JPH0661512A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPH0661512A
JPH0661512A JP4215033A JP21503392A JPH0661512A JP H0661512 A JPH0661512 A JP H0661512A JP 4215033 A JP4215033 A JP 4215033A JP 21503392 A JP21503392 A JP 21503392A JP H0661512 A JPH0661512 A JP H0661512A
Authority
JP
Japan
Prior art keywords
electrode
area
receiving surface
forming
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4215033A
Other languages
Japanese (ja)
Other versions
JP2835415B2 (en
Inventor
Sota Moriuchi
荘太 森内
Kazutaka Nakajima
一孝 中嶋
Koji Okamoto
浩二 岡本
Tetsuhiro Okuno
哲啓 奥野
Yuji Yokozawa
雄二 横沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4215033A priority Critical patent/JP2835415B2/en
Publication of JPH0661512A publication Critical patent/JPH0661512A/en
Application granted granted Critical
Publication of JP2835415B2 publication Critical patent/JP2835415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the open-circuit voltage of a photoelectric conversion element with a rugged light receiving surface by making the contact area of the surface with an electrode smaller than the area of the electrode by suppressing the increase of the occupying rate of the electrode at the time of forming the electrode by a printing method. CONSTITUTION:Numerous recessed and projecting sections are provided on the surface of a P-type silicon substrate 1 and an N-type diffusion layer 2, reflection preventing film, etc., are formed on the rugged surface of the substrate 1. The surface of recessed sections in an area proposed for forming an electrode is substantially flattened by filling up the recessed sections with tin oxide layers 7. At the time of forming the layers 7, the tin oxide is removed from unnecessary parts until the reflection preventing film is exposed. A light receiving surface electrode 8 is made to come into contact only with the diffusion layer 2 at the projecting sections by printing and baking silver paste in the proposed electrode forming area including the projecting sections.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面に凹凸部を有する
光電変換素子の構造の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the structure of a photoelectric conversion element having irregularities on its surface.

【0002】[0002]

【従来の技術】光電変換装置の一例であるシリコン太陽
電池について説明する。
2. Description of the Related Art A silicon solar cell, which is an example of a photoelectric conversion device, will be described.

【0003】シリコン太陽電池において、光電変換効率
の高効率化を図る要素技術の一つとして、表面への凹凸
の形成による表面反射の低減が検討されている。
In silicon solar cells, reduction of surface reflection by forming irregularities on the surface has been studied as one of the elemental techniques for increasing the photoelectric conversion efficiency.

【0004】従来、シリコン単結晶を用いた太陽電池に
おいては、表面の凹凸は(100)面をもつ基板に対し
て、アルカリエッチングを行なうことによって形成され
てきた。数%程度のKOHあるいはNaOH溶液中でエ
ッチングを行なうことによって、シリコン表面は異方性
にエッチングされ、(111)面をもつピラミッド状の
凹凸が形成される。
Conventionally, in a solar cell using a silicon single crystal, surface irregularities have been formed by performing alkali etching on a substrate having a (100) plane. By etching in a KOH or NaOH solution of about several percent, the silicon surface is anisotropically etched to form pyramid-shaped irregularities having a (111) plane.

【0005】一方、低コスト化に有効な多結晶シリコン
太陽電池においては、アルカリエッチングでは均一な凹
凸は形成できない。その理由は、多結晶シリコンにおい
ては結晶方向が様々であるため、(100)面以外では
ピラミッド形状とはならないためであり、そのため反射
も低減されない。そこで、近年多結晶シリコンにおいて
は、表面反射を低減する方法として、表面にV字状また
はU字状の断面をもつ溝状の凹凸を加工する方法が開発
された。溝の加工方法としては、レーザ,ダイサー,マ
ルチワイヤーソー等を用いて加工する方法が提案されて
いる。凹凸を形成することによって反射は低減される
が、電極をスクリーン印刷法によって形成する際に、受
光面電極ペーストの広がりによる電極占有率、及び拡散
層への接触面積の増加が問題となる。以下、これについ
て詳しく述べる。
On the other hand, in a polycrystalline silicon solar cell which is effective for cost reduction, uniform etching cannot be formed by alkali etching. The reason is that in polycrystalline silicon, the crystallographic directions are different, and therefore, the pyramid shape is not formed except for the (100) plane, and therefore the reflection is not reduced. Therefore, in recent years, in polycrystalline silicon, as a method of reducing surface reflection, a method of processing groove-shaped unevenness having a V-shaped or U-shaped cross section on the surface has been developed. As a groove processing method, a method of processing using a laser, a dicer, a multi-wire saw, or the like has been proposed. Although the reflection is reduced by forming the unevenness, when the electrode is formed by the screen printing method, the electrode occupancy rate due to the spread of the light-receiving surface electrode paste and the increase of the contact area with the diffusion layer pose a problem. This will be described in detail below.

【0006】受光面電極の占有率の低減、および受光面
電極の拡散層への接触面積への低減は、シリコン太陽電
池において光電変換効率の高効率化を図る主要な技術と
して検討されたきた。受光面電極の占有率とは、素子表
面の面積に対する電極の占める面積で定義され、これを
低減することによって入射光量が増え、短絡電流を増加
させることができる。接触面積とは、電極が拡散層と接
触している面積を指し、これを低減することによって電
極近傍における再結合が減少し、解放電圧を向上させる
ことができる。
The reduction of the occupation ratio of the light-receiving surface electrode and the reduction of the contact area of the light-receiving surface electrode with the diffusion layer have been studied as the main techniques for increasing the photoelectric conversion efficiency in the silicon solar cell. The occupancy of the light-receiving surface electrode is defined by the area occupied by the electrode with respect to the area of the element surface. By reducing this, the amount of incident light increases and the short-circuit current can be increased. The contact area refers to an area in which the electrode is in contact with the diffusion layer. By reducing the contact area, recombination in the vicinity of the electrode is reduced and the release voltage can be improved.

【0007】太陽電池の受光面電極の形成法としては、
スクリーン印刷法以外に蒸着法等もあるが、低コスト化
を要求される太陽電池においては、スクリーン印刷法が
一般的である。
As a method of forming the light-receiving surface electrode of the solar cell,
In addition to the screen printing method, there are vapor deposition methods and the like, but the screen printing method is generally used for a solar cell that requires cost reduction.

【0008】[0008]

【発明が解決しようとする課題】スクリーン印刷法にお
いて占有率を低減するためには、微細なパターンを印刷
することが必要である。しかしながら、スクリーン印刷
法における占有率の下限は、印刷可能な最小線幅によっ
て制限され、現状では占有率は5%程度である。また、
表面に凹凸がある場合には、最小印刷線幅は表面が平坦
な場合に比べ太くなり、その結果占有率の下限は、表面
が平坦な場合に比べて大きくなり、短絡電流の減少の原
因となる。
In order to reduce the occupation rate in the screen printing method, it is necessary to print a fine pattern. However, the lower limit of the occupation rate in the screen printing method is limited by the minimum printable line width, and the occupation rate is currently about 5%. Also,
When the surface has irregularities, the minimum printed line width becomes thicker than that when the surface is flat, and as a result, the lower limit of the occupancy rate becomes larger than when the surface is flat, which causes the short-circuit current to decrease. Become.

【0009】また、スクリーン印刷法において、接触面
積を電極面積より小さくして開放電圧を向上させること
は、従来不可能であった。電極面積に比べ接触面積を減
らすには、電極を形成する予定の部分を一旦酸化膜や窒
化膜等で覆い、これにパターニングをして電極を接触さ
せる部分のみ窓を開け、その上に電極を形成する必要が
ある。これにはフォトリソグラフィ工程などの微細加工
工程が必要となり、スクリーン印刷法では不可能であ
る。さらに、表面に凹凸がある場合には電極面積の増加
に伴い、接触面積も増加し、開放電圧の低下の原因とな
る。
In the screen printing method, it has hitherto been impossible to make the contact area smaller than the electrode area to improve the open circuit voltage. In order to reduce the contact area compared to the electrode area, the part where the electrode is to be formed is once covered with an oxide film or a nitride film, and the patterning is performed to open a window only at the part where the electrode is to be contacted, and the electrode is formed on top of it. Need to be formed. This requires a microfabrication process such as a photolithography process, which is impossible with the screen printing method. Further, when the surface has irregularities, the contact area also increases as the electrode area increases, which causes a decrease in open circuit voltage.

【0010】さらに、表面に前述した溝を形成し、その
上にスクリーン印刷法で電極を形成する場合、次のよう
な問題がある。溝に直角方向にペーストを印刷した場
合、ペーストが溝に沿って広がってしまう。その結果、
電極の占有率の増加による短絡電流の減少や、接触面積
の増加による開放電圧の低下を招く。さらには、溝の頂
上の部分でペーストの断線が発生するという点も問題で
ある。一方、溝に平行に電極を印刷した場合は、ペース
トが溝の幅全面に広がり、さらに、電極幅が溝の幅より
も広い部分では、ペーストは隣の溝まで広がってしま
う。また、発生した電流は電極に達するまでに、拡散層
中を溝と垂直な方向に凹凸を越えて流れるため、実質的
に電極までの距離が長くなり、直列抵抗の増加による曲
線因子の低下を招く。
Further, when the above-mentioned groove is formed on the surface and the electrode is formed thereon by the screen printing method, there are the following problems. When the paste is printed in the direction perpendicular to the groove, the paste spreads along the groove. as a result,
This leads to a decrease in short-circuit current due to an increase in electrode occupation rate and a decrease in open circuit voltage due to an increase in contact area. Further, there is a problem that the disconnection of the paste occurs at the top of the groove. On the other hand, when the electrodes are printed in parallel with the grooves, the paste spreads over the entire width of the groove, and further, in a portion where the electrode width is wider than the width of the groove, the paste spreads to the adjacent groove. In addition, since the generated current flows through the diffusion layer in the direction perpendicular to the groove over the unevenness before reaching the electrode, the distance to the electrode is substantially lengthened, and the fill factor decreases due to the increase in series resistance. Invite.

【0011】このように凹凸の形成、特に段差の大きい
溝状の凹凸の加工を行なった太陽電池表面に、スクリー
ン印刷法によって電極を形成するには、以上のような問
題点があり、反射率が低減される利点を十分に生かすこ
とはできなかった。
There are the following problems in forming an electrode by a screen printing method on the surface of a solar cell on which unevenness has been formed, particularly groove-shaped unevenness having a large step, and there are the following problems. It was not possible to take full advantage of the reduction of

【0012】以上のように、表面への凹凸の形成は表面
反射の低減には大きな効果があるが、実際には印刷法に
よる電極形成の際にペーストが凹部へ広がり、電極の占
有率および拡散層への接触面積が増加し、短絡電流の減
少や開放電圧の低下があるため、反射低減の効果が変換
効率の向上に十分に寄与できていなかった。
As described above, the formation of the unevenness on the surface has a great effect on the reduction of the surface reflection, but in reality, the paste spreads into the concave portion when the electrode is formed by the printing method, and the occupancy rate and diffusion of the electrode are increased. Since the contact area with the layer is increased, the short-circuit current is reduced, and the open circuit voltage is reduced, the effect of reducing reflection cannot sufficiently contribute to the improvement of conversion efficiency.

【0013】本発明の目的は、上記問題点を解決し、凹
凸形成による表面反射の低減に伴う短絡電流の増加の効
果を最大限に生かし、さらに、従来スクリーン印刷法で
は成しえなかった接触面積を電極面積より小さくするこ
とによって、開放電圧を向上させた太陽電池を得ること
にある。
The object of the present invention is to solve the above problems, to maximize the effect of increasing the short-circuit current due to the reduction of surface reflection due to the formation of irregularities, and further to make contact which could not be achieved by the conventional screen printing method. It is to obtain a solar cell with an improved open circuit voltage by making the area smaller than the electrode area.

【0014】[0014]

【課題を解決するための手段】本発明の太陽電池は、第
1の導電型の半導体基板の受光面側に形成された多数の
凹凸と、凹凸に沿って形成された第2の導電型の層と、
第2の導電型の層の表面に形成された反射防止膜と、受
光面電極が形成される凸部付近の凹部を埋めて実質的に
平坦化するように凹部に形成された透明絶縁層と、凸部
に沿って形成され凸部のみにおいて第2の導電型の層と
接触する受光面電極とを設けた。
The solar cell of the present invention has a large number of irregularities formed on the light-receiving surface side of a semiconductor substrate of the first conductivity type, and a second conductivity type formed along the irregularities. Layers and
An antireflection film formed on the surface of the second conductive type layer, and a transparent insulating layer formed in the concave portion so as to fill and substantially flatten the concave portion near the convex portion where the light-receiving surface electrode is formed, A light-receiving surface electrode formed along the convex portion and contacting the second conductivity type layer only at the convex portion is provided.

【0015】[0015]

【作用】受光面電極が形成される凸部付近の凹部は透明
絶縁層によって埋められ表面は平坦化されているから、
この上に電極ペーストを印刷した場合、ペーストは実質
的に平らな面に印刷されることになり、ペーストの広が
りは無く、占有率の小さな電極の形成が可能である。ま
た、電極の拡散層への接触は凸部のみであるため、接触
面積は電極の占有面積よりも小さく、開放電圧を向上さ
せることが可能である。
[Function] Since the concave portion near the convex portion where the light-receiving surface electrode is formed is filled with the transparent insulating layer and the surface is flattened,
When the electrode paste is printed on this, the paste is printed on a substantially flat surface, the paste does not spread, and it is possible to form an electrode with a small occupation ratio. In addition, since the contact of the electrode with the diffusion layer is only at the convex portion, the contact area is smaller than the area occupied by the electrode, and the open circuit voltage can be improved.

【0016】[0016]

【実施例】図2(a)〜(f)は、本発明による太陽電
池の製作工程を示す断面図である。
EXAMPLE FIGS. 2A to 2F are sectional views showing the steps of manufacturing a solar cell according to the present invention.

【0017】まず、図2(a)に示すように、単結晶ま
たは多結晶のP型シリコン基板1の受光面側の表面に多
数の溝1−1を形成する。本実施例においては溝1−1
はダイサーによって形成した。このときダイサーのブレ
ードの厚みを50μmとし、溝1−1の深さを50μ
m、溝1−1のピッチを100μmとした。
First, as shown in FIG. 2A, a large number of grooves 1-1 are formed in the surface of the single crystal or polycrystalline P-type silicon substrate 1 on the light receiving surface side. In this embodiment, the groove 1-1
Was formed by dicer. At this time, the thickness of the dicer blade is 50 μm, and the depth of the groove 1-1 is 50 μm.
m, and the pitch of the grooves 1-1 was 100 μm.

【0018】次に、基板を洗浄した後、ダイシング時の
破砕層の除去および溝の角を取り、より反射が低くなる
V字型状にするため、フッ酸と硝酸の混合液によって基
板のエッチングを行なった。
Next, after the substrate is washed, the substrate is etched with a mixed solution of hydrofluoric acid and nitric acid in order to remove the crushed layer at the time of dicing and remove the corners of the groove to form a V-shape that lowers the reflection. Was done.

【0019】次に、図2(b)に示すように、POCl
3 を用いたガス拡散によってN型拡散層2を形成し、そ
の表面にパッシベーション層3として熱酸化法により薄
い熱酸化膜を形成した。その上に、反射防止膜4として
常圧CVD法によって酸化チタン膜を形成した。
Next, as shown in FIG. 2 (b), POCl
An N-type diffusion layer 2 was formed by gas diffusion using 3, and a thin thermal oxide film was formed as a passivation layer 3 on the surface by a thermal oxidation method. A titanium oxide film was formed thereon as the antireflection film 4 by the atmospheric pressure CVD method.

【0020】次いで、図2(c)に示すように、エッチ
ングによって裏面の不要なN型拡散層を取り除いた後、
BSF層5および裏面電極6を、Alペーストを印刷・
焼成することによって形成した。
Next, as shown in FIG. 2C, after removing the unnecessary N-type diffusion layer on the back surface by etching,
Print the Al paste on the BSF layer 5 and the back electrode 6.
It was formed by firing.

【0021】次に、図2(d)に示すように、表面に電
極と同様のパターンを持つ透明絶縁層として、酸化錫層
7を形成し溝の凹部を埋める。図3(a)はその側面図
であり、図4(a)はその斜視図である。酸化錫層7
は、テトラアルコキシ錫をアルコール類およびエーテル
類を主体とする有機溶剤に溶解し、さらにセルローズ類
等のバインダーを加えた塗布液を、スクリーン印刷によ
って印刷し、これを100〜150℃の温度で5〜10
分乾燥させた後、酸素ガス雰囲気中で600〜700℃
の温度で10ないし20分焼成することによって形成し
た。印刷用のスクリーンパターンは、太陽電池の電極部
と同等であるがその線幅が電極の線幅に比べて2〜4倍
程度の太さをもつパターンとした。ここで形成された酸
化錫層の線幅が広いが、酸化錫層は透明であるため入射
光量に殆ど影響を与えない。
Next, as shown in FIG. 2D, a tin oxide layer 7 is formed on the surface as a transparent insulating layer having a pattern similar to that of the electrode, and the concave portion of the groove is filled. 3 (a) is a side view thereof, and FIG. 4 (a) is a perspective view thereof. Tin oxide layer 7
Is a solution in which tetraalkoxytin is dissolved in an organic solvent mainly containing alcohols and ethers, and a binder such as cellulose is added to the coating solution, which is printed by screen printing at a temperature of 100 to 150 ° C. -10
After drying for minutes, 600 ~ 700 ℃ in oxygen gas atmosphere
It was formed by firing at a temperature of 10 to 20 minutes. The screen pattern for printing was the same as the electrode part of the solar cell, but the line width thereof was about 2 to 4 times the line width of the electrode. Although the tin oxide layer formed here has a wide line width, the tin oxide layer is transparent and has little effect on the amount of incident light.

【0022】次いで、この基板を塩酸中に浸漬すること
によって酸化錫層のエッチングを行なう。図1(e)に
示すように、溝の凸部の頂上部の反射防止膜4が露出し
た時点でエッチングを止めることによって、実質的に平
坦化された表面が得られる。図3(b)はその側面図で
あり、図4(b)はその斜視図である。このとき、反射
防止膜4はエッチングされずに表面に残る。
Then, the tin oxide layer is etched by immersing the substrate in hydrochloric acid. As shown in FIG. 1E, the etching is stopped when the antireflection film 4 on the top of the convex portion of the groove is exposed, whereby a substantially planarized surface is obtained. 3 (b) is a side view thereof, and FIG. 4 (b) is a perspective view thereof. At this time, the antireflection film 4 remains on the surface without being etched.

【0023】次いで、図2(f)に示すように、溝の頂
上部の凸部表面の反射防止膜4を中心とし、その付近の
酸化錫層7を含む受光面電極予定領域に、銀ペーストを
スクリーン印刷法によって印刷し、これを乾燥・焼成す
ることによって受光面電極8を形成する。図3(c)は
その側面図であり、図4(c)はその斜視図である。こ
のとき溝の頂上の凸部では、銀ペーストは前記反射防止
膜4およびパッシベーション層3を貫通しN型拡散層2
と接触するが、溝の凹部では、酸化錫層7はその厚さが
厚いため、銀ペーストは貫通できない。従って、受光面
電極8のN型拡散層2との接触面積は電極面積に比べて
大幅に低減される。
Next, as shown in FIG. 2 (f), a silver paste is formed in the light receiving surface electrode planned region including the tin oxide layer 7 in the vicinity of the antireflection film 4 on the convex surface at the top of the groove. Is printed by a screen printing method and dried and baked to form the light-receiving surface electrode 8. 3 (c) is a side view thereof, and FIG. 4 (c) is a perspective view thereof. At this time, in the convex portion on the top of the groove, the silver paste penetrates the antireflection film 4 and the passivation layer 3 and the N-type diffusion layer 2 is formed.
However, in the concave portion of the groove, the tin oxide layer 7 is too thick to penetrate the silver paste. Therefore, the contact area of the light-receiving surface electrode 8 with the N-type diffusion layer 2 is significantly reduced as compared with the electrode area.

【0024】以上の工程によって、図1に示されるよう
な本発明による太陽電池素子が完成する。
Through the above steps, the solar cell element according to the present invention as shown in FIG. 1 is completed.

【0025】本発明による太陽電池の光電変換特性を従
来の構造を持つ太陽電池と比較したものが下記の表1で
ある。
The photoelectric conversion characteristics of the solar cell according to the present invention are compared with those of the solar cell having the conventional structure as shown in Table 1 below.

【0026】[0026]

【表1】 [Table 1]

【0027】従来の構造とは酸化錫層を形成せず、直接
電極を形成したものである。本発明による太陽電池は従
来の構造を持つ太陽電池と比較すると、短絡電流,開放
電圧ともに向上しており、反射の低減,占有率および接
触面積の低減がなされていることが分かる。
The conventional structure is one in which an electrode is directly formed without forming a tin oxide layer. It can be seen that the solar cell according to the present invention has improved short-circuit current and open-circuit voltage as compared with a solar cell having a conventional structure, and has reduced reflection, occupancy and contact area.

【0028】[0028]

【発明の効果】本発明によれば、反射低減のために表面
に凹凸を形成した太陽電池において、簡単な方法で電極
の占有率および電極の拡散層への接触面積を小さくする
ことができ、その結果従来より高効率の太陽電池を得る
ことができる。
According to the present invention, in a solar cell in which irregularities are formed on the surface for reducing reflection, the occupancy rate of the electrode and the contact area of the electrode with the diffusion layer can be reduced by a simple method. As a result, it is possible to obtain a solar cell with higher efficiency than ever before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による太陽電池の斜視図である。FIG. 1 is a perspective view of a solar cell according to the present invention.

【図2】(a)〜(f)は本発明の製作工程を示す略断
面図である。
2A to 2F are schematic cross-sectional views showing a manufacturing process of the present invention.

【図3】(a)〜(c)はそれぞれ図2(d)〜(f)
に対する側面図である。
3A to 3C are diagrams of FIGS. 2D to 2F, respectively.
FIG.

【図4】(a)〜(c)はそれぞれ図2(d)〜(f)
に対する斜視図である。
4A to 4C are diagrams of FIGS. 2D to 2F, respectively.
FIG.

【符号の説明】[Explanation of symbols]

1 p型シリコン基板 2 N型拡散層 3 パッシベーション層 4 反射防止膜 5 BSF層 6 裏面電極 7 酸化錫層 8 受光面電極 1 p-type silicon substrate 2 N-type diffusion layer 3 passivation layer 4 antireflection film 5 BSF layer 6 back electrode 7 tin oxide layer 8 light-receiving surface electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 哲啓 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 横沢 雄二 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuhiro Okuno 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Yuji Yokozawa 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside the company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電型の半導体基板の受光面側に
形成された多数の凹凸と、 凹凸に沿って形成された第2の導電型の層と、 第2の導電型の層の表面に形成された反射防止膜と、 受光面電極が形成される凸部付近の凹部を埋めて実質的
に凸部と平坦化するように凹部に形成された透明絶縁層
と、 凸部に沿って形成され凸部のみにおいて第2の導電型の
層と接触する受光面電極、 とよりなることを特徴とする光電変換素子。
1. A large number of irregularities formed on the light-receiving surface side of a semiconductor substrate of the first conductivity type, a second conductivity type layer formed along the irregularities, and a second conductivity type layer. An antireflection film formed on the surface, a transparent insulating layer formed in the concave portion so as to substantially flatten the convex portion by filling the concave portion near the convex portion where the light-receiving surface electrode is formed, and along the convex portion And a light-receiving surface electrode that is in contact with the second conductivity type layer only at the protrusions.
JP4215033A 1992-08-12 1992-08-12 Photoelectric conversion element Expired - Fee Related JP2835415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4215033A JP2835415B2 (en) 1992-08-12 1992-08-12 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4215033A JP2835415B2 (en) 1992-08-12 1992-08-12 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH0661512A true JPH0661512A (en) 1994-03-04
JP2835415B2 JP2835415B2 (en) 1998-12-14

Family

ID=16665645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4215033A Expired - Fee Related JP2835415B2 (en) 1992-08-12 1992-08-12 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2835415B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043670A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Solar cell and solar cell module
WO2012105068A1 (en) * 2011-02-04 2012-08-09 三菱電機株式会社 Pattern-forming method and solar cell manufacturing method
JP2017135210A (en) * 2016-01-26 2017-08-03 三菱電機株式会社 Solar cell and method of manufacturing solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043670A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Solar cell and solar cell module
WO2012105068A1 (en) * 2011-02-04 2012-08-09 三菱電機株式会社 Pattern-forming method and solar cell manufacturing method
JP2017135210A (en) * 2016-01-26 2017-08-03 三菱電機株式会社 Solar cell and method of manufacturing solar cell

Also Published As

Publication number Publication date
JP2835415B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
AU702505B2 (en) Method of preparing solar cells and products obtained thereof
TWI845484B (en) Interdigitated back-contacted solar cell with p-type conductivity and manufacturing thereof and photovoltaic module
JP5390102B2 (en) Semiconductor device having heterojunction and interfinger structure
JP4481869B2 (en) SOLAR CELL MANUFACTURING METHOD, SOLAR CELL, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
KR20080014751A (en) Solar cell manufacturing method and solar cell
JP6104037B2 (en) Photovoltaic device, manufacturing method thereof, and photovoltaic module
US20110189810A1 (en) Crystalline silicon pv cell with selective emitter produced with low temperature precision etch back and passivation process
JPWO2005109524A1 (en) Solar cell and manufacturing method thereof
US9171975B2 (en) Solar cell element and process for production thereof
WO2012077568A1 (en) Solar cell and solar-cell module
JPH10233518A (en) Solar cell and its manufacturing method, and manufacturing method of semiconductor device
JP4656996B2 (en) Solar cell
JP5220197B2 (en) Solar cell and manufacturing method thereof
JP4373774B2 (en) Method for manufacturing solar cell element
JP5991945B2 (en) Solar cell and solar cell module
JP5408022B2 (en) Solar cell and manufacturing method thereof
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JP2004273826A (en) Photoelectric converter and its fabricating process
JP2999867B2 (en) Solar cell and method of manufacturing the same
JP2001257371A (en) Method for manufacturing solar cell, solar cell and condensing type solar cell module
JP6114171B2 (en) Manufacturing method of solar cell
JPH11307792A (en) Solar cell element
JP2835415B2 (en) Photoelectric conversion element
JP2007266649A (en) Method of manufacturing solar cell element
JP4212292B2 (en) Solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980825

LAPS Cancellation because of no payment of annual fees