JPH0662696B2 - Halogenated ultra high molecular weight polyolefin powder - Google Patents
Halogenated ultra high molecular weight polyolefin powderInfo
- Publication number
- JPH0662696B2 JPH0662696B2 JP8445485A JP8445485A JPH0662696B2 JP H0662696 B2 JPH0662696 B2 JP H0662696B2 JP 8445485 A JP8445485 A JP 8445485A JP 8445485 A JP8445485 A JP 8445485A JP H0662696 B2 JPH0662696 B2 JP H0662696B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- molecular weight
- particle size
- high molecular
- halogenated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、広範な温度領域において成形品の引張強度、
伸び率、柔軟性などのゴム的性質、耐摩耗性、耐薬品
性、耐油性および難燃性に優れたハロゲン化超高分子量
ポリオレフイン粉末に関する。さらには、無機充填剤な
どの充填剤配合成形物の用途に好適なゴム的性質に優れ
たハロゲン化超高分子量ポリオレフイン粉末に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to the tensile strength of a molded article in a wide temperature range,
The present invention relates to a halogenated ultra high molecular weight polyolefin powder having excellent rubber properties such as elongation and flexibility, abrasion resistance, chemical resistance, oil resistance and flame retardancy. Further, the present invention relates to a halogenated ultrahigh molecular weight polyolefin powder having excellent rubber-like properties suitable for use in a molded product containing a filler such as an inorganic filler.
塩素化ポリエチレン、塩素化エチレン・α−オレフイン
共重合体などのハロゲン化ポリオレフインは従来から耐
オゾン性、耐薬品性および耐油性に優れたゴム弾性体と
して利用されているが、低温から高温に至る広範な温度
領域における引張強度、伸び率、柔軟性などのゴム的性
質および耐摩耗性が高度に要求される用途にはこれらの
性能が充分でなく、また無機充填剤を配合して使用する
場合には、その配合割合を充分に上げることができない
という難点があつた。Halogenated polyolefins such as chlorinated polyethylene and chlorinated ethylene / α-olefin copolymers have been conventionally used as rubber elastic bodies with excellent ozone resistance, chemical resistance and oil resistance, but from low temperature to high temperature In applications where rubber properties such as tensile strength, elongation and flexibility in a wide temperature range and abrasion resistance are highly required, these performances are not sufficient, and when an inorganic filler is compounded and used. However, there is a problem that the mixing ratio cannot be increased sufficiently.
本発明者らは、従来の塩素化ポリエチレンなどのハロゲ
ン化ポリオレフインのこのような欠点を改善することの
できるハロゲン化ポリオレフインを探索した結果、特定
の性状を有するハロゲン化超高分子量ポリオレフイン粉
末が広範な温度領域において成形品の引張強度、伸び
率、柔軟性などのゴム的性質、耐摩耗性、耐オゾン性、
耐油性および難燃性に優れ、前記目的を達成することを
見出し、本発明に到達した。The present inventors have searched for a halogenated polyolefin which can remedy such drawbacks of conventional halogenated polyolefin such as chlorinated polyethylene, and as a result, have found that halogenated ultra-high molecular weight polyolefin powder having specific properties can be widely used. Rubber properties such as tensile strength, elongation, flexibility of molded products in temperature range, wear resistance, ozone resistance,
The present invention has been accomplished by finding that the oil resistance and flame retardancy are excellent and the above-mentioned object is achieved.
〔問題点を解決するための手段〕および〔作用〕 本発明は、135℃のo−ジクロロベンゼン中で測定した
極限粘度〔η〕が3dl/g以上であり、ハロゲン含有率
が5ないし60重量%の範囲にあり、平均粒径が0.1ない
し120μの範囲にあり、粒径が200μ以上の粉末が全体の
10重量%以下でありかつ0.1ないし80μ未満の範囲の粉
末が全体の40重量%以上であるハロゲン化超高分子量ポ
リオレフイン粉末である。[Means for Solving Problems] and [Action] The present invention has an intrinsic viscosity [η] of 3 dl / g or more measured in o-dichlorobenzene at 135 ° C. and a halogen content of 5 to 60% by weight. %, The average particle size is in the range of 0.1 to 120μ, and the powder with a particle size of 200μ or more is
It is a halogenated ultra high molecular weight polyolefin powder in which 10% by weight or less and 40% by weight or more of the powder in the range of 0.1 to less than 80μ.
本発明のハロゲン化超高分子量ポリオレフイン粉末は、
135℃のo−ジクロロベンゼン中で測定した極限粘度
〔η〕が3dl/g以上であることが必要であり、さらに
は10ないし30dl/g、とくに10ないし20dl/gの範囲に
あることが好ましい。極限粘度が3dl/g以下では、成
形物の引張強度および耐摩耗性が低下するようになる。The halogenated ultra high molecular weight polyolefin powder of the present invention is
The intrinsic viscosity [η] measured in o-dichlorobenzene at 135 ° C. must be 3 dl / g or more, preferably 10 to 30 dl / g, and more preferably 10 to 20 dl / g. . If the intrinsic viscosity is 3 dl / g or less, the tensile strength and wear resistance of the molded product will be reduced.
本発明のハロゲン化超高分子量ポリオレフイン粉末のハ
ロゲン含有率は5ないし60重量%の範囲にあることが必
要であり、さらには10ないし50重量%、とくに20ないし
45重量%の範囲にあることが好ましい。ハロゲン含有率
が5重量%より少なくなると、成形物の伸び率、柔軟性
などのゴム的性質、耐薬品性、耐油性および難燃性が劣
るようになりまた無機充填剤との親和性が劣るようにな
るため無機充填剤の配合割合の低下を招くようになる。
60重量%より大きくなると、伸び率、柔軟性などのゴム
的性質、耐熱安定性、低温脆化性などが低下するように
なる。ハロゲン化超高分子量ポリオレフイン粉末に含ま
れるハロゲンとしては弗素、塩素、臭素、沃素などを例
示することができる。The halogen content of the halogenated ultra high molecular weight polyolefin powder according to the present invention must be in the range of 5 to 60% by weight, more preferably 10 to 50% by weight, particularly 20 to 50% by weight.
It is preferably in the range of 45% by weight. When the halogen content is less than 5% by weight, the elongation property, rubber properties such as flexibility, chemical resistance, oil resistance and flame retardancy of the molded article become poor, and the affinity with the inorganic filler becomes poor. As a result, the blending ratio of the inorganic filler is reduced.
If it exceeds 60% by weight, rubber properties such as elongation and flexibility, heat resistance stability, low temperature embrittlement, etc. will be deteriorated. Examples of the halogen contained in the halogenated ultrahigh molecular weight polyolefin powder include fluorine, chlorine, bromine, iodine and the like.
本発明のハロゲン化超高分子量ポリオレフイン粉末は、
特定の粉末性状を有するものであり、その平均粒径は0.
1ないし120μの範囲にあることが必要であり、さらに0.
1ないし80μ、とくに0.1ないし50μの範囲にあることが
好ましい。平均粒径が120μより大きくなると、無機充
填剤の充填性が低下し、またハロゲン化反応時に粒子の
半径方向へのハロゲン含有量分布の差が大きくなり易
く、このため柔軟性などのゴム的性質、耐熱安定性、低
温脆化性なども低下するようになり、0.1μより小さく
なると、凝集力が強くなり充填剤の分散性が低下し、空
気中での粉体爆発の危険性が生じるために取扱い時の安
全性が劣るようになる。The halogenated ultra high molecular weight polyolefin powder of the present invention is
It has a specific powder property and its average particle size is 0.
It must be in the range of 1 to 120μ, plus 0.
It is preferably in the range of 1 to 80μ, particularly 0.1 to 50μ. When the average particle size is larger than 120μ, the packing property of the inorganic filler is lowered, and the difference in the halogen content distribution in the radial direction of the particles during the halogenation reaction is likely to be large, which results in rubber-like properties such as flexibility. , Heat resistance stability, low temperature embrittlement, etc. are also reduced, and if it is less than 0.1 μ, cohesive force becomes strong and the dispersibility of the filler decreases, causing the danger of powder explosion in air. In addition, the safety when handling becomes poor.
また、該ハロゲン化超高分子量ポリオレフイン粉末の粒
度分布は、粒径が200μ以上の粉末が全体の10重量%以
下でありかつ0.1ないし80μ未満の範囲の粉末が全体の6
0重量%以上であることが必要であり、さらには粒径が2
50μ以上の粉末が5重量%以下でありかつ0.5ないし60
μ未満の範囲の粉末が全体の80重量%以上であることが
好ましい。粒径が200μ以上の含有量が全体の10重量%
より大きくなりかつ0.1ないし80μ未満の範囲の粉末の
含有量が40重量%より少なくなると、無機充填剤の充填
性が低下し、ハロゲン化反応時の粒子半径方向のハロゲ
ン含有量分布の差が大きくなり易く、このため柔軟性な
どのゴム的性質、耐熱性、低温脆化性なども低下するよ
うになる。ここで、該ハロゲン化超高分子量ポリオレフ
イン粉末の平均粒径および粒度分布はコールターカウン
ターTAII型によって測定したものである。Further, the particle size distribution of the halogenated ultra high molecular weight polyolefin powder is such that the powder having a particle size of 200 μ or more is 10% by weight or less of the whole and the powder having a particle size in the range of 0.1 to less than 80 μ is 6% of the whole.
It must be 0% by weight or more, and the particle size is 2
Less than 5% by weight of powder of 50μ or more and 0.5 to 60
The powder in the range of less than μ is preferably 80% by weight or more of the whole. 10% by weight of the total content of particles with a particle size of 200μ or more
When the content of the powder is larger and the content of the powder in the range of 0.1 to less than 80 μ is less than 40% by weight, the filling property of the inorganic filler is lowered, and the difference in the halogen content distribution in the particle radial direction during the halogenation reaction is large. Therefore, rubber properties such as flexibility, heat resistance, low temperature embrittlement, etc. are also deteriorated. Here, the average particle size and particle size distribution of the halogenated ultra high molecular weight polyolefin powder are measured by Coulter Counter TAII type.
該ハロゲン化超高分子量ポリオレフイン粉末の嵩密度は
通常は0.1ないし0.3g/cm3の範囲にあることが必要で
あり、さらには0.15ないし0.25g/cm3の範囲にあるこ
とが好ましい。The bulk density of the halogenated ultrahigh molecular weight polyolefin powder is usually required to be in the range of 0.1 to 0.3 g / cm 3 , and more preferably 0.15 to 0.25 g / cm 3 .
本発明のハロゲン化超高分子量ポリオレフイン粉末は、
相応する超高分子量ポリオレフイン粉末をハロゲン化す
ることによって製造することができる。ここで、原料と
して使用される超高分子量ポリオレフインは、ポリエチ
レン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル−
ペンテンなどのα−オレフインの単独重合体の他に、エ
チレン、プロピレン、1−ブテン、1−ヘキセン、1−
オクテン、1−デセンなどのα−オレフインの2種以上
からなる共重合体をも包含し、その135℃のデカリン中
で測定した極限粘度〔η〕は通常5ないし30dl/g、好
ましくは10ないし30dl/gの範囲にあるものである。該
超高分子量ポリオレフイン粉末の平均粒径は通常は0.1
ないし100μ、好ましくは0.1ないし80μ、とくに0.1な
いし50μの範囲にあり、その粒度分布は粒径が200μ以
上の粉末が全体の通常は10重量%以下、好ましくは5重
量%以下であり、かつ0.1ないし80μ未満の粉末が全体
の通常は40重量%以上、好ましくは80重量%以上の範囲
にあり、さらにその嵩密度は通常は0.1ないし0.3g/cm
3、好ましくは0.15ないし0.25g/cm3の範囲にある。The halogenated ultra high molecular weight polyolefin powder of the present invention is
It can be prepared by halogenating the corresponding ultra high molecular weight polyolefin powder. Here, the ultrahigh molecular weight polyolefin used as a raw material is polyethylene, polypropylene, poly 1-butene, poly 4-methyl-
Besides α-olefin homopolymers such as pentene, ethylene, propylene, 1-butene, 1-hexene, 1-
It also includes a copolymer of two or more α-olefins such as octene and 1-decene, and the intrinsic viscosity [η] measured in decalin at 135 ° C. is usually 5 to 30 dl / g, preferably 10 to It is in the range of 30 dl / g. The average particle size of the ultra high molecular weight polyolefin powder is usually 0.1.
To 100μ, preferably 0.1 to 80μ, especially 0.1 to 50μ, and its particle size distribution is such that the powder having a particle size of 200μ or more is usually 10% by weight or less, preferably 5% by weight or less, and 0.1 The total powder content is usually 40% by weight or more, preferably 80% by weight or more, and the bulk density is usually 0.1 to 0.3 g / cm 3.
3 , preferably in the range of 0.15 to 0.25 g / cm 3 .
該超高分子量ポリオレフイン粉末をハロゲン化する方法
としては、該超高分子量ポリオレフイン粉末を媒体中に
分散させた懸濁液に、必要に応じて触媒の存在下にハロ
ゲン化試剤を反応させる方法を例示することができる。
媒体としては、水、塩化メチレン、クロロホルム、ジク
ロロエタン、トリクロロエタン、パーフロロデカン、ヘ
キサフロロベンゼン、パーフロロデカリンなどのハロゲ
ン化炭化水素などを例示することができる。ハロゲン化
試剤としては、弗素、塩素、臭素、沃素などの分子状の
ハロゲンの他に、塩化スルフリルなども使用することが
できる。その使用割合は、ハロゲン化反応によつて生成
するハロゲン化超高分子量ポリオレフイン粉末のハロゲ
ン含有率が前記の範囲に達する範囲で適宜量である。ハ
ロゲン化反応の際の温度は50ないし160℃、好ましくは8
0ないし150℃の範囲である。反応終了後の懸濁液からハ
ロゲン化超高分子量ポリオレフイン粉末を濾別し、洗
浄、乾燥することにより、該ハロゲン化超高分子量ポリ
オレフイン粉末を得ることができる。Examples of the method for halogenating the ultrahigh molecular weight polyolefin powder include a method in which a suspension of the ultrahigh molecular weight polyolefin powder dispersed in a medium is reacted with a halogenating agent in the presence of a catalyst, if necessary. can do.
Examples of the medium include water, methylene chloride, chloroform, dichloroethane, trichloroethane, perfluorodecane, hexafluorobenzene, halogenated hydrocarbons such as perfluorodecalin, and the like. As the halogenating agent, in addition to molecular halogen such as fluorine, chlorine, bromine or iodine, sulfuryl chloride or the like can be used. The use ratio is an appropriate amount within the range where the halogen content of the halogenated ultrahigh molecular weight polyolefin powder produced by the halogenation reaction reaches the above range. The temperature during the halogenation reaction is 50 to 160 ° C, preferably 8
It is in the range of 0 to 150 ° C. The halogenated ultra high molecular weight polyolefin powder can be obtained by filtering the halogenated ultra high molecular weight polyolefin powder from the suspension after the reaction, washing and drying.
本発明のハロゲン化超高分子量ポリオレフイン粉末は無
機充填剤を配合することなく成形加工することもできる
が、無機充填剤を配合して成形加工する場合には多量の
配合を行つても、引張強度、伸び率、柔軟性などのゴム
的性質、耐摩耗性、耐薬品性、耐油性などの性能を低下
させることなく、表面平滑性に優れた成形品を得ること
ができるので好適である。無機充填剤を配合する場合の
配合割合は、該ハロゲン化超高分子量ポリオレフイン粉
末100重量部に対して通常は5ないし1500重量部、好ま
しくは10ないし1000重量部の範囲である。The halogenated ultra-high molecular weight polyolefin powder of the present invention can be molded without blending an inorganic filler, but in the case of molding with an inorganic filler, even if a large amount is blended, the tensile strength is increased. It is preferable because a molded product having excellent surface smoothness can be obtained without lowering properties such as rubber properties such as elongation rate and flexibility, abrasion resistance, chemical resistance, oil resistance and the like. When the inorganic filler is compounded, the compounding ratio is usually 5 to 1500 parts by weight, preferably 10 to 1000 parts by weight, based on 100 parts by weight of the halogenated ultrahigh molecular weight polyolefin powder.
無機充填剤として具体的には、炭酸カルシウム、タル
ク、クレー、シリカ、水酸化アルミニウム、フエライ
ト、カーボンブラツク、三酸化アンチモン、珪酸カルシ
ウム、硫酸バリウム、チタニアなどを例示することがで
きる。また、本発明のハロゲン化超高分子量ポリオレフ
イン粉末には成形加工の際に架橋剤を配合しないで加工
することもできるし、架橋剤を加えて加工することもで
きる。架橋剤としては従来からハロゲン化ポリオレフイ
ンに配合されてとる架橋剤を使用することができる。架
橋剤として具体的には、ジクミルペルオキシド、1,1-ジ
(tert−ブチルペルオキシ)-3,3,5−トルメチルシクロ
ヘキサン、2,5-ジメチル-2,5−ジ(tert−ブチルペルオ
キシ)ヘキサンなどの有機過酸化物、2,4,6-トリメルカ
プト−s−トリアジン、2-フエニルアミノ-4,6−ジメル
カプト−s-トリアジンなどのトリアジン化合物、トリチ
オシアヌール酸、イオウ、塩化イオウ、二塩化イオウ、
モルホリンジスルフイド、アルキルフエノールジスルフ
イドなどのイオウ化合物などを例示することができる。
その配合割合は適宜である。Specific examples of the inorganic filler include calcium carbonate, talc, clay, silica, aluminum hydroxide, ferrite, carbon black, antimony trioxide, calcium silicate, barium sulfate and titania. Further, the halogenated ultrahigh molecular weight polyolefin powder of the present invention can be processed without adding a crosslinking agent at the time of molding, or can be processed by adding a crosslinking agent. As the cross-linking agent, it is possible to use a cross-linking agent which is conventionally blended with halogenated polyolefin. Specific examples of the cross-linking agent include dicumyl peroxide, 1,1-di (tert-butylperoxy) -3,3,5-tolumethylcyclohexane, 2,5-dimethyl-2,5-di (tert-butylperoxy). ) Organic peroxides such as hexane, 2,4,6-trimercapto-s-triazine, triazine compounds such as 2-phenylamino-4,6-dimercapto-s-triazine, trithiocyanuric acid, sulfur, sulfur chloride, Sulfur dichloride,
Examples thereof include sulfur compounds such as morpholine disulphide and alkylphenol disulphide.
The mixing ratio is appropriate.
次に、本発明を実施例によつて具体的に説明する。 Next, the present invention will be specifically described with reference to examples.
実施例1 内容積2750の重合器にn−デカン1500、トリエチル
アルミニウム1500mmolおよび微粒子状チタン触媒成分15
mmolを加え、70℃に昇温した。しかるのちにエチレンガ
スを30NM3/Hrの速度で重合器に導入した。重合圧力は1
〜6kg/cm3Gであつた。Example 1 In a polymerization vessel having an internal volume of 2750, n-decane 1500, triethylaluminum 1500 mmol and particulate titanium catalyst component 15
mmol was added and the temperature was raised to 70 ° C. After that, ethylene gas was introduced into the polymerization vessel at a rate of 30 NM 3 / Hr. Polymerization pressure is 1
It was ~ 6 kg / cm 3 G.
エチレンの導入積算量が180NM3になった時点でエチレン
をフイードカツトし、10分間後重合を実施した後、冷却
脱圧を行うことにより、超高分子量ポリエチレンのスラ
リーを得た。このスラリを市販のホモミツクラインミル
を用い、スラリーの高速剪断処理を1時間実施した。得
られたポリマーと溶媒は遠心分離機によって分離し、75
℃N2気流下で減圧乾燥を行つた。When the cumulative amount of ethylene introduced reached 180 NM 3 , ethylene was fed cut, and after 10 minutes of post-polymerization, cooling depressurization was carried out to obtain a slurry of ultrahigh molecular weight polyethylene. The slurry was subjected to high-speed shearing treatment of the slurry for 1 hour using a commercially available homomic line mill. The obtained polymer and solvent were separated by a centrifuge,
Drying under reduced pressure was carried out under a N 2 gas stream at ° C.
得られたポリマーは収量255kg、分子量は135℃のデカリ
ン中で測定した極限粘度で23.3dl/gで、平均粒径はD
5026μmで粒度分布は100メツシユフルイを全量通過
し、350メツシユフルイを85%通過した。The yield of the obtained polymer was 255 kg, the molecular weight was 23.3 dl / g as the intrinsic viscosity measured in decalin at 135 ° C, and the average particle size was D.
At 50 26 μm, the particle size distribution passed 100 mesh in all, and passed 350 mesh in 85%.
上記方法にて得られた微粒子状超高分子量ポリエチレン
200g、蒸溜水4、界面活性剤TW−80(第一工業製薬
(株)製商品名)60mgを還流用冷却器、攪拌器、温度
計、塩素ガス吹込管等を備えた5の反応器に加えた。
攪拌をしながら大気圧にて20/Hrの速度で塩素ガスを
吹き込み90℃にて3.5Hr塩素化反応を行った。反応終了
後、室温に降温しNaOH水で水相を中和した。中和後ガラ
スフイルターで塩素化超高分子量ポリエチレン粉末を濾
別しこの粉末は3の蒸溜水で洗浄、濾別を合計3回繰
り返した。次いで70℃、10mmHgの条件下真空乾燥器にて
乾燥を行い、266gの白色の塩素化超高分子量ポリエチ
レン粉末を得た。この粉末の塩素含量は25.1wt%o-ジク
ロロベンゼン中で測定した極限粘度で16.9dl/gの平均
粒径はD5029μmで粒径は200μm以上の粉末が全体の
0.9wtであり、粒径が0.1ないし80μm未満の範囲の粉末
が全体の91重量%であつた。Fine particle ultra high molecular weight polyethylene obtained by the above method
200 g, distilled water 4, 60 mg of TW-80 surfactant (trade name of Dai-ichi Kogyo Seiyaku Co., Ltd.) in 5 reactors equipped with a reflux condenser, stirrer, thermometer, chlorine gas blowing pipe, etc. added.
While stirring, chlorine gas was blown at a rate of 20 / Hr at atmospheric pressure to carry out a 3.5Hr chlorination reaction at 90 ° C. After completion of the reaction, the temperature was lowered to room temperature and the aqueous phase was neutralized with aqueous NaOH. After neutralization, the chlorinated ultra high molecular weight polyethylene powder was filtered off with a glass filter, and this powder was washed with distilled water of 3 and filtered off a total of 3 times. Then, it was dried in a vacuum dryer under the conditions of 70 ° C. and 10 mmHg to obtain 266 g of white chlorinated ultra high molecular weight polyethylene powder. The chlorine content of this powder was 15.9 dl / g with an intrinsic viscosity measured in 25.1 wt% o-dichlorobenzene, with an average particle size of D 50 29 μm and a particle size of 200 μm or more.
The amount of powder was 0.9 wt% and the particle size was in the range of 0.1 to less than 80 μm, which was 91% by weight of the whole.
実施例2 実施例1と同様な方法で80℃の温度でエチレンの重合を
行い、〔η〕15.7dl/g(135℃デカリン中で測定した
極限粘度)の小球状ポリエチレンを得た。平均粒径はD
5023μmであり100メツシユフルイを全量通過し、350メ
ツシユフルイを86%通過した。Example 2 In the same manner as in Example 1, ethylene was polymerized at a temperature of 80 ° C. to obtain a small spherical polyethylene of [η] 15.7 dl / g (intrinsic viscosity measured in decalin at 135 ° C.). Average particle size is D
The size was 50 23 μm, and 100 mesh pass all the amount, and 350 mesh flow passed 86%.
この微粒子状超高分子量ポリエチレンを実施例1と同様
な装置で加圧下に105℃で2Hr塩素化反応を行つた後、
中和洗浄乾燥処理をして塩素含量29.9wt%、o-ジクロロ
ベンゼン中で測定した極限粘度で10.5dl/g、平均粒径
D5027μmで粒径は200μm以上の粉末が全体の2.5wt%
であり、粒径が0.1ないし80μm未満の範囲の粉末が全
体の87重量%の塩素化超高分子量ポリエチレン粉末を得
た。This particulate ultra high molecular weight polyethylene was subjected to a 2Hr chlorination reaction at 105 ° C. under pressure in the same apparatus as in Example 1,
Neutralized, washed and dried to give a chlorine content of 29.9 wt%, an intrinsic viscosity measured in o-dichlorobenzene of 10.5 dl / g, an average particle size D 50 of 27 μm and a particle size of 200 μm or more is 2.5 wt% of the total.
Thus, 87% by weight of the powder having a particle size in the range of 0.1 to less than 80 μm was obtained to obtain a chlorinated ultra high molecular weight polyethylene powder.
実施例3 実施例1と同様な方法で触媒としてヘキサンスラリーの
状態でホモミキサーを使用して高速剪断処理を行って得
た微粒子状触媒を用いて〔η〕12.1dl/g、D5040μ
m、100メツシユフルイを61%が通過し350メツシユフル
イを56%が通過した微粒子状超高分子量ポリエチレンを
得た。Example 3 [η] 12.1 dl / g, D 50 40μ using the fine particle catalyst obtained by high-speed shearing using a homomixer in the state of hexane slurry as a catalyst in the same manner as in Example 1.
m, 100% mesh sieve 61% passed, 350 mesh sieve 56% passed to obtain a particulate ultra high molecular weight polyethylene.
これを実施例2と同様な方法で塩素化して、塩素含量3
5.2wt、o-ジクロロベンゼン中で測定した極限粘度で7.4d
l/g、平均粒径D5046μm、粒径200μm以上の粉末が
全体の3.7wt%であり、粒径が0.1ないし80μm未満の範
囲の粉末が全体の84wt%の塩素化超高分子量ポリエチレ
ン粉末を得た。This was chlorinated in the same manner as in Example 2 to give a chlorine content of 3
7.4d with intrinsic viscosity measured in 5.2wt, o-dichlorobenzene
l / g, average particle size D 50 46 μm, powder with a particle size of 200 μm or more is 3.7 wt% of the whole, and powder with a particle size in the range of 0.1 to less than 80 μm is 84 wt% of the total chlorinated ultra high molecular weight polyethylene powder Got
実施例4 実施例2と同様な方法でチタン触媒成分23mmolを加え75
℃の温度でエチレンの重合を行い、〔η〕22.3dl/g
(デカリン中、135℃)、平均粒径D5031μm、100メツ
シユフルイを全量通過し、350メツシユフルイを68%通
過した微粒子状超高分子量ポリエチレンを得た。Example 4 In the same manner as in Example 2, 23 mmol of titanium catalyst component was added.
Polymerization of ethylene at a temperature of ℃, [η] 22.3dl / g
(In decalin, 135 ° C.), average particle size D 50: 31 μm, 100 mesh sieve was passed through the entire amount, and 350 mesh sieve was passed through 68% to obtain a particulate ultra high molecular weight polyethylene.
これを実施例2と同様な方法で塩素化して、塩素含量3
3.4wt%、o-ジクロロベンゼン中で測定した極限粘度で1
4.3dl/g、平均粒径D5035μm、粒径200μm以上の
粉末が全体の1.4wt%であり、粒径が0.1ないし80μm未
満の範囲の粉末が全体の88wt%の塩素化超高分子量ポリ
エチレン粉末を得た。This was chlorinated in the same manner as in Example 2 to give a chlorine content of 3
3.4 wt%, 1 at the intrinsic viscosity measured in o-dichlorobenzene
Chlorinated ultra-high molecular weight polyethylene with a powder of 4.3 dl / g, an average particle size D 50 of 35 μm and a particle size of 200 μm or more is 1.4 wt% of the whole, and a powder with a particle size of 0.1 to less than 80 μm is 88 wt% of the whole. A powder was obtained.
比較例1 極限粘度(デカリン中、135℃)2.3dl/g、平均粒
径D50400μmの低圧法高密度ポリエチレン粉末を実施
例2と同様に塩素化した。この粉末の塩素含量は30.3wt
%、o-ジクロロベンゼン中で測定した極限粘度は1.6dl
/g、平均粒径はD50450μmで粒径は200μm以上の粉
末が全体の83wt%であり、粒径が0.1ないし80μm未満
の範囲の粉末が全体の12wt%であつた。Comparative Example 1 A low-pressure high-density polyethylene powder having an intrinsic viscosity of 2.3 dl / g (in decalin at 135 ° C.) and an average particle diameter D 50 of 400 μm was chlorinated in the same manner as in Example 2. The chlorine content of this powder is 30.3wt
%, The intrinsic viscosity measured in o-dichlorobenzene is 1.6 dl
/ G, the average particle size was D 50 450 μm, and the particle size was 200 μm or more was 83 wt% of the whole powder, and the particle size range of 0.1 to less than 80 μm was 12 wt% of the whole powder.
比較例2 実施例1において、塩素ガスを20/Hrの速度で吹き込
み、90℃、0.5Hrで塩素化反応を行つた以外は実施例1
と同様の方法で塩素化超高分子量ポリエチレン粉末を得
た。この粉末の塩素含量は4wt%、o−ジクロロベンゼ
ン中で測定した極限粘度は22.1dl/g平均粒径はD5026
μmで粒径が200μ以上の粉末が全体の0.7wt%であり、
粒径が0.1ないし80μm未満の範囲の粉末が全体の93wt
%であつた。Comparative Example 2 Example 1 except that chlorine gas was blown at a rate of 20 / Hr and the chlorination reaction was carried out at 90 ° C. and 0.5 Hr.
A chlorinated ultra high molecular weight polyethylene powder was obtained in the same manner as in (1). The chlorine content of this powder was 4 wt%, the intrinsic viscosity measured in o-dichlorobenzene was 22.1 dl / g, the average particle size was D 50 26.
0.7 wt% of the powder with a particle size of 200 μ or more in μm,
93wt% of powder with particle size ranging from 0.1 to less than 80μm
It was in%.
比較例3 実施例1において、塩素化ガスを20/Hrの速度で吹き
込み、90℃、8Hrで塩素化反応を行つた以外は実施例1
と同様を方法でテストを実施し、塩素化超高分子量ポリ
エチレン粉末を得た。この粉末の塩素含量62wt%、o-ジ
クロロベンゼン中で測定した極限粘度は7.5dl/g、平
均粒径31μm、粒径200μm以上の粉末が全体の1.7wt%
であり、粒径が0.1ないし80μm未満の範囲の粉末が全
体の81wt%であつた。Comparative Example 3 Example 1 except that the chlorinated gas was blown at a rate of 20 / Hr to carry out the chlorination reaction at 90 ° C. and 8 Hr.
A test was carried out in the same manner as in 1. to obtain a chlorinated ultra high molecular weight polyethylene powder. The chlorine content of this powder is 62 wt%, the intrinsic viscosity measured in o-dichlorobenzene is 7.5 dl / g, the average particle size is 31 μm, and the powder with a particle size of 200 μm or more is 1.7 wt% of the whole.
And 81% by weight of the total amount of powder having a particle size in the range of 0.1 to less than 80 μm.
比較例4 極限粘度(デカリン中、135℃)、16.5dl/g、平均粒
径D50200μmのポリエチレン粉末(商品名ハイゼツク
スミリオン240M、三井石油化学工業(株)製)を実施
例2と同様に塩素化した。塩素含量31.7wt%、o-ジクロ
ロベンゼン中で測定した極限粘度は10.7dl/g、平均粒
径はD50230μmで、粒径は200μm以上の粉末が全体の
61wt%であり、粒径が0.1ないし80μm未満の範囲の粉
末が全体の1.5wt%のものが得られた。Comparative Example 4 Polyethylene powder having an intrinsic viscosity (in decalin, 135 ° C.), 16.5 dl / g, and an average particle diameter D 50 of 200 μm (trade name: Hi-Zex Million 240M, manufactured by Mitsui Petrochemical Co., Ltd.) was used as in Example 2. Chlorinated. The chlorine content was 31.7 wt%, the intrinsic viscosity measured in o-dichlorobenzene was 10.7 dl / g, the average particle size was D 50 230 μm, and the powder with a particle size of 200 μm or more was the whole.
A powder having a particle size of 61 wt% and a particle size in the range of 0.1 to less than 80 μm was obtained in a total amount of 1.5 wt%.
評価例1〜8 各実施例、比較例で得られた塩素化ポリエチレン粉末と
バリウムフエライトを重量比100対900でブレンドしプレ
ス成型により10mm厚のプレスシートを得た。これを切削
し、物性を測定した結果を表1にまとめた。但し、シヨ
ア、摩耗量はグラフアイトカーボンをブレンドしなかつ
た場合の測定結果である。Evaluation Examples 1 to 8 The chlorinated polyethylene powder obtained in each of the examples and comparative examples and barium ferrite were blended at a weight ratio of 100: 900 and press-molded to obtain a 10 mm-thick press sheet. The result of cutting this and measuring the physical properties is summarized in Table 1. However, the shear and the wear amount are the measurement results when the graphite carbon was not blended.
引張試験方法 テストピース;ASTM4号ダンベル×2mm厚 引張速度 ;50mm/min 引張試験機 ;インストロンTTM型 シヨア硬度 JIS K-6301のスプリング式硬さ試験(A型)による。 Tensile test method Test piece; ASTM No. 4 dumbbell x 2mm thickness Tensile speed; 50mm / min Tensile tester; Instron TTM type shear hardness JIS K-6301 spring type hardness test (A type).
摩耗量 テーバー摩耗試験JIS-K-6902による。Abrasion amount Taber abrasion test According to JIS-K-6902.
摩耗輪はH-22を使用し1000回転体の摩耗量(mg)を求め
た。H-22 was used as the wear wheel, and the wear amount (mg) of 1000 rotating bodies was obtained.
評価例9 実施例2で得た塩素化超高分子量ポリエチレン粉末を次
の表2配合処方に従い、10ヘンシエルミキサー(三井
三池製作所製)で混合した。Evaluation Example 9 The chlorinated ultra high molecular weight polyethylene powder obtained in Example 2 was mixed with a 10 Hensiel mixer (manufactured by Mitsui Miike Seisakusho Co., Ltd.) according to the formulation shown in Table 2 below.
ヘンシエルミキサーは70℃に加熱し、攪拌をくり返しな
がら塩素化超高分子量ポリエチレン粉末にカーボンブラ
ツクとオイルを少量ずつ10分間かけて添加した。その
後、他の配合剤を加え1分間攪拌した。混合物は大量の
オイルを添加したにもかかわらず、パウダー状であり、
取り扱いは容易であつた。 The Hensiel mixer was heated to 70 ° C., and carbon black and oil were added little by little to the chlorinated ultra high molecular weight polyethylene powder over 10 minutes while repeating stirring. Then, other compounding agents were added and stirred for 1 minute. The mixture is powdery, despite the addition of large amounts of oil,
It was easy to handle.
この配合物を8インチミルロール(寺川製作所製、ロー
ル表面温度前/後=60/70℃)で5分間混練した。混練
物をシート状で取り出し加硫に供した。加硫は150tスチ
ームプレスで170℃−30分間行い2mm厚の加硫シートを
得た。This compound was kneaded with an 8-inch mill roll (manufactured by Terakawa Seisakusho, roll surface temperature front / back = 60/70 ° C.) for 5 minutes. The kneaded product was taken out in a sheet form and subjected to vulcanization. Vulcanization was carried out at 150 ° C. for 30 minutes with a 150 t steam press to obtain a vulcanized sheet having a thickness of 2 mm.
この加硫シートを使って、JISK6301に従い、引張強さ、
伸び、スプリング硬さを測定した。結果を表3に示す。Using this vulcanized sheet, according to JIS K6301, tensile strength,
The elongation and spring hardness were measured. The results are shown in Table 3.
評価例10 評価例9において、塩素化超高分子量ポリエチレン粉末
のかわりに比較例1で得た塩素化ポリエチレンを用いた
以外は評価例9と全く同様に評価した。Evaluation Example 10 Evaluation was made in the same manner as in Evaluation Example 9 except that the chlorinated polyethylene obtained in Comparative Example 1 was used in place of the chlorinated ultra high molecular weight polyethylene powder.
ヘンシエルミキサーで混合した配合物は粘着しパウダー
状とはならず、取扱いが不便であつた。測定結果は表3
に示す。The formulation mixed with the Hensiel mixer was sticky, did not form a powder, and was inconvenient to handle. Table 3 shows the measurement results.
Shown in.
評価例11 評価例9において、塩素化超高分子量ポリエチレン粉末
のかわりに、比較例2で得た塩素化ポリエチレンを用い
た以外は、評価例9と同様な手順で評価した。ロールで
の加工は不可能であつた。Evaluation Example 11 Evaluation was carried out in the same procedure as in Evaluation Example 9 except that the chlorinated polyethylene obtained in Comparative Example 2 was used in place of the chlorinated ultrahigh molecular weight polyethylene powder in Evaluation Example 9. Processing with rolls was impossible.
評価例12 評価例9において塩素化超高分子量ポリエチレン粉末の
かわりに比較例3で得た塩素化ポリエチレンを用いた以
外は、評価例9と同様な手順で評価した。ロールでの加
工は不可能であつた。Evaluation Example 12 Evaluation was carried out in the same procedure as in Evaluation Example 9 except that the chlorinated polyethylene obtained in Comparative Example 3 was used in place of the chlorinated ultrahigh molecular weight polyethylene powder in Evaluation Example 9. Processing with rolls was impossible.
評価例13 評価例9において塩素化超高分子量ポリエチレン粉末の
かわりに比較例4で得た塩素化超高分子量ポリエチレン
を用いた以外は配合例9と同様な手順で評価した。ヘン
シエルミキサーで混合した配合物は粘着しパウダー状に
はならず取扱いが不便であつた。Evaluation Example 13 Evaluation was carried out in the same procedure as in Formulation Example 9 except that the chlorinated ultra high molecular weight polyethylene powder obtained in Comparative Example 4 was used in place of the chlorinated ultra high molecular weight polyethylene powder in Evaluation Example 9. The formulation mixed with the Hensiel mixer was sticky, did not form a powder, and was inconvenient to handle.
Claims (1)
極限粘度〔η〕が3dl/g以上であり、ハロゲン含有率
が5ないし60重量%の範囲にあり、平均粒径が0.1ない
し120μの範囲にあり、粒径が200μ以上の粉末が全体の
10重量%以下でありかつ0.1ないし80μ未満の範囲の粉
末が全体の40重量%以上であるハロゲン化超高分子量ポ
リオレフイン粉末。1. An intrinsic viscosity [η] measured in o-dichlorobenzene at 135 ° C. is 3 dl / g or more, a halogen content is in the range of 5 to 60% by weight, and an average particle size is 0.1 to 120 μm. And the powder with a particle size of 200μ or more
A halogenated ultra high molecular weight polyolefin powder, which is 10% by weight or less and 40% by weight or more of the total powder in the range of 0.1 to less than 80 μ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8445485A JPH0662696B2 (en) | 1985-04-22 | 1985-04-22 | Halogenated ultra high molecular weight polyolefin powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8445485A JPH0662696B2 (en) | 1985-04-22 | 1985-04-22 | Halogenated ultra high molecular weight polyolefin powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6243406A JPS6243406A (en) | 1987-02-25 |
JPH0662696B2 true JPH0662696B2 (en) | 1994-08-17 |
Family
ID=13831066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8445485A Expired - Lifetime JPH0662696B2 (en) | 1985-04-22 | 1985-04-22 | Halogenated ultra high molecular weight polyolefin powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0662696B2 (en) |
-
1985
- 1985-04-22 JP JP8445485A patent/JPH0662696B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6243406A (en) | 1987-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2699539C2 (en) | Highly pure halogenated rubber | |
US5087673A (en) | Process for production of chlorinated ethylene-propylene copolymers | |
US5684077A (en) | Composition for mold curing elements | |
WO1992002668A1 (en) | Solution of ultra-high molecular weight polyethylene | |
KR20160117446A (en) | /- novel anti-agglomerants for elastomeric ethylene/-olefin copolymers | |
CN1590446B (en) | Peroxide curable butyl rubber formulations | |
US3088929A (en) | Process of curing a chlorinated ethylene higher alpha olefin copolymer | |
JPH0662696B2 (en) | Halogenated ultra high molecular weight polyolefin powder | |
US2982759A (en) | Synthetic elastomers | |
US4584351A (en) | Chlorosulfonation of chlorinated polyethylene | |
CA2040570A1 (en) | Chlorinated ethylene-.alpha.-olefin copolymer rubber and composition thereof | |
US3988296A (en) | Chlorinated olefin polymer compositions stabilized with antimony trioxide | |
EP0147718B1 (en) | Simultaneously chlorinating and grafting a cure site onto polyethylene in an aqueous suspension | |
US3258445A (en) | Sulphohalogenation of halogenated olefin polymers obtained by halo-genating in the presence of ammonium salts and tertiary amines | |
US3069372A (en) | Phosphorus-containing elastomers | |
US3163631A (en) | Process for the production of halogenated olefin polymers and copolymers | |
US5015696A (en) | Chlorinated EPDM with superior stability | |
JP3800797B2 (en) | Chlorinated polyolefin | |
US5045603A (en) | Chlorinated EPDM with superior stability | |
US4959420A (en) | Chlorinated EPDM with superior stability | |
JP2924188B2 (en) | Method for producing chlorinated polyethylene | |
US2984642A (en) | Vulcanization of halogenated rubbery polymers with hexahydrodiazines | |
US3131159A (en) | Mixture of a sulfochlorinated alphaolefin polymer and a sulfochlorinated hydrocarbon | |
EP0268457B1 (en) | Process for production of chlorinated ethylene-propylene copolymers | |
US3036027A (en) | Composition comprising halogenated butyl rubber, a metal thiocarbamate and a dimethylol phenol, process for vulcanizing same, and vulcanized product thereof |