703B2 (en) Method for producing transesterified fat and/or oil
JP2019010014A (en) Methods for producing diacylglycerol rich oil or fat
JPH0556943B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees