JPH0658868B2 - Electrolytic solution for driving electrolytic capacitors - Google Patents

Electrolytic solution for driving electrolytic capacitors

Info

Publication number
JPH0658868B2
JPH0658868B2 JP20175489A JP20175489A JPH0658868B2 JP H0658868 B2 JPH0658868 B2 JP H0658868B2 JP 20175489 A JP20175489 A JP 20175489A JP 20175489 A JP20175489 A JP 20175489A JP H0658868 B2 JPH0658868 B2 JP H0658868B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolytic
added
driving
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20175489A
Other languages
Japanese (ja)
Other versions
JPH0364906A (en
Inventor
光一 萩原
清二 那須
芳樹 牧野
Original Assignee
信英通信工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信英通信工業株式会社 filed Critical 信英通信工業株式会社
Priority to JP20175489A priority Critical patent/JPH0658868B2/en
Publication of JPH0364906A publication Critical patent/JPH0364906A/en
Publication of JPH0658868B2 publication Critical patent/JPH0658868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電解コンデンサ駆動用電解液(以下電解液と
称する)の改良に係り、特に電解コンデンサの漏れ電流
低減を実現できる電解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and more particularly to an electrolytic solution capable of reducing leakage current of an electrolytic capacitor.

(従来の技術) 一般にアルミニウム電解コンデンサは、陽極酸化皮膜を
形成した陽極箔と、陽極酸化皮膜を形成しない陰極箔と
に引き出し用アルミニウムタブを接合した後、セパレー
タを介在させて巻回してコンデンサ素子を形成し、この
コンデンサ素子に電解液を含浸させてケースに密封して
形成される。
(Prior Art) Generally, in an aluminum electrolytic capacitor, an aluminum tab for drawing is joined to an anode foil having an anodic oxide film and a cathode foil having no anodic oxide film, and then the capacitor element is wound by interposing a separator therebetween. Is formed, and the capacitor element is impregnated with an electrolytic solution and hermetically sealed in a case.

この電解コンデンサは、漏れ電流の低減を図るためエー
ジングと呼ばれる電圧処理が施される。
This electrolytic capacitor is subjected to a voltage treatment called aging in order to reduce the leakage current.

このような電解コンデンサは通信機器や計測機器等、各
種電子機器に使用されるが、これらの電子機器の性能に
は電解コンデンサの電気的特性が大きく関係し、特に漏
れ電流の劣化の少ない、長寿命で信頼性の高い電解コン
デンサが要求されている。
Such electrolytic capacitors are used in various electronic devices such as communication devices and measuring devices.The performance of these electronic devices is largely related to the electrical characteristics of the electrolytic capacitors. Electrolytic capacitors with long life and high reliability are required.

しかしながらアルミニウム電解コンデンサは、高温度下
で長時間無負荷放置すると漏れ電流が増大し、場合によ
ってはアルミニウム酸化皮膜が著しく破壊されて絶縁性
が低下するおそれがある。これはケース内に封入されて
いる電解液が酸化皮膜と反応して酸化皮膜を劣化させる
ためと考えられる。
However, when an aluminum electrolytic capacitor is left unloaded at a high temperature for a long time, the leakage current increases, and in some cases, the aluminum oxide film may be seriously damaged and the insulating property may deteriorate. It is considered that this is because the electrolytic solution enclosed in the case reacts with the oxide film to deteriorate the oxide film.

(発明が解決しようとする課題) このような酸化皮膜の劣化を防止する方法として、10
0V以下の低圧用コンデンサに関して、特開昭54−1
36651号、特開昭62−145808号等に示され
るように多くの方法が提案されている。これらの方法は
電解液中に各種の添加剤を入れるものであり、ある程度
の効果は確認されている。100V以上の中高圧用コン
デンサについては、電解液に添加剤を入れる方法として
特開昭62−6615号や特開昭63−7613号等が
提案されているが、その効果はまだ十分ではない。ま
た、電解液中の水分を減少させても酸化皮膜の劣化を抑
制することができるが、化成性・比抵抗等他の特性の制
約から一定量以下にすることは困難である。
(Problems to be Solved by the Invention) As a method for preventing such deterioration of an oxide film, 10
Regarding a low voltage capacitor of 0 V or less, JP-A-54-1
Many methods have been proposed as shown in Japanese Patent No. 36651, Japanese Patent Laid-Open No. 62-145808 and the like. In these methods, various additives are added to the electrolytic solution, and some effects have been confirmed. For medium- and high-voltage capacitors of 100 V or more, JP-A-62-6615 and JP-A-63-7613 have been proposed as a method of adding an additive to an electrolytic solution, but the effect is still insufficient. Further, even if the water content in the electrolytic solution is reduced, the deterioration of the oxide film can be suppressed, but it is difficult to reduce the water content to a certain amount or less due to other characteristics such as chemical conversion and specific resistance.

本発明は上述の問題点に鑑みてなされたものであり、陽
極箔の劣化を効果的に抑制し、電解コンデンサの漏れ電
流を低減することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to effectively suppress deterioration of the anode foil and reduce the leakage current of the electrolytic capacitor.

(課題を解決するための手段) 上記目的による本発明では、電解コンデンサ用電解液に
おいて、リン酸尿素または、ピロリン酸若しくはその塩
を添加したことを特徴とする。
(Means for Solving the Problems) The present invention according to the above object is characterized in that urea phosphate or pyrophosphoric acid or a salt thereof is added to the electrolytic solution for an electrolytic capacitor.

リン酸尿素又は、ピロリン酸若しくはその塩の添加量と
しては、エチレングリコール系の電解液の場合、0.05乃
至3重量%であることが好ましく、γ−ブチロラクトン
系電解液の場合、0.05乃至5重量%であることが好まし
い。
The amount of urea phosphate or pyrophosphoric acid or a salt thereof added is preferably 0.05 to 3% by weight in the case of ethylene glycol-based electrolytic solution, and 0.05 to 5% by weight in the case of γ-butyrolactone-based electrolytic solution. Is preferred.

(作用) 従来の電解液においては、火花電圧を上昇させる目的で
リン酸を添加していたが、リン酸を添加すると電解コン
デンサの漏れ電流の劣化が大きくなってしまうという問
題点があった。
(Function) In the conventional electrolytic solution, phosphoric acid was added for the purpose of increasing the spark voltage, but when phosphoric acid was added, there was a problem that the deterioration of the leakage current of the electrolytic capacitor increased.

発明者らは、高い火花電圧を維持し、しかも漏れ電流の
劣化が少ない添加剤を種々検討した結果、リン酸尿素[C
O(NH2)2・H3PO4]とピロリン酸[H4P2O7]およびその塩が効
果的であることをつきとめた。これらの添加剤が漏れ電
流の劣化抑制に効果がある理由は明らかではないが、陽
極箔のアルミニウム酸化皮膜に作用して酸化皮膜の劣化
を抑制するものと考えられる。
As a result of various studies on additives that maintain a high spark voltage and have little leakage current deterioration, the inventors have found that urea phosphate [C
It was found that O (NH 2 ) 2 · H 3 PO 4 ], pyrophosphoric acid [H 4 P 2 O 7 ] and salts thereof are effective. Although the reason why these additives are effective in suppressing the deterioration of the leakage current is not clear, it is considered that they act on the aluminum oxide film of the anode foil to suppress the deterioration of the oxide film.

(実施例) 以下、実施例に基づいて本発明を詳細に説明する。(Examples) Hereinafter, the present invention will be described in detail based on Examples.

電解液の溶媒としては、エチレングリコール、ジエチレ
ングリコール等のアルコール類、エチレングリコールモ
ノメチルエーテル等のグリコールエーテル類、エチレン
グリコールモノメチルアセテート類のエステル類、N,
N′−ジメチルホルムアミド等の酸アミド類、アセトニ
トリル等のニトリル類、またはγ−ブチロラクトン等の
環状エステル類などの極性有機溶媒が利用できるが、エ
チレングリコールあるいはγ−ブチロラクトンを主溶媒
とするものが特に好適である。
Solvents for the electrolytic solution include alcohols such as ethylene glycol and diethylene glycol, glycol ethers such as ethylene glycol monomethyl ether, esters of ethylene glycol monomethyl acetate, N,
Polar organic solvents such as acid amides such as N'-dimethylformamide, nitriles such as acetonitrile, or cyclic esters such as γ-butyrolactone can be used, but those having ethylene glycol or γ-butyrolactone as a main solvent are particularly preferable. It is suitable.

また溶質としてはコハク酸、アジピン酸、アゼライン酸
等のカルボン酸類もしくはその塩、または安息香酸、サ
リチル酸、フタル酸等の芳香族カルボン酸類もしくはそ
の塩、または硼酸等の無機酸もしくはその塩の中の少な
くとも一種を溶解する。
As the solute, carboxylic acids such as succinic acid, adipic acid and azelaic acid or salts thereof, or aromatic carboxylic acids such as benzoic acid, salicylic acid and phthalic acid or salts thereof, or inorganic acids such as boric acid or salts thereof Dissolve at least one.

第1表に本発明に従って添加剤を添加した電解液のう
ち、エチレングリコールを主溶媒としたものの組成と火
花電圧を示した。従来例1は添加剤を入れない場合であ
り、火花電圧が極端に低い。従来例2は添加剤としてリ
ン酸を入れた場合であり、従来例1よりはかなり火花電
圧が上昇している。実施例1では添加剤としてリン酸尿
素を、実施例2ではピロリン酸を添加した。実施例1お
よび2とも、従来例よりも高い火花電圧を達成すること
ができた。
Table 1 shows the composition and the spark voltage of the electrolytic solution containing the additive according to the present invention and using ethylene glycol as the main solvent. Conventional Example 1 is a case where no additive is added, and the spark voltage is extremely low. In Conventional Example 2, phosphoric acid was added as an additive, and the spark voltage was considerably higher than that in Conventional Example 1. In Example 1, urea phosphate was added as an additive, and in Example 2, pyrophosphoric acid was added. In both Examples 1 and 2, a higher spark voltage than the conventional example could be achieved.

第2表にはγ−ブチロラクトンを主溶媒としたものの組
成と火花電圧を示した。実施例3では添加剤としてリン
酸尿素を、実施例4ではピロリン酸を添加した。従来は
火花電圧を上昇させるため、リン酸を添加していたが、
実施例3および4ともそれよりもさらに高い火花電圧を
達成することができた。
Table 2 shows the composition and spark voltage of those containing γ-butyrolactone as the main solvent. In Example 3, urea phosphate was added as an additive, and in Example 4, pyrophosphoric acid was added. In the past, phosphoric acid was added to increase the spark voltage,
It was possible to achieve a higher spark voltage in both Examples 3 and 4.

第1図は、従来例2および実施例1および2の電解液を
含浸して作製した250WV 4.7μFコンデンサの1
05℃無負荷放置試験における漏れ電流の変化を示した
ものである。リン酸を添加した従来例2では漏れ電流が
増加してしまうのに対して、実施例はいずれも顕著に漏
れ電流増加が抑制されていることがわかる。
FIG. 1 shows a 250 WV 4.7 μF capacitor manufactured by impregnating the electrolytic solution of Conventional Example 2 and Examples 1 and 2.
It is a graph showing changes in leakage current in a 05 ° C. no-load standing test. It can be seen that in Conventional Example 2 in which phosphoric acid is added, the leakage current increases, whereas in all Examples, the leakage current increase is significantly suppressed.

第2図は、従来例4および実施例3および4の電解液を
含浸して作製した63WV 100μFコンデンサの1
05℃無負荷放置試験における漏れ電流の変化を示す。
γ−ブチロラクトン系の電解液においても顕著な漏れ電
流抑制効果があることがわかる。
FIG. 2 shows 1 of a 63 WV 100 μF capacitor manufactured by impregnating the electrolytic solution of Conventional Example 4 and Examples 3 and 4.
The change of the leak current in a 05 degreeC unloaded leaving test is shown.
It can be seen that even a γ-butyrolactone-based electrolytic solution has a remarkable effect of suppressing leakage current.

第3図は、エチレングリコールを主溶媒とした電解液に
おけるリン酸尿素の添加量と火花電圧との関係を示す図
である。図から明らかなように添加量が0.05乃至3重量
%の間は火花電圧上昇の効果が認められるが、0.05%以
下又は3%以上ではその効果が小さい。
FIG. 3 is a graph showing the relationship between the amount of urea phosphate added and the spark voltage in an electrolytic solution containing ethylene glycol as a main solvent. As is clear from the figure, the effect of increasing the spark voltage is recognized when the addition amount is 0.05 to 3% by weight, but the effect is small when the addition amount is 0.05% or less or 3% or more.

第4図は、γ−ブチロラクトン系の電解液におけるリン
酸尿素の添加量と火花電圧との関係を示す図である。こ
ちらの場合は、添加量が0.05乃至5%の間で顕著な効果
が認められた。
FIG. 4 is a diagram showing the relationship between the amount of urea phosphate added to the γ-butyrolactone-based electrolyte and the spark voltage. In this case, a remarkable effect was observed when the addition amount was 0.05 to 5%.

上記の添加量と火花電圧との関係については、ピロリン
酸およびその塩においても同様な効果が得られることが
確認されている。
Regarding the above relationship between the added amount and the spark voltage, it has been confirmed that similar effects can be obtained with pyrophosphoric acid and salts thereof.

(発明の効果) 以上述べたように、本発明によれば電解液の火花電圧を
著しく上昇させてコンデンサの使用電圧を高くできるば
かりでなく、漏れ電流の経時変化を抑制して信頼性の高
い電解コンデンサを提供することができる。
(Effect of the Invention) As described above, according to the present invention, not only can the spark voltage of the electrolytic solution be remarkably increased to increase the working voltage of the capacitor, but also the change over time of the leakage current can be suppressed and the reliability is high. An electrolytic capacitor can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図はエチレングリコール系電解液を用いた電解コン
デンサの105℃無負荷放置試験における漏れ電流の経
時変化を示す図、第2図はγ−ブチロラクトン系電解液
を用いた電解コンデンサの105℃無負荷放置試験にお
ける漏れ電流の経時変化を示す図、第3図はエチレング
リコール系電解液におけるリン酸尿素の添加量と火花電
圧との関係を示す図、第4図はγ−ブチロラクトン系電
解液におけるリン酸尿素の添加量と火花電圧との関係を
示す図である。
Fig. 1 is a diagram showing the change over time in the leakage current in a 105 ° C no-load storage test of an electrolytic capacitor using an ethylene glycol-based electrolytic solution, and Fig. 2 is an electrolytic capacitor using a γ-butyrolactone-based electrolytic solution at 105 ° C The figure which shows the time-dependent change of the leak current in a load leaving test, FIG. 3 is a figure which shows the relationship between the addition amount of urea phosphate in an ethylene glycol electrolyte, and a spark voltage, and FIG. 4 is a gamma-butyrolactone electrolyte. It is a figure which shows the relationship between the addition amount of urea phosphate, and a spark voltage.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電解コンデンサ駆動用電解液において、リ
ン酸尿素または、ピロリン酸若しくはその塩を添加した
ことを特徴とする電解コンデンサ駆動用電解液。
1. An electrolytic solution for driving an electrolytic capacitor, wherein urea phosphate, pyrophosphoric acid or a salt thereof is added to the electrolytic solution for driving an electrolytic capacitor.
【請求項2】主溶媒がエチレングリコールであることを
特徴とする請求項1記載の電解コンデンサ駆動用電解
液。
2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the main solvent is ethylene glycol.
【請求項3】主溶媒がγ−ブチロラクトンであることを
特徴とする請求項1記載の電解コンデンサ駆動用電解
液。
3. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the main solvent is γ-butyrolactone.
【請求項4】リン酸尿素または、ピロリン酸若しくはそ
の塩の添加量が0.05乃至3重量%であることを特徴とす
る請求項2記載の電解コンデンサ駆動用電解液。
4. The electrolytic solution for driving an electrolytic capacitor according to claim 2, wherein urea phosphate or pyrophosphoric acid or a salt thereof is added in an amount of 0.05 to 3% by weight.
【請求項5】リン酸尿素または、ピロリン酸若しくはそ
の塩の添加量が0.05乃至5重量%であることを特徴とす
る請求項3記載の電解コンデンサ駆動用電解液。
5. The electrolytic solution for driving an electrolytic capacitor according to claim 3, wherein urea phosphate, pyrophosphoric acid or a salt thereof is added in an amount of 0.05 to 5% by weight.
JP20175489A 1989-08-03 1989-08-03 Electrolytic solution for driving electrolytic capacitors Expired - Lifetime JPH0658868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20175489A JPH0658868B2 (en) 1989-08-03 1989-08-03 Electrolytic solution for driving electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20175489A JPH0658868B2 (en) 1989-08-03 1989-08-03 Electrolytic solution for driving electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH0364906A JPH0364906A (en) 1991-03-20
JPH0658868B2 true JPH0658868B2 (en) 1994-08-03

Family

ID=16446384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20175489A Expired - Lifetime JPH0658868B2 (en) 1989-08-03 1989-08-03 Electrolytic solution for driving electrolytic capacitors

Country Status (1)

Country Link
JP (1) JPH0658868B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693416B2 (en) * 1989-11-30 1994-11-16 日立エーアイシー株式会社 Electrolytic solution for electrolytic capacitors
JP4730762B2 (en) * 2004-08-03 2011-07-20 オークラ輸送機株式会社 Drive shaft cover device

Also Published As

Publication number Publication date
JPH0364906A (en) 1991-03-20

Similar Documents

Publication Publication Date Title
EP1006536B1 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JPH0658868B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3176611B2 (en) Electrolyte for electrolytic capacitors
JP2001223136A (en) Aluminum electrolytic capacitor
JPH08321442A (en) Aluminum electrolytic capacitor
JPH0658870B2 (en) Aluminum electrolytic capacitor
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JPH01114018A (en) Electrolyte for driving electrolytic capacitor
JP4548563B2 (en) Aluminum electrolytic capacitor
JPH02194611A (en) Electrolyte for driving electrolytic capacitor
JPH09186052A (en) Electrolyte for driving electrolyte capacitor
JP3037704B2 (en) Electrolyte for electrolytic capacitors
JPH07118432B2 (en) Electrolytic solution for driving electrolytic capacitors
JPH01114025A (en) Electrolyte for driving electrolytic capacitor
JPH10135081A (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using it
JPH0810663B2 (en) Electrolytic solution for electrolytic capacitors
JPH0493011A (en) Electrolytic capacitor electrolyte
JPH0636973A (en) Electrolyte for driving electrolytic capacitor
JPS62145808A (en) Driving electrolyte for electrolytic capacitor
JPS6345711A (en) Electrolytic capacitor
JPS63248113A (en) Electrolytic capacitor
JPH07120615B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS62213244A (en) Driving electrilyte for electrolytic capacitor
JPS62213238A (en) Driving electrolyte for electrolytic capacitor
JP2000306779A (en) Electrolyte for activating aluminum electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term