JPH0659825B2 - Railway vehicle air spring control method - Google Patents

Railway vehicle air spring control method

Info

Publication number
JPH0659825B2
JPH0659825B2 JP1218234A JP21823489A JPH0659825B2 JP H0659825 B2 JPH0659825 B2 JP H0659825B2 JP 1218234 A JP1218234 A JP 1218234A JP 21823489 A JP21823489 A JP 21823489A JP H0659825 B2 JPH0659825 B2 JP H0659825B2
Authority
JP
Japan
Prior art keywords
air spring
height
bogie
air
tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1218234A
Other languages
Japanese (ja)
Other versions
JPH0382665A (en
Inventor
龍太郎 石川
修 鳥居
広一郎 石原
智志 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1218234A priority Critical patent/JPH0659825B2/en
Publication of JPH0382665A publication Critical patent/JPH0382665A/en
Publication of JPH0659825B2 publication Critical patent/JPH0659825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、空気ばね付きボギー台車を有する鉄道車両
の緩和曲線上における空気ばねの制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for controlling an air spring on a relaxation curve of a railway vehicle having a bogie bogie with an air spring.

従来の技術 空気ばね付きボギー台車を有する鉄道車両は、1車両に
4個の空気ばねを配設した4点支持方式が多く採用さ
れ、空気ばねは個々に高さを自動調整するように構成さ
れている。すなわち、その時々の荷重に対応して空気ば
ねの圧縮空気量を自動的に調整して、車体の高さを一定
に保つためリンクとレベリングバルブを組合せた自動高
さ調整機構を備えている。
2. Description of the Related Art A railway vehicle having a bogie bogie with an air spring often adopts a four-point support system in which four air springs are arranged in one vehicle, and each air spring is configured to automatically adjust its height. ing. That is, the automatic height adjusting mechanism is provided in which the link and the leveling valve are combined to automatically adjust the compressed air amount of the air spring according to the load at each time to keep the height of the vehicle body constant.

また、左右の空気ばね空気圧が大幅に差異を生じた際
に、左右の空気ばね空気圧を均等に保つため左右の補助
空気室間に差圧調整弁が取付けられている。
Further, a differential pressure adjusting valve is mounted between the left and right auxiliary air chambers in order to keep the left and right air spring air pressures even when the left and right air spring air pressures greatly differ.

鉄道車両が平担路線にあって、前後台車が同一平面内に
ある場合は、個々の空気ばね空気圧が自動高さ調整機構
の働きにより自動調整され、車体の高さは一定に保たれ
る。そして、高さが一定に保たれている間は、自動高さ
調整機構のレベリングバルブの給排気は停止している。
When the railway vehicle is on a flat line and the front and rear bogies are in the same plane, the air pressure of each air spring is automatically adjusted by the function of the automatic height adjustment mechanism, and the height of the vehicle body is kept constant. Then, while the height is kept constant, supply / exhaust of the leveling valve of the automatic height adjusting mechanism is stopped.

しかし、第4図に示すように、鉄道車両が曲線路の緩和
曲線、すなわちカント逓減区間に入った場合は、車体
(1)の4つの空気ばね(13)(14)(16)(17)の高さは台車と
車体との関係から幾何学的に決まるので、軌道のねじれ
に応じて前台車(11)の空気ばねは、外軌側(13)が圧縮し
内軌側(14)が伸張する。
However, as shown in FIG. 4, when a railroad vehicle enters a curve of a curved road, that is, a cant diminishing section,
The height of the four air springs (13) (14) (16) (17) of (1) is geometrically determined by the relationship between the bogie and the vehicle body, so the front bogie (11) of the front bogie (11) is The outer rail side (13) of the air spring is compressed and the inner rail side (14) is expanded.

また後台車(12)の空気ばねは、内軌側(16)が圧縮し外軌
側(17)が伸張する。そして、空気ばねの高さはいずれも
制御目標値からはずれているため、自動高さ調整機構の
レベリングバルブの給排気は連続して行なわれる。
In the air spring of the rear bogie (12), the inner track side (16) compresses and the outer track side (17) expands. Further, since the height of each air spring deviates from the control target value, the supply and exhaust of the leveling valve of the automatic height adjusting mechanism are continuously performed.

発明が解決しようとする課題 上記のごとく、空気ばね台車を有する鉄道車両がカント
逓減区間にある際は、空気ばねの給排気が連続して行な
われる。そのため、空気圧縮機の負荷が増え、場合によ
っては圧縮空気の供給が追いつかなくなり、高圧空気供
給側の圧力が低下し、給気ができなくなることもある。
また、給排気の連続により、車体の振動、騒音を生じ乗
客の乗心地を悪化させる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, when the railway vehicle having the air spring carriage is in the cant diminishing section, the air spring is continuously supplied and exhausted. Therefore, the load on the air compressor increases, and in some cases, the supply of compressed air may not catch up, the pressure on the high-pressure air supply side may drop, and air may not be supplied.
Further, due to the continuous supply and exhaust of air, vibration and noise of the vehicle body are generated, which deteriorates passenger comfort.

この発明は、空気ばね高さを個々に調整する従来の空気
ばね台車にみられる上記欠点を排除し、鉄道車両がカン
ト逓減区間に停車している間は、空気ばねの給排気を行
なわなくてすむ鉄道車両の空気ばね制御方法を提案する
ものである。
The present invention eliminates the above-mentioned drawbacks found in the conventional air spring bogies that individually adjust the height of the air springs, and does not supply or exhaust the air springs while the railway vehicle is stopped in the cant diminishing section. This is to propose a method for controlling an air spring of a railway vehicle.

課題を解決するための手段 上記目的を達成するため、この発明における鉄道車両の
空気ばね制御方法は、空気ばね付きボギー台車を有する
鉄道車両の個々の空気ばね高さを測定して給排気制御を
行なう方式において、緩和曲線上におけるカント逓減
を、緩和曲線上におけるカント逓減を、下記1式、2式
で示す前後台車における車体と台車の間の相対ローリン
グ角θとθが逆符号かどうかで検知し、逆符号でな
いときは通常の個別高さ制御を行ない、逆符号のときは
更に各台車の左右空気ばねの平均高さ偏差δ、δ
高さ目標値の公差δ内にあるかどうかを検知し、δ
内にないときは各台車ごとに左右空気ばね高さ制御を行
ない、公差δ内にあるときは当該空気ばねの給排気を
停止することを特徴とする。
Means for Solving the Problems In order to achieve the above object, an air spring control method for a railway vehicle according to the present invention is to control air supply / exhaust by measuring individual air spring heights of a railway vehicle having a bogie bogie with an air spring. Whether the relative rolling angles θ A and θ B between the front and rear bogies of the front and rear bogies have opposite signs as shown in Equations 1 and 2 below. If the sign is not the opposite sign, normal individual height control is performed, and if the sign is opposite, the average height deviations δ A and δ B of the left and right air springs of each truck are within the tolerance δ 0 of the target height. Δ 0
When it is not within the range, the left and right air spring height control is performed for each trolley, and when it is within the tolerance δ 0 , the supply and exhaust of the air spring is stopped.

なお、上記の「相対ローリング角」とは前後台車におい
て、台車に対する車体の幅方向の傾きを意味し、前台車
の相対ローリング角をθ後台車の相対ローリング角を
θとすると、例えば下記式によって示される。
The above "relative rolling angle" means the inclination of the front and rear bogies in the width direction of the vehicle body with respect to the bogie, and assuming that the relative rolling angle of the front bogie is θ A and the relative rolling angle of the rear bogie is θ B , for example, Indicated by the formula.

ただし、δδは前台車左右空気ばね高さの 目標値に対する偏差 δδは後台車左右空気ばね高さの 目標値に対する偏差 bは左右空気ばね中心間距離 作 用 各空気ばねの給排気は、空気ばね高さを検出する高さセ
ンサーと制御器により、給気弁および排気弁を自動操作
して行なわれる。
However, δ 1 δ 2 is the deviation of the height of the left and right air springs of the front bogie from the target value. Δ 3 δ 4 is the deviation of the height of the left and right air springs of the rear bogie from the target value. B is the distance between the center of the left and right air springs. Air supply / exhaust is performed by automatically operating the air supply valve and the exhaust valve by a height sensor that detects the height of the air spring and a controller.

したがって、平担路線では個々の空気ばね高さは独立し
て制御しても目標高さに調整することができる。そし
て、空気ばねが目標高さを維持している間は給排気は停
止している。
Therefore, on a flat line, the height of each air spring can be adjusted to the target height even if it is independently controlled. The air supply / exhaust is stopped while the air spring maintains the target height.

鉄道車両がカント逓減区間にある際は、前記1式、2式
で示す前後台車における車体と台車の間の相対ローリン
グ角θとθが逆符号かどうかを検知し、逆符号でな
いときは通常の個別高さ制御を行ない、逆符号のときは
更に各台車の左右空気ばねの平均高さ偏差δ、δ
高さ目標値の公差δ内にあるかどうかを検知し、公差
δ内にないときは各台車ごとに左右空気ばね高さ制御
を行ない、公差δ内にあるときは当該空気ばねの給排
気を停止する。
When the railroad vehicle is in the gradually decreasing section, it is detected whether the relative rolling angles θ A and θ B between the vehicle body and the bogie in the front and rear bogies shown in the above equations 1 and 2 have opposite signs. Normal individual height control is performed, and when the signs are opposite, it is further detected whether the average height deviations δ A and δ B of the left and right air springs of each truck are within the tolerance δ 0 of the target height, and the tolerance is calculated. When it is not within δ 0 , the height control of the left and right air springs is performed for each carriage, and when it is within the tolerance δ 0 , the air supply and exhaust of the air spring is stopped.

実 施 例 この発明の実施例を図面に基づいて説明する。Example An example of the present invention will be described with reference to the drawings.

第1図および第2図は、この発明による空気ばね制御装
置をボルスタレス方式の台車に実施した場合の要部を示
したものである。台車枠(2)の左右両側中央に設けた空
気ばね(3)は下部に連接した補助空気室(3-1)が台車枠
(2)に取着され、空気ばね上面の外筒(3-2)が車体(1)の
底面に当接している。
FIG. 1 and FIG. 2 show essential parts when the air spring control device according to the present invention is applied to a bolsterless carriage. The air springs (3) provided on the left and right sides of the bogie frame (2) have an auxiliary air chamber (3-1) connected to the lower part of the bogie frame.
The outer cylinder (3-2) on the upper surface of the air spring is attached to (2) and is in contact with the bottom surface of the vehicle body (1).

そして外筒(3-2)を貫通して設けた給気管(4)を電磁給気
弁(5)を介装して元空気溜(6)に接続する。また、同様に
外筒(3-2)を貫通して電磁排気弁(7)と圧力センサー(8)
を設ける。そして、車体(1)の底面と台車枠(2)の側面と
の間にリンクと信号発信器からなる高さセンサー(9)を
設置する。
Then, the air supply pipe (4) provided through the outer cylinder (3-2) is connected to the original air reservoir (6) via the electromagnetic air supply valve (5). Similarly, the electromagnetic exhaust valve (7) and pressure sensor (8) are penetrated through the outer cylinder (3-2).
To provide. Then, a height sensor (9) including a link and a signal transmitter is installed between the bottom surface of the vehicle body (1) and the side surface of the bogie frame (2).

前後台車間において車体(1)の底面中央に制御器(10)が
設置され、各高さセンサー(9)からの検出信号を入力
し、また各電磁給気弁(5)および各排気弁(7)に弁開閉操
作の信号を発信するように設け、ここで空気ばね高さの
情報を目標高さと比較演算し、さらに空気ばね部におけ
る車体と台車の間の相対ローリング角θ、θを求め
て空気ばねの給排気制御を行なうように構成する。
A controller (10) is installed in the center of the bottom surface of the vehicle body (1) between the front and rear bogies, and the detection signal from each height sensor (9) is input, and each electromagnetic air supply valve (5) and each exhaust valve ( 7) is provided so as to transmit a signal of valve opening / closing operation, where the information on the height of the air spring is compared and calculated with the target height, and the relative rolling angles θ A , θ B between the vehicle body and the bogie in the air spring portion are further calculated. In order to control the supply and exhaust of the air spring,

なお、圧力センサー(8)は空気ばねの内圧を計測し内圧
制御を行なう際に使用するものである。
The pressure sensor (8) is used when the internal pressure of the air spring is measured and the internal pressure is controlled.

今、第1台車の左右空気ばね高さをh、h、第2台
車の左右空気ばね高さをh、h、左右空気ばね中心
間の距離をb、および空気ばねの目標高さをh±δ
とし、bおよびh±δは設定して制御器に入力して
おく。なおδは公差であり、経験的に決めるが、例え
ば可動範囲+80〜−40に対しては2.5〜6mm程度とす
る。
Now, the left and right air spring heights of the first truck are h 1 and h 2 , the left and right air spring heights of the second truck are h 3 and h 4 , the distance between the left and right air spring centers is b, and the target height of the air spring is Sa h r ± δ 0
And then, b and h r ± δ 0 is kept inputted to the controller set. Note that δ 0 is a tolerance, which is empirically determined, but is set to about 2.5 to 6 mm for a movable range of +80 to −40, for example.

鉄道車両がカント逓減区間にあるときは、各空気ばねに
付設した高さセンサー(9)により求めた空気ばね高さh
、h、h、hの検出信号に基づいて、制御器(1
0)で次のとおり高さの偏差δ〜δが演算される。
When the railway vehicle is in the cant diminishing section, the air spring height h calculated by the height sensor (9) attached to each air spring
Based on the detection signals of 1 , h 2 , h 3 , and h 4 , the controller (1
At 0), the height deviations δ 1 to δ 4 are calculated as follows.

δ=h−h δ=h−h δ=h−h δ=h−h また、上記高さの偏差から、第1台車の空気ばね部にお
ける車体と台車の間の相対ローリング角θと第2台車
の空気ばね部における車体と台車の間の相対ローリング
角θが求められる。
δ 1 = h r -h 1 δ 3 = h r -h 3 δ 2 = h r -h 2 δ 4 = h r -h 4 also from the deviation of the height, the body of the air spring portion of the first carriage And the relative rolling angle θ A between the vehicle and the vehicle and the relative rolling angle θ B between the vehicle body and the vehicle in the air spring portion of the second vehicle are obtained.

さらに、第1台車の空気ばね平均高さ偏差δと第2台
車の空気ばね平均高さ偏差δが求められる。
Further, the air spring average height deviation δ A of the first truck and the air spring average height deviation δ B of the second truck are obtained.

制御器(10)で演算された空気ばね部における相対ローリ
ング角θ、θに基づく空気ばねの高さ制御は、第4
図に示すフローチャートにより行なわれる。
The height control of the air spring based on the relative rolling angles θ A and θ B in the air spring portion calculated by the controller (10)
This is performed according to the flowchart shown in the figure.

すなわち、第1台車の空気ばね部における相対ローリン
グ角θと第2台車の空気ばね部における相対ローリン
グ角θを比較して軌道ねじれを検出する。この場合θ
とθが同符号であれば、軌道ねじれはないので、通
常の個別高さ制御が行なわれる。また、θとθが逆
符号であれば軌道ねじれがあるので、引き続き空気ばね
平均高さ偏差δとδが公差δ内にあるか、どうか
を比較し、その偏差の値が公差δより大きい場合は、
制御器(10)からの指令により関係する台車ごとに電磁弁
を操作して給気または排気し、空気ばね高さ制御が行な
われる。
That is, the relative rolling angle θ A in the air spring portion of the first truck and the relative rolling angle θ B in the air spring portion of the second truck are compared to detect the track twist. In this case θ
If A and θ B have the same sign, there is no orbital twist, and normal individual height control is performed. Also, if θ A and θ B have opposite signs, there is a twist in the raceway, so it is continuously compared whether the air spring average height deviations δ A and δ B are within the tolerance δ 0 , and the value of the deviation is If the tolerance is greater than δ 0 ,
Air spring height control is performed by operating solenoid valves for each related trolley according to a command from the controller (10) to supply or exhaust air.

この際の給排気は、左右空気ばねに同時に給気または排
気を行なってもよいし、片方の空気ばねだけで給気また
は排気を行なってもよい。
The air supply / exhaust at this time may be performed simultaneously with the air supply to the left and right air springs, or may be performed with only one air spring.

上記の自動操作により、左右空気ばね平均高さ目標値h
±δとなれば空気ばねの給排気は停止する。
By the above automatic operation, the left and right air spring average height target values h
When r ± δ 0 , supply / exhaust of the air spring is stopped.

発明の効果 鉄道車両が緩和曲線に停止している際、前後台車の空気
ばね部における車体と台車の間の相対ローリング角の差
から軌道のねじれを検知して、台車ごとに空気ばねの給
排気を行ない、左右空気ばねの平均高さを制御するた
め、緩和曲線上の車両を安定状態に保持できる。また、
空気ばね高さが目標値内にある際は空気ばねの給排気は
停止しているから空気圧縮機の負荷を低減できる。
Effect of the Invention When a railroad vehicle is stopped on a gentle curve, the twisting of the track is detected from the difference in the relative rolling angle between the vehicle body and the bogie in the air spring parts of the front and rear bogies, and the air spring for each bogie is supplied and exhausted. By controlling the average height of the left and right air springs, the vehicle on the relaxation curve can be held in a stable state. Also,
When the height of the air spring is within the target value, the supply and exhaust of the air spring are stopped, so the load on the air compressor can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明を実施するための空気ばね制御装置を
装備した鉄道車両用ボルスタレス台車の要部を示す説明
図、第2図は同じく1車両分の空気ばね制御装置の要部
を示す斜視図、第3図はこの発明による空気ばね高さ制
御のフローチャート、第4図は鉄道車両がカント逓減区
間にある際の軌道ねじれと前後台車の空気ばねの状態を
示す説明図である。 1……車体、2……台車枠 3……空気ばね、4……給気管 5……電磁給気弁、6……元空気溜 7……電磁排気弁、8……圧力センサー 9……高さセンサー、10……制御器 11……前台車、12……後台車
FIG. 1 is an explanatory view showing a main part of a bolsterless bogie for a railway vehicle equipped with an air spring control device for carrying out the present invention, and FIG. 2 is a perspective view showing a main part of an air spring control device for one vehicle. FIG. 3 is a flow chart of air spring height control according to the present invention, and FIG. 4 is an explanatory view showing track twist and a state of air springs of front and rear bogies when a railway vehicle is in a cant diminishing section. 1 ... Car body, 2 ... Bogie frame 3 ... Air spring, 4 ... Air supply pipe 5 ... Electromagnetic air supply valve, 6 ... Original air reservoir 7 ... Electromagnetic exhaust valve, 8 ... Pressure sensor 9 ... Height sensor, 10 ... Controller 11 ... Front bogie, 12 ... Rear bogie

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小泉 智志 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 平3−82666(JP,A) 特開 昭55−76754(JP,A) 特公 昭59−41427(JP,B2) 実公 昭52−45084(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Koizumi 4-533 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (56) Reference JP-A-3-82666 (JP, A) Kai 55-76754 (JP, A) Special public Sho 59-41427 (JP, B2) Actual public 52-45084 (JP, Y2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】空気ばね付きボギー台車を有する鉄道車両
の個々の空気ばね高さを測定して給排気制御を行なう方
式において、緩和曲線上におけるカント逓減を、下記式
で示す前後台車における車体と台車の間の相対ローリン
グ角θとθが逆符号かどうかで検知し、逆符号でな
いときは通常の個別高さ制御を行ない、逆符号のときは
更に各台車の左右空気ばねの平均高さ偏差δ、δ
高さ目標値の公差δ内にあるかどうかを検知し、公差
δ内にないときは各台車ごとに左右空気ばね高さ制御
を行ない、公差δ内にあるときは当該空気ばねの給排
気を停止することを特徴とする鉄道車両の空気ばね制御
方法。 ただし、δ、δは前台車左右空気ばね高さの目標値 に対する偏差、 δ、δは後台車左右空気ばね高さの目標値 に対する偏差、 bは左右空気ばね中心間距離
1. In a system for controlling air supply / exhaust control by measuring individual air spring heights of a railway vehicle having a bogie bogie with an air spring, a cant reduction on a relaxation curve is represented by a vehicle body in front and rear bogies represented by the following equation. Detects whether the relative rolling angles θ A and θ B between the bogies have opposite signs. If they do not have the opposite signs, normal individual height control is performed. If they have the opposite signs, the average height of the left and right air springs of each bogie is further detected. It is detected whether the deviations δ A and δ B are within the tolerance δ 0 of the target height value. If the tolerances δ 0 are not within the tolerance δ 0 , the left and right air spring height control is performed for each carriage to determine whether the tolerance is within the tolerance δ 0 . The air spring control method for a railway vehicle is characterized in that the supply and exhaust of the air spring is stopped when Where δ 1 and δ 2 are deviations of the height of the left and right air springs of the front bogie from the target value, δ 3 and δ 4 are deviations of the height of the left and right air springs of the rear bogie from the target value, and b is the distance between the left and right air spring centers.
JP1218234A 1989-08-24 1989-08-24 Railway vehicle air spring control method Expired - Fee Related JPH0659825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218234A JPH0659825B2 (en) 1989-08-24 1989-08-24 Railway vehicle air spring control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218234A JPH0659825B2 (en) 1989-08-24 1989-08-24 Railway vehicle air spring control method

Publications (2)

Publication Number Publication Date
JPH0382665A JPH0382665A (en) 1991-04-08
JPH0659825B2 true JPH0659825B2 (en) 1994-08-10

Family

ID=16716707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218234A Expired - Fee Related JPH0659825B2 (en) 1989-08-24 1989-08-24 Railway vehicle air spring control method

Country Status (1)

Country Link
JP (1) JPH0659825B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084040A (en) * 1990-01-25 1992-01-28 The West Company, Incorporated Lyophilization device
JPH0554859U (en) * 1991-12-26 1993-07-23 デルタ工業株式会社 Auto change
JP5038615B2 (en) * 2005-11-10 2012-10-03 東海旅客鉄道株式会社 Abnormality detection method for vehicle body tilting device
CN106240589B (en) * 2016-09-22 2018-04-06 中车南京浦镇车辆有限公司 It is suitable for the air intake structure of different air spring spacing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576754A (en) * 1978-12-06 1980-06-10 Hitachi Ltd Controller for air spring for railroad vehicle
JPS5941427A (en) * 1982-09-01 1984-03-07 Nippon Kokan Kk <Nkk> Roll-cooling means for metal strip

Also Published As

Publication number Publication date
JPH0382665A (en) 1991-04-08

Similar Documents

Publication Publication Date Title
JP2653317B2 (en) Body inclination control method for railway vehicle with air spring
JPS58174007A (en) Regulator for height of automobile
EP1235707B1 (en) Comfort monitoring method and system for a tilting train
JP3440283B2 (en) Vehicle inclination control method and inclination control device
JPH10287241A (en) Car body tilt control device for rolling stock and its car body tilt control method
JP2002316641A (en) Vehicle body inclination control device for rolling stock
JPH0659825B2 (en) Railway vehicle air spring control method
JPS5940667B2 (en) rocking suspension system
JPH08282487A (en) Railroad rolling stock with trim variable body
JPH05116627A (en) Vehicle body control method for railway rolling stock
JP2832329B2 (en) Vehicle body tilt control method for railway vehicles
JPH0659826B2 (en) Control method of railway vehicle on relaxation curve
US4041878A (en) Speed and track curvature suspension control system
JP3422341B2 (en) Vehicle body tilt control method for railway vehicles
JPH0674041B2 (en) Electronic control method for air springs for railway vehicles
JP2894409B2 (en) Vehicle inclination control device
JPH07267083A (en) Body inclination control method of railway stock
JP2827255B2 (en) Method and apparatus for preventing wheel load fluctuation of railway vehicle
JP3018941B2 (en) Axle box support device for railway vehicles
JPH08154303A (en) Attitude controller for pantograph
JP2879722B2 (en) Method and apparatus for leaning vehicle body of railway vehicle
JPH075076B2 (en) Railway vehicle
CN109436001A (en) A kind of bogie with magnetic suspension secondary suspension device
JPH03178862A (en) Wheel load fluctuation preventing method for rolling stock
JPH0415160A (en) Controlling method for attitude of vehicle body of train

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees