JPH066078B2 - Chloride ion determination reagent - Google Patents

Chloride ion determination reagent

Info

Publication number
JPH066078B2
JPH066078B2 JP549588A JP549588A JPH066078B2 JP H066078 B2 JPH066078 B2 JP H066078B2 JP 549588 A JP549588 A JP 549588A JP 549588 A JP549588 A JP 549588A JP H066078 B2 JPH066078 B2 JP H066078B2
Authority
JP
Japan
Prior art keywords
reagent
ion
nitrate
nitrite
chloride ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP549588A
Other languages
Japanese (ja)
Other versions
JPH01181799A (en
Inventor
潤子 高瀬
弘 三巻
藤也 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP549588A priority Critical patent/JPH066078B2/en
Priority to DE19893900755 priority patent/DE3900755A1/en
Publication of JPH01181799A publication Critical patent/JPH01181799A/en
Publication of JPH066078B2 publication Critical patent/JPH066078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/40Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2334/00O-linked chromogens for determinations of hydrolase enzymes, e.g. glycosidases, phosphatases, esterases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2334/00O-linked chromogens for determinations of hydrolase enzymes, e.g. glycosidases, phosphatases, esterases
    • C12Q2334/10O-linked chromogens for determinations of hydrolase enzymes, e.g. glycosidases, phosphatases, esterases p-Nitrophenol derivatives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酵素法による塩素イオンの定量用試薬に係
り、特に共存する妨害イオンの影響を回避した塩素イオ
ン定量用試薬に関する。
TECHNICAL FIELD The present invention relates to a reagent for quantifying chloride ion by an enzymatic method, and more particularly to a reagent for quantifying chloride ion which avoids the influence of coexisting interfering ions.

〔従来の技術〕[Conventional technology]

生体試料、例えば血清、尿、髄液中のイオンの定量法と
して、現在、電量滴定および電極法が繁用されている。
しかし、電量滴定法は生化学自動分析装置への組み込み
が困難であり、電極法はイオン特異性の点で問題があ
る。そこで、次のような酵素法が存在する。
Currently, coulometric titration and electrode methods are widely used as methods for quantifying ions in biological samples such as serum, urine, and cerebrospinal fluid.
However, the coulometric titration method is difficult to incorporate into an automatic biochemical analyzer, and the electrode method has a problem in terms of ion specificity. Therefore, the following enzyme methods exist.

この酵素法は、例えばEur.J.Biochem,41,P1
71/−180(1974)、で示されるように、哺乳
類由来のアミラーゼと、カルシウムイオンとの親和性が
塩素イオンにより変化する性質を利用した方法である。
酵素法による塩素イオンの測定原理は、次にようであ
る。
This enzymatic method is described, for example, in Eur. J. Biochem, 41, P1
71 / -180 (1974), a method utilizing the property that the affinity between a mammalian amylase and calcium ion is changed by chloride ion.
The principle of measurement of chloride ion by the enzymatic method is as follows.

塩素イオン非存在下にブタすい臓のα−アミラーゼを、
エチレンジアミン四酢酸(EDTA)等のカルシウムイ
オンと錯体を形成する錯体形成試薬(カルシウムキレー
タ)および微量のカルシウムイオン共存させると、ブタ
すい臓α−アミラーゼは分子内カルシウムイオンを放出
して、非活性のα−アミラーゼに変化する。本状態に、
血清等の試料を添加すると、試料中の塩素イオン濃度に
応じて、非活性アミラーゼがカルシウムイオンと再結合
して、活性型に変化する。変化した活性型のα−アミラ
ーゼを、α−アミラーゼ活性測定用試薬で測定し、塩素
イオン濃度に換算する。
Porcine pancreatic α-amylase in the absence of chloride ions,
When a complex-forming reagent (calcium chelator) that forms a complex with calcium ions such as ethylenediaminetetraacetic acid (EDTA) and a small amount of calcium ions coexist, porcine pancreatic α-amylase releases intramolecular calcium ions and becomes inactive. Change to α-amylase. In this state,
When a sample such as serum is added, the inactive amylase is recombined with calcium ion in accordance with the concentration of chloride ion in the sample to change to the active form. The changed active α-amylase is measured with a reagent for measuring α-amylase activity and converted into chloride ion concentration.

この酵素法は、電極法に比べイオン特異性が高く、生化
学自動分析装置への適用も可能な測定法にある。次の第
1表に、電極法と酵素法のイオンの特異性を、塩素イオ
ンに対する感度を100%として示す。
This enzyme method has higher ion specificity than the electrode method, and is applicable to biochemical automatic analyzers. The following Table 1 shows the ion specificity of the electrode method and the enzyme method, with the sensitivity to chlorine ion being 100%.

上記第1表に示されるように、酵素法では電極法に比べ
イオン特異性が優れていることがわかる。
As shown in Table 1 above, it is understood that the enzyme method is superior to the electrode method in ion specificity.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来の酵素法では、亜硝酸イオンと硝酸イオンの影
響の回避についての配慮がなされておらず、選択性の面
で問題が残されていた。すなわち、本発明者らが鋭意検
討したところ、亜硝酸イオンおよび硝酸イオンが存在す
ると、イオン特異性が劣化することを見い出した。すな
わち、前記第1表からわかるように、亜硝酸イオンで1
0.3%、硝酸イオンで9.8%の値を示しており、これら
のイオンの影響を回避する配慮がなされていないことが
わかった。
In the above-mentioned conventional enzymatic method, no consideration was given to avoiding the influence of nitrite ion and nitrate ion, and there was a problem in terms of selectivity. That is, as a result of diligent studies by the present inventors, they found that the presence of nitrite ion and nitrate ion deteriorates the ion specificity. That is, as can be seen from Table 1 above, 1
The values were 0.3% and 9.8% for nitrate ions, and it was found that no consideration was given to avoiding the influence of these ions.

本発明は、かかる問題点を解決するために、硝酸イオ
ン、亜硝酸イオンの影響を回避したイオン特異性の高い
塩素イオン定量用試薬を提供することを目的とする。
In order to solve such a problem, an object of the present invention is to provide a reagent for quantifying chloride ion, which has high ion specificity and avoids the influence of nitrate ion and nitrite ion.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明は、カルシウムイオ
ンと錯体を形成する錯体形成試薬と、アミラーゼと、カ
ルシウムイオンと、を備えた塩素イオン定量用試薬であ
って、亜硝酸イオンおよび硝酸イオンを分解する試薬が
含有されてなることを特徴とする塩素イオン定量用試薬
である。
In order to achieve the above object, the present invention is a reagent for quantifying chloride ion, which comprises a complex-forming reagent that forms a complex with calcium ion, amylase, and calcium ion, wherein nitrite ion and nitrate ion are A reagent for quantifying chloride ion, which comprises a reagent that decomposes.

上記本発明において、カルシウムイオンと錯体を形成す
る錯体形成試薬としては、例えば、エチレンジアミン四
酢酸、トランス−1,2−シクロヘキサンジアミン−
N,N,N,N′−テトラ酢酸、グリコールエーテルジ
アミン四酢酸、イミノ四酢酸、ジアミノプロパン四酢酸
などが用いられる。
In the above-mentioned present invention, examples of the complex-forming reagent that forms a complex with calcium ions include ethylenediaminetetraacetic acid and trans-1,2-cyclohexanediamine-
N, N, N, N'-tetraacetic acid, glycol ether diamine tetraacetic acid, iminotetraacetic acid, diaminopropane tetraacetic acid, etc. are used.

また、アミラーゼ活性測定用試薬としては、通常のα−
アミラーゼ活性測定法において公知慣用の試薬である。
例えば、4−ニトロフェニル−α−D−アルトペンタオ
シド、2−クロル−4−ニトルフェニル−β−ローマル
トペンタオシド、2−クロル−4−ニトロフェニル−β
−D−マルトヘプタオシドなどがある。
Further, as a reagent for measuring amylase activity, usual α-
It is a known and commonly used reagent in the method for measuring amylase activity.
For example, 4-nitrophenyl-α-D-altopentaoside, 2-chloro-4-nitrphenyl-β-romaltopenoside, 2-chloro-4-nitrophenyl-β
-D-maltoheptaoside and the like.

アミラーゼとしては、各種アミラーゼ、例えばα−アミ
ラーゼ、β−アミラーゼ等を用いることができる。
As the amylase, various amylases such as α-amylase and β-amylase can be used.

また、本発明において、硝酸イオンおよび亜硝酸イオン
を分解する物質としては、例えば硝酸レダクターゼ、亜
硝酸レダクターゼ等の酵素を用いることができる。この
他に、無機、有機の各種の分解物質を用いることもでき
る。酵素を用いて亜硝酸イオンおよび硝酸イオンを分解
する場合には、基質特異性があり、他のイオンに影響を
与えないという利点が存在する。
Further, in the present invention, as the substance decomposing nitrate ions and nitrite ions, for example, enzymes such as nitrate reductase and nitrite reductase can be used. In addition to these, various inorganic and organic decomposing substances can also be used. When enzymes are used to decompose nitrite and nitrate ions, there is an advantage that they have substrate specificity and do not affect other ions.

〔実施例〕〔Example〕

本実施例は、試料溶液中、例えば血清試料に含まれてい
る硝酸イオン、亜硝酸イオンを酵素によって分解する。
硝酸イオンを分解するものとしては硝酸レダクターゼで
あり、亜硝酸イオンを分解する酵素は亜硝酸レダクター
ゼである。
In the present example, nitrate ions and nitrite ions contained in, for example, a serum sample in a sample solution are decomposed by an enzyme.
Nitrate reductase decomposes nitrate ions, and nitrite reductase decomposes nitrite ions.

硝酸レダクターゼと硝酸との酵素反応を以下に示す。The enzymatic reaction between nitrate reductase and nitrate is shown below.

本実施例では、上記酵素反応を利用して亜硝酸イオンお
よび硝酸イオンを分解することができる。
In this example, nitrite ion and nitrate ion can be decomposed by utilizing the above-mentioned enzymatic reaction.

次に、本発明に係る塩素イオン定量用試薬の具体的な組
成について説明する。
Next, a specific composition of the reagent for quantifying chloride ion according to the present invention will be described.

本例では、塩素イオン定量時の妨害成分となる硝酸イオ
ン、亜硝酸イオンを分解するために、硝酸レダクター
ゼ、亜硝酸レダクターゼおよびNAD(P)Hを使用し
た。また、α−アミラーゼ測定用試薬として、α−グル
コシダーゼ、β−グルコシダーゼおよびユークロル−4
−ニトロフェニル−β−D−マルトヘプタオシドも使用
した。試薬は第1試薬と第2試薬から構成される。
In this example, nitrate reductase, nitrite reductase, and NAD (P) H were used to decompose nitrate ions and nitrite ions, which are interfering components when quantifying chloride ions. In addition, as reagents for measuring α-amylase, α-glucosidase, β-glucosidase and euchlor-4
-Nitrophenyl-β-D-maltoheptaoside was also used. The reagent is composed of a first reagent and a second reagent.

(1)第1試薬 第1試薬は次の組成からなる。(1) First Reagent The first reagent has the following composition.

エチレンジアミン四酢酸カルシウム15mgおよびエチレ
ンジアミン四酢酸ニナトリウム1.1gを0.1Mリン酸緩
衝液100mに加え、5%水酸化ナトリウム水溶液を
用いてpHを7.0に調整した。この溶液を溶液Aとする。
その後、α−グルコシダーゼ11K単位(U)、β−グ
ルコシダーゼ300U、ブタすい臓α−アミラーゼ2K
U、硝酸レダクターゼ200U、亜硝酸レダクターゼ2
00U、NAD(P)H0.6mMを加え、第1試薬とし
た。
15 mg of calcium ethylenediaminetetraacetate and 1.1 g of disodium ethylenediaminetetraacetate were added to 100 m of a 0.1 M phosphate buffer, and the pH was adjusted to 7.0 using a 5% aqueous sodium hydroxide solution. This solution is called solution A.
Then, α-glucosidase 11K unit (U), β-glucosidase 300U, pig pancreatic α-amylase 2K
U, nitrate reductase 200U, nitrite reductase 2
00 U and NAD (P) H 0.6 mM were added to serve as the first reagent.

(2)第2試薬 第2試薬の組成は次のものからなる。(2) Second reagent The composition of the second reagent consists of the following.

2−クロル−4−ニトフェニル−β−D−マルトヘプタ
オシド1.0gを、前記第1試薬で説明した溶液A100
mに溶解し、第2試薬とした。
1.0 g of 2-chloro-4-nitophenyl-β-D-maltoheptaoside was added to the solution A100 described in the first reagent.
It was dissolved in m and used as the second reagent.

次に、塩素イオン測定について説明する。Next, the chlorine ion measurement will be described.

(3)キャリブレーション 標準溶液として、0,40,80,120,160,2
00mMの各食塩水を調整した。それぞれ、6μに対
し、第1試薬320μ、第2試薬80μを加え、3
7℃で主波長405mm、副波長480mmにおける経時的
な吸光度の上昇を、日立7150型自動分析装置で測定
し、キャリブレーションを行った。
(3) Calibration As a standard solution, 0, 40, 80, 120, 160, 2
00 mM of each saline solution was prepared. Add 320μ of the first reagent and 80μ of the second reagent to 6μ, and add 3μ
The increase in absorbance with time at a main wavelength of 405 mm and a sub wavelength of 480 mm at 7 ° C. was measured by a Hitachi 7150 type automatic analyzer and calibrated.

経時的な吸光度の上昇は、塩素イオンの濃度に比例して
生じる。
The increase in absorbance with time occurs in proportion to the concentration of chloride ion.

第1図に、自動分析装置の操作手順を示す。FIG. 1 shows the operating procedure of the automatic analyzer.

本実施例に係る試薬を用いての塩素イオンの測定は、第
1図で示された工程に従って行われる。
Chlorine ion measurement using the reagent according to this example is performed according to the steps shown in FIG.

第1図に示すように、サンプル分注後、第1試薬を添
加、攪拌し、数分間反応させたのち、第2試薬を添加、
攪拌し、さらに反応させる。第1試薬添加後から測定終
了までの間の反応液の吸光度を、数10秒間隔で測定
し、分析法に応じたタイミングの吸光度を用いて、塩素
イオンの定量を行う。
As shown in FIG. 1, after dispensing the sample, the first reagent was added, the mixture was stirred and reacted for several minutes, and then the second reagent was added,
Stir to react further. The absorbance of the reaction solution from the addition of the first reagent to the end of the measurement is measured at intervals of several tens of seconds, and chlorine ion is quantified using the absorbance at the timing according to the analytical method.

(4)硝酸イオン添加による影響 試料としてコントロール血清に硝酸ナトリウム溶液を添
加した溶液を用いた。コントロール血清は、指定量の半
量の蒸留水で溶解した。これを溶液Bとする。硝酸ナト
リウム1.7gを100mの蒸留水で溶解し、200m
M硝酸イオンを調整した。これを溶液Cとする。溶液C
を適宜希釈し、40,80,120,160,200m
M硝酸ナトリウム溶液を調整し、それぞれを溶液Bと
1:1の割合で混合した。このときの塩素イオンの定量
結果を、従来試薬((1)の第1試薬より硝酸レダクター
ゼ、亜硝酸レダクターゼ、NAD(P)Hを除去したも
の、第2試薬は(2)と同じ)での定量結果と共に、第2
図に示す。第2図に示すように、従来法では、試料中の
硝酸イオンの濃度が高濃度になると、塩素イオンの定量
結果も高く測定されていたが、本法によれば、硝酸イオ
ンの影響が完全に回避できた。
(4) Effect of nitrate ion addition As a sample, a solution prepared by adding a sodium nitrate solution to control serum was used. The control serum was dissolved in half the specified amount of distilled water. This is solution B. Dissolve 1.7 g of sodium nitrate in 100 m of distilled water to obtain 200 m
The M nitrate ion was adjusted. This is solution C. Solution C
To 40, 80, 120, 160, 200m
M sodium nitrate solutions were prepared and each was mixed with solution B in a ratio of 1: 1. Quantitative results of chlorine ion at this time, in the conventional reagent (nitrate reductase, nitrite reductase, NAD (P) H removed from the first reagent of (1), the second reagent is the same as (2)) Second with quantitative results
Shown in the figure. As shown in Fig. 2, in the conventional method, when the concentration of nitrate ion in the sample became high, the result of quantitative determination of chloride ion was also high, but according to this method, the influence of nitrate ion is completely eliminated. I was able to avoid it.

(5)亜硝酸イオン添加による影響 亜硝酸ナトリウム0.38gを100mの蒸留水で溶解
し、200mM亜硝酸イオン溶液を調整した。(4)と同
様に試料を調整し、本法と従来法で塩素イオンを定量し
た。その結果を第3図に示す。(4)と同様、本法によれ
ば、亜硝酸イオン影響が完全に回避できた。
(5) Effect of addition of nitrite ion 0.38 g of sodium nitrite was dissolved in 100 m of distilled water to prepare a 200 mM nitrite ion solution. A sample was prepared in the same manner as in (4), and chlorine ion was quantified by this method and the conventional method. The results are shown in FIG. Similar to (4), according to this method, the influence of nitrite ion could be completely avoided.

本発明の塩素イオン定量用試薬により定量可能な塩素イ
オンの濃度は、試料中の濃度として約10mM〜300
0mMである。この濃度範囲は、通常血清中の塩素濃度
を測定する際に必要な範囲である70〜130mMを十
分に担保することができる。本発明試薬によれば、血液
中の塩素イオン濃度を十分定量することができる。
The concentration of chloride ion that can be quantified by the reagent for quantifying chloride ion of the present invention is about 10 mM to 300 as the concentration in the sample.
It is 0 mM. This concentration range can sufficiently secure 70 to 130 mM, which is a range usually required when measuring the chlorine concentration in serum. According to the reagent of the present invention, the chloride ion concentration in blood can be sufficiently quantified.

本発明に係る塩素イオン定量用試薬における試薬の各成
分の許容濃度範囲を次に示す。
The permissible concentration range of each component of the reagent in the reagent for quantifying chloride ion according to the present invention is shown below.

第1試薬については、次のとおりである。The first reagent is as follows.

α−グルコシダーゼ80〜110KU/、β−グルコ
シダーゼ2.5〜3KU/、α−アミラーゼ2〜20K
U/、Ca+0.75〜1.5mM/、EDTA30〜
100mM/、リン酸緩衝液pH7.0、0.1M/、硝
酸レダクターゼ2〜20KU/、亜硝酸レダクターゼ
2〜20KU/、NAD(P)H6〜60mM/。
α-glucosidase 80-110 KU /, β-glucosidase 2.5-3 KU /, α-amylase 2-20K
U /, Ca + 0.75-1.5 mM /, EDTA30-
100 mM /, phosphate buffer pH 7.0, 0.1 M /, nitrate reductase 2-20 KU /, nitrite reductase 2-20 KU /, NAD (P) H6-60 mM /.

第2試薬の成分の含有量としては、例えば次のとおりで
ある。Ca+0.75〜1.5mM/、EDTA30〜1
00mM/、2−クロル−4−ニトロフェニル−β−
D−マルトヘプタオシド3.8〜7.5mM/。
The content of the components of the second reagent is, for example, as follows. Ca + 0.75 to 1.5 mM /, EDTA 30 to 1
00 mM /, 2-chloro-4-nitrophenyl-β-
D-maltoheptaoside 3.8-7.5 mM /.

なお、2−クロル−4−ニトロフェニル−β−D−マル
トヘプタオシドの代わりに、マルトペンタオース2.5%
を用いることもできる。
2.5% maltopentaose instead of 2-chloro-4-nitrophenyl-β-D-maltoheptaoside.
Can also be used.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、硝酸イオン、亜
硝酸イオンを分解できるので、硝酸イオン、および亜硝
酸イオンの影響を回避したイオン特異性の高い塩素イオ
ン定量用試薬を提供することができる。したがって、よ
り正確な塩素イオンの定量を行うことができる。
As described above, according to the present invention, nitrate ions and nitrite ions can be decomposed, so that it is possible to provide a reagent for quantifying chloride ion with high ion specificity, which avoids the influence of nitrate ion and nitrite ion. it can. Therefore, more accurate quantitative determination of chloride ion can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は、自動分析装置の測定手順の工程図、第2図は
硝酸イオン添加による塩素イオン測定値の影響を示すグ
ラフ、第3図は亜硝酸イオン添加による塩素イオン測定
値の影響を示すグラフでる。
FIG. 1 is a process chart of the measurement procedure of the automatic analyzer, FIG. 2 is a graph showing the influence of the chloride ion measurement value by the nitrate ion addition, and FIG. Get a graph.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】カルシウムイオンと錯体を形成する錯体形
成試薬と、アミラーゼと、カルシウムイオンと、を備え
た塩素イオン定量用試薬であって、亜硝酸イオンおよび
硝酸イオンを分解する試薬が含有されてなることを特徴
とする塩素イオン定量用試薬。
1. A reagent for quantifying chloride ion, which comprises a complex-forming reagent that forms a complex with calcium ion, amylase, and calcium ion, and contains a reagent that decomposes nitrite ion and nitrate ion. A reagent for quantifying chloride ion, which is characterized in that
【請求項2】特許請求の範囲第1項において、前記亜硝
酸イオンおよび硝酸イオンを分解する試薬が、硝酸レダ
クターゼ、亜硝酸レダクターゼであることを特徴とする
塩素イオン定量用試薬。
2. The reagent for quantifying chloride ion according to claim 1, wherein the reagent for decomposing nitrite ion and nitrate ion is nitrate reductase or nitrite reductase.
【請求項3】特許請求の範囲第1項において、前記錯体
形成試薬はEDTAであることを特徴とする塩素イオン
定量用試薬。
3. The reagent for quantifying chloride ion according to claim 1, wherein the complex forming reagent is EDTA.
【請求項4】特許請求の範囲第1項〜第3項のいずれか
1項において、前記アミラーゼは哺乳類由来のα−アミ
ラーゼであることを特徴とする塩素イオン定量用試薬。
4. The reagent for quantifying chloride ion according to any one of claims 1 to 3, wherein the amylase is a mammal-derived α-amylase.
JP549588A 1988-01-13 1988-01-13 Chloride ion determination reagent Expired - Fee Related JPH066078B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP549588A JPH066078B2 (en) 1988-01-13 1988-01-13 Chloride ion determination reagent
DE19893900755 DE3900755A1 (en) 1988-01-13 1989-01-12 Method for the quantitative analysis of chloride ions and test pack for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP549588A JPH066078B2 (en) 1988-01-13 1988-01-13 Chloride ion determination reagent

Publications (2)

Publication Number Publication Date
JPH01181799A JPH01181799A (en) 1989-07-19
JPH066078B2 true JPH066078B2 (en) 1994-01-26

Family

ID=11612811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP549588A Expired - Fee Related JPH066078B2 (en) 1988-01-13 1988-01-13 Chloride ion determination reagent

Country Status (2)

Country Link
JP (1) JPH066078B2 (en)
DE (1) DE3900755A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818415B2 (en) * 2001-06-22 2004-11-16 Abaxis, Inc. Sodium activation of amylase

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472499A (en) * 1982-01-22 1984-09-18 American Hoechst Corporation Reagents for the determination of enzymes
JPH0612999B2 (en) * 1986-11-17 1994-02-23 関東化学株式会社 Chloride ion determination reagent

Also Published As

Publication number Publication date
DE3900755C2 (en) 1992-03-26
DE3900755A1 (en) 1989-07-27
JPH01181799A (en) 1989-07-19

Similar Documents

Publication Publication Date Title
JP3080770B2 (en) Method for measuring ions in liquid and composition therefor
Noma et al. Polarographic method for rapid microdetermination of cholesterol with cholesterol esterase and cholesterol oxidase.
CS228127B2 (en) Reagencni cinidlo
Li et al. Rapid enzymatic determination of urinary oxalate.
Ono et al. A new enzymatic assay of chloride in serum.
JPH0612999B2 (en) Chloride ion determination reagent
JPH066078B2 (en) Chloride ion determination reagent
JP4022799B2 (en) Reagent composition for electrolyte measurement
RU2122740C1 (en) Method and reactive kit for determining urea in body fluids
US3278394A (en) Method and composition for diagnosing glucose
O'Neal et al. An automated, saccharogenic method for determining serum amylase activity
US5529906A (en) Analytical system or kit for phosphatase
Kuan et al. An alternative method for the determination of uric acid in serum
Kamoun et al. Ultramicromethod for determination of plasma uric acid.
US5700652A (en) Quantitative determination method for sodium ions
JP2694004B2 (en) Method for measuring fructosamine in serum or plasma
US4983512A (en) Reagent for determination of acid phosphatase
JPS62195297A (en) Reagent for determining calcium ion
Tabata et al. A chemiluminescence-flow injection analysis of serum 3-hydroxybutyrate using a bioreactor consisting of 3-hydroxybutyrate dehydrogenase and NADH oxidase
JPH02276597A (en) Method for measuring calcium in human body
JP3078881B2 (en) Method for measuring components in biological samples
US5470715A (en) Composition for determination of chloride ion
JPH1014597A (en) Reagent composition for measuring calcium ion in humor and measurement
Matthews et al. Modified automated saccharogenic determination of serum and urinary amylase activity
JPH06339398A (en) Quantification of sodium ion

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees