JPH0660807B2 - High-precision measurement method of the center position of light - Google Patents

High-precision measurement method of the center position of light

Info

Publication number
JPH0660807B2
JPH0660807B2 JP24405185A JP24405185A JPH0660807B2 JP H0660807 B2 JPH0660807 B2 JP H0660807B2 JP 24405185 A JP24405185 A JP 24405185A JP 24405185 A JP24405185 A JP 24405185A JP H0660807 B2 JPH0660807 B2 JP H0660807B2
Authority
JP
Japan
Prior art keywords
light
intensity distribution
light intensity
center position
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24405185A
Other languages
Japanese (ja)
Other versions
JPS62105002A (en
Inventor
央 成瀬
由司彦 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24405185A priority Critical patent/JPH0660807B2/en
Publication of JPS62105002A publication Critical patent/JPS62105002A/en
Publication of JPH0660807B2 publication Critical patent/JPH0660807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は、視覚センサと対象物との距離等を計測する際
に必要となる対象物からの反射光の中心位置を計測する
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method of measuring a central position of reflected light from an object, which is necessary when measuring a distance between a visual sensor and the object.

特に光を照射し、その反射光を画像処理する際に対象物
の反射率を考慮した補正を行ないかつ反射光の量子化さ
れた光強度分布を連続した光強度分布曲線で近似するこ
とにより、反射光の中心位置を高精度で計測する方法に
関するものである。
In particular, by irradiating light, by performing a correction considering the reflectance of the object when image processing the reflected light and by approximating the quantized light intensity distribution of the reflected light with a continuous light intensity distribution curve, The present invention relates to a method for measuring the center position of reflected light with high accuracy.

(従来の技術) 従来、光を用いて対象物について各種の計測を行なう場
合には、反射光の中心位置を精度よく計測することが重
要になる。例えば、第10図に示すように、視覚センサ
と対象物の距離を計測する場合、視覚センサであるITV
カメラ101と対象物の壁面102との距離dは で求めることができる。光源103からレーザ光を壁面
102に照射し、その反射光を検出することによって、
この距離dを(1)式を用いて計測する場合、レーザ光1
04が傾斜している角度φ及びレーザ光源103とITV
カメラ101との距離lは予め正確に測れるが、レーザ
光104の壁面102上の投影位置Pと光軸105との
なす角θは従来正確に測れなかった。なぜならθは (hは光軸105と反射レーザ光106の撮像面107
上の入射位置Qの間の距離、fは焦点距離で撮像面10
7とITVカメラ101のレンズ108との距離)であ
り、この時のhが精度良く測れなかったからである。
(Prior Art) Conventionally, when performing various measurements on an object using light, it is important to accurately measure the center position of reflected light. For example, as shown in FIG. 10, when measuring the distance between the visual sensor and the object, the ITV which is a visual sensor is used.
The distance d between the camera 101 and the wall surface 102 of the object is Can be found at. By irradiating the wall surface 102 with laser light from the light source 103 and detecting the reflected light,
When measuring this distance d using the equation (1), the laser light 1
04 is inclined angle φ and laser light source 103 and ITV
The distance l with the camera 101 can be accurately measured in advance, but the angle θ formed by the projection position P of the laser beam 104 on the wall surface 102 and the optical axis 105 has not been conventionally accurately measured. Because θ is (H is the optical axis 105 and the imaging surface 107 of the reflected laser light 106.
The distance between the upper incident positions Q, f is the focal length, and the imaging surface 10
7 and the lens 108 of the ITV camera 101), and h at this time could not be measured accurately.

hの測定精度が悪かった原因、即ち反射光の中心位置が
高精度で計測できなかった原因は次の2つである。
There are two reasons why the measurement accuracy of h is poor, that is, the central position of the reflected light cannot be measured with high accuracy.

通常壁面102の反射率は一様でなく、壁面から反射
されてITVカメラ101に入ってくる反射レーザ光10
6自身の光強度分布が歪んでしまうこと。
Normally, the reflectance of the wall surface 102 is not uniform, and the reflected laser light 10 that enters the ITV camera 101 after being reflected from the wall surface 10
6 The light intensity distribution of itself is distorted.

ITVカメラ101に入射された反射レーザ光106の
光強度分布が画素単位で量子化されている為に画素単位
以下の光強度分布の情報は得られないこと。
Since the light intensity distribution of the reflected laser light 106 incident on the ITV camera 101 is quantized on a pixel-by-pixel basis, information on the light intensity distribution below the pixel-by-pixel basis cannot be obtained.

上記を解決する手段は従来考えられていなかった。上
記については、その改善方法として特開昭59-79105号
が提案されている。この特開昭59-79105号は、量子化さ
れた光強度分布を代表的な3点をとることによって二次
曲線でおきかえ、この二次曲線を利用して、反射レーザ
光の光強度分布の中心位置を1画素以下の精度で測定し
ようとするものである。しかし、実際の光強度分布曲線
は必ずしも二次曲線とはならないため、従来法のように
二次曲線で近似した場合には、誤差が大きくなり、hの
測定精度を上げること即ち反射光の中心位置を高精度で
計測することが困難であった。
Means for solving the above have not been conventionally considered. Regarding the above, Japanese Patent Laid-Open No. 59-79105 has been proposed as a method for improving the above. In Japanese Patent Laid-Open No. 59-79105, the quantized light intensity distribution is replaced with a quadratic curve by taking three representative points, and the quadratic curve is used to calculate the light intensity distribution of the reflected laser light. It is intended to measure the center position with an accuracy of 1 pixel or less. However, since the actual light intensity distribution curve is not necessarily a quadratic curve, the error becomes large when approximated by a quadratic curve as in the conventional method, and the measurement accuracy of h is increased, that is, the center of the reflected light. It was difficult to measure the position with high accuracy.

(発明の目的) 本発明の目的は、対象物からの反射光の中心位置を高精
度で計測する方法を提供することにある。
(Object of the Invention) An object of the present invention is to provide a method for measuring the center position of reflected light from an object with high accuracy.

(発明の構成) 第1図は本発明の方法の概略を示したものである。第2
図に示すように光度が一様な光を、参照用光源1から対
象物2に照射し、その反射光を対象物2に対して正対化
された視覚センサ3で検出する。このとき得られる各点
の光強度を最高光強度で除して対象物2の被照射面の反
射率比を求める。次いで測定用光源4から測定光を対象
物2に照射し、そのときの反射光を視覚センサ3に入射
させ、反射光の光強度分布を求める。その後、反射光の
光強度分布を反射率比で割ることにより、被照射面の反
射率の非一様性による影響を補正する。そして補正され
た光強度分布から最小二乗法を用いて連続して変化する
光強度分布曲線(例えば正規分布曲線)を求め、反射光
の中心位置を決定する。
(Structure of the Invention) FIG. 1 shows the outline of the method of the present invention. Second
As shown in the figure, the reference light source 1 irradiates the object 2 with light having a uniform luminous intensity, and the reflected light is detected by the visual sensor 3 that is directly opposed to the object 2. The light intensity at each point obtained at this time is divided by the maximum light intensity to obtain the reflectance ratio of the irradiated surface of the object 2. Next, the measurement light source 4 irradiates the object 2 with the measurement light, and the reflected light at that time is incident on the visual sensor 3 to obtain the light intensity distribution of the reflected light. After that, by dividing the light intensity distribution of the reflected light by the reflectance ratio, the influence of the nonuniformity of the reflectance of the irradiated surface is corrected. Then, a continuously changing light intensity distribution curve (for example, a normal distribution curve) is obtained from the corrected light intensity distribution, and the center position of the reflected light is determined.

反射率比を測定する際には、第3図に示すように光度が
一様でない光を発する測定用光源4を対象物2に沿って
平行に移動させ、光度が実質的に一様な状態を作り出
し、その反射光を利用してもよい。
When measuring the reflectance ratio, as shown in FIG. 3, the measuring light source 4 which emits light having a non-uniform light intensity is moved in parallel along the object 2 so that the light intensity is substantially uniform. May be produced and the reflected light may be used.

本発明の方法は、被照射面の反射率比を求めて、これを
光強度分布の補正に利用し、かつ量子化された光強度分
布を最小二乗法で連続した光強度分布曲線に近似する点
が、従来方式と異なる。
The method of the present invention obtains the reflectance ratio of the surface to be illuminated, uses it for correction of the light intensity distribution, and approximates the quantized light intensity distribution to a continuous light intensity distribution curve by the least square method. The point is different from the conventional method.

(実施例) 第4図は、本発明に用いる装置例を示したものである。
4は参照用光源を兼ねた測定用光源である。測定用光源
4はHe−Neレーザ10及び水平なスリット光を作るため
のレンズ11から成っている。また測定用光源4には移
動のためのダイヤルゲージ12がつけられている。3は
対象物2に対して正対化されたITVカメラで256×256画
素の固体撮像素子を備えている。
(Example) FIG. 4 shows an example of an apparatus used in the present invention.
Reference numeral 4 is a measurement light source which also serves as a reference light source. The measurement light source 4 comprises a He-Ne laser 10 and a lens 11 for producing horizontal slit light. A dial gauge 12 for moving is attached to the measuring light source 4. An ITV camera 3 is directly opposed to the object 2 and includes a solid-state image pickup device having 256 × 256 pixels.

ここで、ITVカメラの対壁面3次元計測として、壁面とI
TVカメラの視軸とがなす角度を計測する方法とそれに基
づく正対化の概要を述べる。第5図に示すように、画像
平面のu,v軸を3次元空間のx,y軸と平行にとり、
ITVカメラ3(0,0,−f)の視軸をz軸に一致させ
る。レーザ光源を4(0,l,−f)とし、レーザ光が
水平面となす角度をφ、壁面とx軸となす角度をηとす
る。ここでfはレンズの焦点距離である。すると、レー
ザ光のつくる平面の方程式は、 y+tanφ・z=l−tanφ・f (2) と表される。また、壁面は垂直に作られているので、壁
面のつくる平面の方程式は、 z−z0=tanη・x (3) と表される。したがって、レーザ光投影像はこの2平面
の交線の方程式となるから、この直線が(0,y0,z0
を通るとすると、レーザ光投影像は、 と求められる。一方、(u,v)と(x,y,z)の関
係として、 が成り立つので、式(4),(5)より、画像平面上に写され
るレーザ光投影像の直線の方程式が求められる。その結
果、画像上における直線の傾きをmとすると、 と計算される。したがって、ηすなわちITVカメラの対
壁面3次元計測が行える。次に、このηをもとにマニピ
ューレータのフィードバック制御を行い、ξが0となる
ようにITVカメラを正対化させる。
Here, as the three-dimensional measurement of the wall surface of the ITV camera,
An outline of the method of measuring the angle formed by the visual axis of the TV camera and the confrontation based on it is described. As shown in FIG. 5, the u and v axes of the image plane are set parallel to the x and y axes of the three-dimensional space,
The visual axis of the ITV camera 3 (0, 0, -f) is made to coincide with the z axis. The laser light source is 4 (0, 1, -f), the angle formed by the laser light with the horizontal plane is φ, and the angle formed by the wall surface with the x axis is η. Here, f is the focal length of the lens. Then, the equation of the plane formed by the laser light is expressed as y + tanφ · z = l−tanφ · f (2). Moreover, since the wall surface is made vertical, the equation of the plane formed by the wall surface is expressed as z−z 0 = tan η · x (3). Therefore, since the projected image of the laser beam is an equation of the line of intersection of these two planes, this straight line is (0, y 0 , z 0 )
When passing through, the projected image of the laser beam is Is required. On the other hand, as the relationship between (u, v) and (x, y, z), Therefore, the equation of the straight line of the laser light projection image projected on the image plane can be obtained from the equations (4) and (5). As a result, if the inclination of the straight line on the image is m, Is calculated. Therefore, it is possible to perform η, that is, three-dimensional measurement on the wall surface of the ITV camera. Next, feedback control of the manipulator is performed based on this η, and the ITV camera is made to face so that ξ becomes 0.

前述のようにITVカメラ3を対象物2に対して正対化し
た後、測定用光源を第4図で矢印A方向に対象物上の1
画素の距離ずつ移動させながら、光を対象物2に照射
し、その間ITVカメラ3中の撮像素子に入射してくる反
射光の強度を積算して、参照光の反射光強度分布を求め
る。ついでこの反射光強度分布の中で最高強度の値で各
強度を割って被照射面の反射率比を求める。この反射率
比を第6図に示す。次いで、測定用光源4をある位置に
固定し、光を対象物2に照射し、そのときの反射光をIT
Vカメラ3で測定する。このとき得られる量子化された
光強度分布は第7図▲印である。この▲印で示される光
強度分布を第6図の反射率比で割る補正を行ない、第7
図△印で示す補正された光強度分布を得る。
After the ITV camera 3 is directly faced to the object 2 as described above, the measurement light source is moved in the direction of arrow A in FIG.
The object 2 is irradiated with light while moving by the distance of the pixel, and the intensities of the reflected lights that are incident on the image pickup device in the ITV camera 3 during that time are integrated to obtain the reflected light intensity distribution of the reference light. Then, each intensity is divided by the highest intensity value in the reflected light intensity distribution to obtain the reflectance ratio of the irradiated surface. This reflectance ratio is shown in FIG. Next, the measurement light source 4 is fixed at a certain position, the object 2 is irradiated with light, and the reflected light at that time is IT.
Measure with V camera 3. The quantized light intensity distribution obtained at this time is shown by a triangle mark in FIG. Correction is performed by dividing the light intensity distribution indicated by this triangle by the reflectance ratio in FIG.
A corrected light intensity distribution shown by a triangle mark is obtained.

ところで、通常第4図のような装置構成をとる時、光源
4の光の強度分布曲線は正規分布とみなせるので、位置
xと光強度Iとの関係は となる。ここで、a,b,cは定数とする。式(7)の対
数をとると、 となる。従って、位置xと撮像素子面上の光強度の値I
から最小二乗法を用いて、式(8)における定数a,b,
cを決め、撮像素子面上の光強度分布曲線を求める。こ
のようにして決めた光強度分布曲線が第7図の(A)であ
る。そして、この光強度分布曲線(A)の最大値から反射
光の中心位置を決定する。
By the way, when the device configuration as shown in FIG. 4 is taken normally, the light intensity distribution curve of the light source 4 can be regarded as a normal distribution, so that the relationship between the position x and the light intensity I is Becomes Here, a, b, and c are constants. Taking the logarithm of equation (7), Becomes Therefore, the position x and the value I of the light intensity on the surface of the image sensor are
From the least squares method, the constants a, b, and
c is determined, and the light intensity distribution curve on the image pickup element surface is obtained. The light intensity distribution curve determined in this way is shown in FIG. Then, the center position of the reflected light is determined from the maximum value of this light intensity distribution curve (A).

第7図の〇印は反射率が一様な面に光を照射したときに
得られる反射光の光強度分布で、曲線(B)は最小二乗法
で求めた光強度分布曲線である。曲線(B)の最大値を与
える中心位置、即ち理想状態での反射光の中心位置と本
発明から求めた反射光の中心位置とが高精度で一致して
いることがわかる。因みに、第7図の▲印の光強度分布
から最小二乗法を用いて光強度分布曲線(C)を求め、そ
れから決定できる反射光の中心位置は、約1画素程度精
度が悪い。このことは逆に本発明の一工程である反射率
比による補正が、中心位置を高精度に測定する上で、大
きな役割を果たしていることを意味している。
The circles in FIG. 7 indicate the light intensity distribution of the reflected light obtained when the light is irradiated on the surface having the uniform reflectance, and the curve (B) is the light intensity distribution curve obtained by the least square method. It can be seen that the center position giving the maximum value of the curve (B), that is, the center position of the reflected light in the ideal state and the center position of the reflected light obtained from the present invention coincide with each other with high accuracy. Incidentally, the center position of the reflected light that can be determined from the light intensity distribution curve (C) obtained from the light intensity distribution indicated by the triangle mark in FIG. 7 using the least squares method is inaccurate by about 1 pixel. On the contrary, this means that the correction by the reflectance ratio, which is one step of the present invention, plays a large role in measuring the center position with high accuracy.

次に別の観点から本発明の計測法が高精度であることを
説明する。
Next, it will be explained from another viewpoint that the measuring method of the present invention has high accuracy.

ITVカメラ3の位置を固定し、He−Neレーザ光源4をス
リット方向と垂直に微小平行移動させて計測法の精度を
検討した。すなわち、予め被照射面上における1画素に
対応する長さを計測しておき、ダイヤルゲージ12で計
測された光源4の移動量と比較した。なお、各点に対し
てそれぞれ10回ずつ計測した。その結果を第8図に示す
が、計測値の上下限は3σを示している。個々の計測値
に対する最大のσは0.021画素である。
The position of the ITV camera 3 was fixed, and the He-Ne laser light source 4 was slightly moved in parallel to the slit direction to examine the accuracy of the measurement method. That is, the length corresponding to one pixel on the irradiated surface was measured in advance and compared with the movement amount of the light source 4 measured by the dial gauge 12. The measurement was performed 10 times for each point. The result is shown in FIG. 8, and the upper and lower limits of the measured value indicate 3σ. The maximum σ for each measured value is 0.021 pixels.

なお、従来の技術である2次曲線で近似した場合は、σ
=0.083であり、本発明は従来方法に比べ4倍程度
の高精度な計測ができる。
In the case of approximation with a quadratic curve which is a conventional technique, σ
= 0.083, the present invention can perform highly accurate measurement about four times as high as the conventional method.

マンホール点検装置に本発明の計測方法を応用する場合
について説明する。
A case where the measuring method of the present invention is applied to a manhole inspection device will be described.

マンホール点検装置は第9図に示すように、画像処理装
置20、マニピュレータ21、視覚センサ(ITVカメ
ラ)22、レーザ照射装置23から構されていて、これ
らが運搬用自動車24に積載されている。この点検装置
は、マンホール25内部の大きさの計測、ダクト口2
6、ケーブルの認識,計測を行うものである。なお27
はダクト、28はケーブルである。まず、マニピュレー
タ21の先端にとりつけられた光照射装置23とITVカメ
ラ22をマンホール25の首から内部へ挿入する。次い
で、マンホール壁面のうちで一つの面に対して、その壁
面に対するITVカメラ22の姿勢を計測し、マニピュレ
ータ21によってITVカメラ22の光軸が壁面と垂直に
なるように姿勢を制御する。次にこの状態で先に述べた
方法により反射光の中心位置を計測し、(1)式から壁面
とITVカメラ22の距離を計測する。この計測を他の壁
面に対しても行ない、マンホールの寸法を測る。
As shown in FIG. 9, the manhole inspection device comprises an image processing device 20, a manipulator 21, a visual sensor (ITV camera) 22, and a laser irradiation device 23, which are mounted on a transportation vehicle 24. This inspection device measures the size of the inside of the manhole 25, the duct opening 2
6. It recognizes and measures the cable. 27
Is a duct and 28 is a cable. First, the light irradiation device 23 and the ITV camera 22 attached to the tip of the manipulator 21 are inserted into the manhole 25 from the neck. Next, the attitude of the ITV camera 22 with respect to one wall of the manhole wall surface is measured, and the attitude is controlled by the manipulator 21 so that the optical axis of the ITV camera 22 is perpendicular to the wall surface. Next, in this state, the center position of the reflected light is measured by the method described above, and the distance between the wall surface and the ITV camera 22 is measured from the equation (1). This measurement is also performed on other wall surfaces to measure the dimensions of the manhole.

(発明の効果) 以上述べたように、本発明は対象物の反射率比を用いて
光強度分布を補正し、かつ量子化された光強度分布から
最小二乗法で連続的な光強度分布曲線を求め、その最大
強度を与える所を反射光の中心位置と決定する。従っ
て、対象物の反射率が一様でない場合、例えばマンホー
ル内の壁面が泥等で汚れていても反射光の中心位置を高
精度で計測できる。その結果、光を用いた計測法、例え
ばセンサと対象物間の距離、あるいはマンホールの寸法
測定を高精度に行なうことができる。
(Effects of the Invention) As described above, the present invention corrects the light intensity distribution by using the reflectance ratio of the object, and the continuous light intensity distribution curve by the least square method from the quantized light intensity distribution. Is determined, and the location of the maximum intensity is determined as the center position of the reflected light. Therefore, when the reflectance of the object is not uniform, for example, the center position of the reflected light can be measured with high accuracy even if the wall surface in the manhole is dirty with mud or the like. As a result, the measurement method using light, for example, the distance between the sensor and the object or the dimension of the manhole can be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の概略を説明するための図、第2図及び
第3図は本発明の方法の工程のうち対象物の反射率比を
求める工程を説明するための図、第4図は本発明に使用
する装置の概略図、第5図はセンサを対象物に対して正
対化する方法を説明するための図、第6図及び第7図は
本発明の工程のうち補正工程を説明するため及びその効
果を示すための図、第8図は本発明の効果を説明するた
めの図、第9図は本発明の応用例を説明するための図、
第10図は従来技術の説明図である。 1……参照用光源、2……対象物、3……視覚センサ、
4……測定用光源、10……He−Neレーザ。
FIG. 1 is a diagram for explaining the outline of the present invention, and FIGS. 2 and 3 are diagrams for explaining a step of obtaining a reflectance ratio of an object among the steps of the method of the present invention, and FIG. Is a schematic view of an apparatus used in the present invention, FIG. 5 is a view for explaining a method of directly facing a sensor to an object, and FIGS. 6 and 7 are correction steps among the steps of the present invention. FIG. 8 is a diagram for explaining the effect and its effect, FIG. 8 is a diagram for explaining the effect of the present invention, FIG. 9 is a diagram for explaining an application example of the present invention,
FIG. 10 is an explanatory diagram of a conventional technique. 1 ... Reference light source, 2 ... Object, 3 ... Visual sensor,
4 ... Measuring light source, 10 ... He-Ne laser.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光度が実質的に一様となるように参照光を
対象物に照射する第1照射工程と、 参照光による対象物からの反射光の第1光強度分布から
対象物の反射率比を求める工程と、 対象物に測定光を照射する第2照射工程と、 測定光による対象物からの反射光の第2光強度分布を測
定する工程と、 前記第2光強度分布を前記反射率比で補正して補正光強
度分布を求める工程と、 前記補正光強度分布から光強度分布曲線を求める工程
と、 前記光強度分布曲線から測定光の反射光の中心位置を決
定する工程とから成ることを特徴とする光の中心位置の
高精度計測方法。
1. A first irradiation step of irradiating an object with reference light so that the luminous intensity is substantially uniform, and a reflection of the object from a first light intensity distribution of reflected light from the object by the reference light. A step of obtaining a ratio ratio; a second irradiation step of irradiating the object with measurement light; a step of measuring a second light intensity distribution of reflected light from the object by the measurement light; A step of obtaining a corrected light intensity distribution by correcting with a reflectance ratio; a step of obtaining a light intensity distribution curve from the corrected light intensity distribution; and a step of determining the center position of the reflected light of the measurement light from the light intensity distribution curve. A highly accurate method of measuring the center position of light, which comprises:
【請求項2】前記第1照射工程は、光度が一様な光源か
らの光を照射する工程であることを特徴とする特許請求
の範囲第1項記載の光の中心位置の高精度計測方法。
2. The high-precision measuring method of the center position of light according to claim 1, wherein the first irradiating step is a step of irradiating light from a light source having a uniform luminous intensity. .
【請求項3】前記第1照射工程は、前記測定光の光源を
対象物面に平行に移動する工程であることを特徴とする
特許請求の範囲第1項記載の光の中心位置の高精度計測
方法。
3. The high accuracy of the center position of light according to claim 1, wherein the first irradiation step is a step of moving a light source of the measurement light in parallel with an object surface. Measuring method.
【請求項4】前記反射率比を求める工程は第1光強度分
布の最強の値で他の強度を割ることにより求める工程で
あり、前記補正光強度分布を求める工程は第2光強度分
布を反射率比で割る工程であることを特徴とする特許請
求の範囲第1項記載の光の中心位置の高精度計測方法。
4. The step of obtaining the reflectance ratio is a step of obtaining another intensity by dividing the other intensity by the strongest value of the first light intensity distribution, and the step of obtaining the corrected light intensity distribution is the second light intensity distribution. The method for highly accurate measurement of the center position of light according to claim 1, wherein the method is a step of dividing by a reflectance ratio.
JP24405185A 1985-11-01 1985-11-01 High-precision measurement method of the center position of light Expired - Fee Related JPH0660807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24405185A JPH0660807B2 (en) 1985-11-01 1985-11-01 High-precision measurement method of the center position of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24405185A JPH0660807B2 (en) 1985-11-01 1985-11-01 High-precision measurement method of the center position of light

Publications (2)

Publication Number Publication Date
JPS62105002A JPS62105002A (en) 1987-05-15
JPH0660807B2 true JPH0660807B2 (en) 1994-08-10

Family

ID=17112994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24405185A Expired - Fee Related JPH0660807B2 (en) 1985-11-01 1985-11-01 High-precision measurement method of the center position of light

Country Status (1)

Country Link
JP (1) JPH0660807B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676887B2 (en) * 1987-12-24 1994-09-28 信一 油田 Distance calculation method
JP6284688B2 (en) * 2015-06-29 2018-02-28 富士フイルム株式会社 Imaging apparatus and imaging method
DE102017117056A1 (en) * 2017-07-27 2019-01-31 Testo SE & Co. KGaA Measuring device and method for creating a 3D model

Also Published As

Publication number Publication date
JPS62105002A (en) 1987-05-15

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
US6094269A (en) Apparatus and method for optically measuring an object surface contour
EP0950168B1 (en) Optoelectronic system using spatiochromatic triangulation
US6262803B1 (en) System and method for three-dimensional inspection using patterned light projection
CN110517315B (en) Image type railway roadbed surface settlement high-precision online monitoring system and method
US4498776A (en) Electro-optical method and apparatus for measuring the fit of adjacent surfaces
JPH03267745A (en) Surface property detecting method
US5671056A (en) Three-dimensional form measuring apparatus and method
JPS60185108A (en) Method and device for measuring body in noncontacting manner
KR20120087680A (en) The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method
JP2000230807A (en) Method for distance measurement using parallel light and its instrument
JPH07260444A (en) Method and apparatus for measuring object three-dimensionally by light section method
JPH0660807B2 (en) High-precision measurement method of the center position of light
US20130162816A1 (en) Device for measuring the shape of a mirror or of a specular surface
JP2572286B2 (en) 3D shape and size measurement device
JP2003148936A (en) Three-dimensional measurement method for object by light-section method
JP2922250B2 (en) Shape measuring device
JPS60142204A (en) Dimension measuring method of object
JPH0658210B2 (en) Three-dimensional coordinate measurement method
JPS603502A (en) Non-contacting type distance measuring method
JPH09166421A (en) Measuring method for surface three-dimensional shape
EP4009092A1 (en) Compensation of pupil aberration of a lens objective
JP2996063B2 (en) Automatic inspection system for painted surface clarity
JPH08327336A (en) Three dimensional shape-measuring apparatus
JPH08304040A (en) Three-dimensional shape measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees