JPH06586A - Method for continuously forging beam blank - Google Patents
Method for continuously forging beam blankInfo
- Publication number
- JPH06586A JPH06586A JP18764192A JP18764192A JPH06586A JP H06586 A JPH06586 A JP H06586A JP 18764192 A JP18764192 A JP 18764192A JP 18764192 A JP18764192 A JP 18764192A JP H06586 A JPH06586 A JP H06586A
- Authority
- JP
- Japan
- Prior art keywords
- beam blank
- mold
- cooling water
- nozzle
- left sides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はビームブランクの連続鋳
造方法に係り、特にビームブランク鋳片の縦割れ発生率
が少く、かつ各部とも均一厚みの凝固シエルを形成し、
ブレークアウトの発生が極めて少ないビームブランクの
連続鋳造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of continuously casting a beam blank, and particularly, the rate of occurrence of vertical cracks in a beam blank slab is small, and each portion forms a solidified shell having a uniform thickness.
The present invention relates to a continuous casting method for a beam blank with extremely few breakouts.
【0002】[0002]
【従来の技術】ビームブランクは主としてH形鋼素材で
あり、従って断面形状が図1もしくは図3に示す如く複
雑であるため、これを連続鋳造する場合に、鋳込み中に
浸漬ノズルの閉塞を生じた場合など、各ノズル間の流動
変動により偏流を生じ、ビームブランク各部の拔熱が均
等に行われ難く、従って各部の凝固殻が均一な厚みを保
ちつつ凝固させることが極めて困難であって、その結果
ビームブランク鋳片に凝固時の内部応力によって縦割れ
欠陥を生じたり、また甚しきはブレークアウトの事故を
ひき起す恐れもある。これに対し従来種々の対応策が開
示されているが、その代表的な従来技術の概要について
説明する。2. Description of the Related Art A beam blank is mainly an H-shaped steel material, and therefore has a complicated cross-sectional shape as shown in FIG. 1 or 3. Therefore, when continuously casting the beam blank, the immersion nozzle is clogged during casting. In such cases, uneven flow occurs due to flow fluctuation between each nozzle, it is difficult to perform uniform heating of each part of the beam blank, and therefore it is extremely difficult to solidify the solidified shell of each part while maintaining a uniform thickness, As a result, vertical crack defects may occur in the beam blank slab due to internal stress during solidification, or the beam blank may cause a breakout accident. In response to this, various countermeasures have been disclosed in the past, and an outline of a typical conventional technique will be described.
【0003】〔特開昭52−13428〕本願発明は本
発明と同一出願人による初期のビームブランクの連続鋳
造方法を提供するものであって、図8を参照してその要
旨とするところを記すと次の如くである。すなわち、
「ビームブランク10のフランジ中央部12bに対応す
る鋳型部分において左右に2つ割りできる水冷鋳型を使
用するビームブランクの連続鋳造方法において、前記左
右割鋳型の接合部の間隙を1mm以下に保持し、フィレッ
ト部13に対応する鋳型部分の冷却水量をフランジ部1
2およびフイレット部を除くウエブ部11に対応する鋳
型部分の平均冷却水量の1.3〜3倍となし、鋳型と2
次冷却帯間に設けられたモールドスプレー帯においては
フィレット部を除くウエブ部11への平均冷却水量より
少なくとも多く乃至は3倍以下となし、かつ前記ビーム
ブランクのフランジ部12全体に供給される平均冷却水
量のうちフランジ12bへの冷却水供給量をその他のフ
ランジ部へ供給される供給水量より少なくとも多く乃至
は3倍以下となし、均一速度で凝固殻を生成させること
を特徴とするビームブランクの連続鋳造方法。」であ
る。この発明はフランジ部等の厚肉部分の冷却水量をウ
エブ部等の薄肉部分の3倍以下多くし、均一冷却しよう
とするものであるが、冷却水量の制御に問題がある。[JP-A-52-13428] The present invention provides an initial continuous beam blank casting method by the same applicant as the present invention, and the gist thereof will be described with reference to FIG. And as follows. That is,
"In a continuous casting method of a beam blank using a water-cooled mold that can be divided into two parts in the mold part corresponding to the flange central part 12b of the beam blank 10, the gap between the joint parts of the left and right split molds is maintained at 1 mm or less, The amount of cooling water of the mold portion corresponding to the fillet portion 13 is determined by the flange portion 1
2 and the average amount of cooling water in the mold portion corresponding to the web portion 11 excluding the fillet portion is 1.3 to 3 times,
In the mold spray zone provided between the subsequent cooling zones, the average cooling water amount to the web portion 11 excluding the fillet portion is at least larger than or equal to or less than 3 times, and the average amount supplied to the entire flange portion 12 of the beam blank. Of the cooling water amount, the cooling water supply amount to the flange 12b is at least larger than or equal to or less than 3 times the supply water amount supplied to the other flange portions, and the solidified shell is generated at a uniform speed. Continuous casting method. It is. Although the present invention attempts to achieve uniform cooling by increasing the amount of cooling water in the thick portion such as the flange portion to 3 times or less that in the thin portion such as the web portion, there is a problem in controlling the amount of cooling water.
【0004】〔特開昭58−224050〕この発明の
要旨とするところは次の如くである。すなわち、「タン
ディッシュの底壁に取付けた、複数の非対称吐出孔を有
する1本の浸漬ノズルをモールド内の片側に配置し、前
記浸漬ノズルの複数の非対称吐出孔から、前記モールド
内に溶融金属を供給することを特徴とするビームブラン
クの連続鋳造方法。」である。この発明は図3に示す如
き対称の2つの浸漬のズルを設けることは、2つの浸漬
ノズルの距離が短い場合、ストッパーを取付けるスペー
スに余裕がなく、かつストッパーの開度も小さく制御不
可能、またはノズル詰りを生ずるので単孔非対称浸漬ノ
ズルとしたもので、従来技術の代表的方法である。[JP-A-58-224050] The gist of the present invention is as follows. That is, "One immersion nozzle having a plurality of asymmetrical discharge holes attached to the bottom wall of the tundish is arranged on one side in the mold, and the molten metal is injected into the mold through the plurality of asymmetrical discharge holes of the immersion nozzle. The method of continuously casting a beam blank is characterized in that According to the present invention, the provision of two symmetrical immersion dips as shown in FIG. 3 means that when the distance between the two immersion nozzles is short, there is no room in the space for installing the stopper, and the opening of the stopper is too small to control. Alternatively, since a nozzle clogging occurs, a single-hole asymmetrical immersion nozzle is used, which is a typical method of the prior art.
【0005】〔特開昭62−3852〕この発明の要旨
とするところは次の如くである。すなわち、 「1.湾曲型連続鋳造機によりビームブランクを連続鋳
造するに当り、水平に軸支してそれぞれ対をなすピンチ
ロールと、これに至るローラエプロンの各ロール胴に、
ビームブランクのフランジ面が接する向きに連続鋳造用
鋳型を設置し、該鋳型にはビームブランク片側における
フランジ中央に対応する位置にのみ、単一の浸漬ノズル
を配置してタンディッシュからの溶鋼の注入を行うこと
を特徴とするビームブランク連続鋳造方法。 2.浸漬ノズルの鋳型内の配置が、引き抜き側と反対に
位置するビームブランク中央と対応する位置である特許
請求の範囲第1項記載の方法。」である。この発明も非
対称単孔浸漬ノズルを使用し、かつ鋳込中のビームブラ
ンクの変形、ノズルの溶損を避けようとするものであ
る。[JP-A-62-3852] The gist of the present invention is as follows. That is, "1. In continuous casting of a beam blank by a curved continuous casting machine, a pair of pinch rolls are supported horizontally and roll roll cylinders of the roller apron that reach the pinch rolls are formed.
A continuous casting mold is installed in a direction in which the flange surface of the beam blank is in contact, and a single immersion nozzle is arranged in the mold only at a position corresponding to the center of the flange on one side of the beam blank to inject molten steel from the tundish. A method for continuously casting a beam blank, which comprises: 2. The method according to claim 1, wherein the position of the immersion nozzle in the mold is a position corresponding to the center of the beam blank located opposite to the drawing side. It is. This invention also uses an asymmetrical single-hole immersion nozzle, and attempts to avoid deformation of the beam blank during casting and melting damage of the nozzle.
【0006】〔特開昭55−126355〕この発明の
要旨とするところは次の如くである。すなわち、 「1.連続鋳造用水冷鋳型の長辺に沿い互に離隔して対
称に配置した一対の浸漬ノズルを用い、各浸漬ノズルか
らの鋳注ぎ流量を、水冷鋳型の両短辺のおのおのの冷却
に供した冷却水の温度較差を縮小させる向きに制御する
ことから成るノズル併置式連続鋳造方法。」である。こ
の発明は、図3に示す如き対称の1対の浸漬ノズルを使
用し、2つの浸漬ノズルからの鋳注ぎ流量の不均衡が、
水冷鋳型の両短辺の冷却に供した冷却水の温度較差か
ら、有利適切に検出されることを見出し、この知見から
この両短辺の冷却水の温度較差を縮小させる方向で、対
称に設置された2個の浸漬ノズルからの鋳注ぎ流量の均
衡を図り、もって鋳片凝固殻の均等形成を図ろうとする
ものであって、これも従来技術の代表の1つである。[JP-A-55-126355] The gist of the present invention is as follows. That is, "1. Using a pair of immersion nozzles symmetrically arranged apart from each other along the long side of the water-cooled mold for continuous casting, the pouring flow rate from each immersion nozzle is measured on both short sides of the water-cooled mold. The nozzle side-by-side continuous casting method consists of controlling the temperature range of the cooling water used for cooling so as to reduce it. " The present invention uses a pair of symmetrical immersion nozzles as shown in FIG. 3, where the imbalance in the pouring flow rate from the two immersion nozzles is
From the knowledge that the temperature difference of the cooling water used for cooling the both short sides of the water-cooled mold was found to be advantageous and suitable, and based on this finding, the symmetrical installation was performed so as to reduce the temperature difference of the cooling water on both the short sides. This is an attempt to balance the pouring flow rates from the two immersion nozzles that have been formed, and thus to uniformly form the solidified shell of the slab, which is also one of the representatives of the prior art.
【0007】かくの如く、従来のビームブランクの連続
鋳造においては、図1および図2に示す如き非対称単孔
浸漬ノズルか、もしくは図3に示す如き対称の2つの浸
漬ノズルが用い、タンデイツシユ2に収容された溶鋼3
を浸漬ノズル4を介して鋳型6に注入するのであるが、
溶鋼3の各部拔熱が均一に行われ各部均等な凝固殻を形
成しながら引抜かれることが重要である。しかしながら
対称鋳造の場合でも、左右の溶鋼供給量が異なるため、
同一鋳型内でも溶鋼供給量に対する鋳型の冷却能が異な
り、凝固シエルの厚みが不均一となり、図4に示す如く
縦割れの原因となることがあり、更に甚しきはブレーク
アウトの発生原因ともなる。その結果対称鋳造と非対称
鋳造の場合には、それぞれ専用の鋳型を使用するか、も
しくは対称鋳造と非対称鋳造を同一の鋳型で行う場合に
は、非対称鋳造の場合のみ鋳造速度を遅くして操業を行
っているのが現状である。As described above, in the conventional continuous casting of beam blanks, the asymmetric single-hole immersion nozzle shown in FIGS. 1 and 2 or two symmetrical immersion nozzles shown in FIG. Molten steel stored 3
Is injected into the mold 6 through the immersion nozzle 4,
It is important that each part of the molten steel 3 is uniformly heated so that a uniform solidified shell is formed in each part and is withdrawn. However, even in the case of symmetrical casting, the left and right molten steel supply amounts are different,
Even within the same mold, the cooling capacity of the mold is different with respect to the amount of molten steel supplied, the thickness of the solidified shell becomes uneven, which may cause vertical cracking as shown in Fig. 4, and further, a serious cause of breakout. . As a result, in the case of symmetrical casting and asymmetrical casting, use dedicated molds respectively, or when performing symmetrical casting and asymmetrical casting in the same mold, slow the casting speed only in asymmetrical casting and operate. It is the current situation.
【0008】[0008]
【本発明が解決すべき課題】しかしながら鋳造速度を遅
くすれば、当然生産性が低下する。またビームブランク
の如き複雑な断面形状を呈する鋳片では、フランジとウ
エブの接合部が最終的に凝固する領域となるので、特に
鋳造速度が大なる場合は、その領域の凝固収縮に起因す
る内部割れや表面割れが発生し易いという問題があつ
た。このような割れ欠陥があると、加熱炉在炉中にビー
ムブランクの内部が酸化されたり、割れの表面に酸化皮
膜が発生するので、かかるビームブランクを圧延する
と、加熱炉在炉中に生成した酸化皮膜が製品H形鋼に残
存し重大な欠陥となる。However, if the casting speed is slowed down, the productivity is naturally lowered. Also, in the case of a slab with a complicated cross-sectional shape such as a beam blank, the joint between the flange and the web is the final solidification region, so especially when the casting speed is high, the internals caused by solidification shrinkage in that region There is a problem that cracks and surface cracks are likely to occur. If there is such a crack defect, the inside of the beam blank is oxidized in the heating furnace furnace, or an oxide film is generated on the surface of the crack, so if such a beam blank is rolled, it is generated in the heating furnace furnace. The oxide film remains on the product H-section steel and becomes a serious defect.
【0009】本発明の目的は、ビームブランクの連続鋳
造中における溶鋼の冷却速度が各部とも均一であって、
従って均一厚みの凝固殻を形成し、しかも浸漬ノズルが
図1の如く非対称の場合および図3の如く2本の浸漬ノ
ズルが対称の場合、更にタンディッシュノズルとの接続
のないオープン鋳造の場合も同様に安定した連鋳操業が
可能であって、従って鋳片においても割れ欠陥、引き抜
き時の変形のない健全なビームブランク鋳片を得ること
ができる効果的な連続鋳造方法を提供するにある。It is an object of the present invention that the cooling rate of molten steel during continuous casting of beam blanks is uniform in all parts,
Therefore, even when a solidified shell having a uniform thickness is formed and the immersion nozzles are asymmetrical as shown in FIG. 1, the two immersion nozzles are symmetrical as shown in FIG. 3, and even in the case of open casting without connection to the tundish nozzle, Similarly, it is an object of the present invention to provide an effective continuous casting method capable of performing stable continuous casting operation and thus obtaining a sound beam blank slab without crack defects and deformation during drawing.
【0010】本発明の要旨とするところは次の如くであ
る。すなわち、ビームブランクの連続鋳造に当り、鋳型
冷却水の制御系をビームブランクのウエブ中央部で分割
し該鋳型の右半分と左半分の2系列としそれぞれ独立し
て流量制御を行うことを特徴とするビームブランクの連
続鋳造方法、である。The gist of the present invention is as follows. That is, in continuous casting of the beam blank, the control system of the mold cooling water is divided at the central portion of the web of the beam blank, and the flow rate is controlled independently for each of the right half and the left half of the mold. This is a continuous casting method of a beam blank.
【0011】〔実施例〕 本発明の詳細を次に示す2つ
の実施例によって説明する。 実施例1 図1に示す如き非対称の単孔浸漬ノズル鋳造を行った時
と、上部がタンディッシュノズルとの接続のないオープ
ンノズルの場合について、メニスカスから100mm、2
00mm、300mm、400mmの距離において形成された
凝固殻厚みを、図1に示す如く左右フランジ部の中央部
で測定し、それぞれa、bとして、その比a/bを縦軸
とし、メニスカスからの距離を横軸としてプロットした
結果は図5に示すとおりである。すなわち、この場合図
1、図2に示す如く片側浸漬ノズル鋳造であるため、図
5のB曲線で示すように凝固殻左右フランジ中央部にお
ける厚みの比a/bは著しく異なる。ところがオープン
ノズルの場合はウエブ中央部を境界とする鋳型の左半分
と右半分における溶鋼の拔熱量がほぼ同一であったの
で、図5のA曲線にて示す如く、ビームブランクの左右
フランジ中央部で測定した凝固殻の厚みの比a/bが略
1であって、左右の凝固殻が均一であることが判明し
た。従って積極的に鋳型のウエブ中央部で分割して左半
分と右半分の溶鋼拔熱量を同一になるように冷却水量を
左右独立して制御すれば、左右の凝固殻厚みが均一なビ
ームブランクを形成し得ることが判明した。[Examples] The details of the present invention will be described with reference to the following two examples. Example 1 100 mm from the meniscus for the case of performing the asymmetrical single hole immersion nozzle casting as shown in FIG. 1 and the case of the open nozzle where the upper part is not connected to the tundish nozzle.
The thickness of the solidified shell formed at the distances of 00 mm, 300 mm, and 400 mm was measured at the center of the left and right flanges as shown in FIG. 1, and the ratio a / b was taken as the vertical axis, and the ratio a / b was taken as the vertical axis from the meniscus. The result of plotting the distance on the horizontal axis is shown in FIG. That is, in this case, as shown in FIGS. 1 and 2, since the one-side immersion nozzle casting is used, the thickness ratio a / b in the central portion of the left and right flanges of the solidified shell is remarkably different as shown by the curve B in FIG. However, in the case of the open nozzle, the amounts of heat of molten steel in the left and right halves of the mold with the center of the web as the boundary were almost the same, so as shown by the curve A in FIG. It was found that the ratio a / b of the thickness of the solidified shells measured in step 1 was about 1 and the left and right solidified shells were uniform. Therefore, if the cooling water amount is independently controlled so that the left half and the right half have the same amount of molten steel heat by positively dividing at the center of the web of the mold, a beam blank with uniform left and right solidified shell thickness can be obtained. It turned out that it can be formed.
【0012】実施例2 本発明者らは、実施例1で得た本発明の知見を確認する
ために次の如き実験を行なった。すなわち、図1、図2
に示す如き右側に単孔浸漬ノズルを有する鋳造装置にお
いて、ウエブ中央部で冷却水系列を分割して2系列と
し、その左右各半分が独立して流量を制御できる装置を
設け、表1に示す如く右側半分の冷却水系における流量
を1とした場合、左側半分との冷却水系の流量の比をそ
れぞれ1:1、1:1.3、1:1.8と変化させた。Example 2 The present inventors conducted the following experiment in order to confirm the findings of the present invention obtained in Example 1. That is, FIG. 1 and FIG.
As shown in Table 1, in the casting apparatus having a single-hole immersion nozzle on the right side, the cooling water series is divided into two series at the central part of the web, and the right and left halves are each provided with an apparatus capable of independently controlling the flow rate. As described above, when the flow rate in the cooling water system in the right half is 1, the ratio of the flow rate in the cooling water system in the left half is changed to 1: 1, 1: 1.3, and 1: 1.8, respectively.
【表1】 この場合メニスカスからの距離(mm)の差による凝固殻
厚みの比a/bは、図6に示すとおりである。すなわ
ち、鋳型の右側半分の冷却水量を基準とする場合、C曲
線にて示す左側半分の冷却水量比を1.8とした場合
に、左右各半分における溶鋼の拔熱量がほぼ均衡をとる
ことができ、図6に示す如く左右凝固殻厚み比a/bが
ほぼ1となることが判明した。その結果A曲線、B曲線
およびC曲線のそれぞれの場合におけるビームブランク
鋳片の縦割れ発生率は図7に示す如くなり、C曲線で示
す実施例では縦割れ発生率は従来の1/2に減少した。[Table 1] In this case, the ratio a / b of the thickness of the solidified shell due to the difference in the distance (mm) from the meniscus is as shown in FIG. That is, when the amount of cooling water in the right half of the mold is used as a reference, and the amount of cooling water in the left half shown by the C curve is set to 1.8, the amount of molten heat in the left and right halves is almost balanced. It was found that the thickness ratio a / b of the left and right solidified shells became almost 1 as shown in FIG. As a result, the vertical crack occurrence rate of the beam blank slab in each of the A curve, B curve, and C curve is as shown in FIG. 7, and in the example indicated by the C curve, the vertical crack occurrence rate is 1/2 that of the conventional case. Diminished.
【0013】[0013]
【発明の効果】ビームブランクの連続鋳造においては、
ビームブランクの形状が複雑であるため、従来均一な厚
みの凝固殻を得ることが極めて困難であったが、本発明
は鋳型のウエブ中央部を境として鋳型の冷却水系列を2
分割し、分割された右半分および左半分の鋳型の冷却水
系列をそれぞれ独立して冷却水流量を制御する方法を取
ったので、次の如き効果を挙げることができた。 (イ)ビームブランクのウエブ中央部を境とする左、右
各部における溶鋼拔熱量がほぼ均衡するので凝固過程に
おけるビームブランク左右フランジにおける凝固殻厚み
の比a/b≒1すなわち各部均一に冷却させることが可
能となり、ブレークアウト等の事故発生が従来の1/3
に減少し、ビームブランク鋳片の縦割れ欠陥が従来の1
/2に減少した。 (ロ)本発明は浸漬ノズルが非対称単一ノズルの場合の
みならず、対称複数ノズルおよびオープンノズルの場合
でも同様に効果がある。 (ハ)ビームブランクの連続鋳造操業が安定し、生産能
力の向上が可能となり、コストの低減が実現した。In the continuous casting of beam blanks,
Conventionally, it was extremely difficult to obtain a solidified shell having a uniform thickness due to the complicated shape of the beam blank, but in the present invention, the cooling water series of the mold is set to 2 with the center of the mold web as a boundary.
Since the cooling water series of the divided right and left mold halves was independently controlled, the following effects could be obtained. (A) Since the heat quantities of molten steel in the left and right parts of the beam blank at the center of the web are almost balanced, the ratio of the thickness of the solidified shell in the left and right flanges of the beam blank in the solidification process is a / b≈1, that is, each part is cooled uniformly. This makes it possible to reduce the number of accidents such as breakouts to 1/3 that of the past.
The vertical cracking defect of the beam blank slab is reduced to 1
It decreased to / 2. (B) The present invention is effective not only when the immersion nozzle is an asymmetric single nozzle, but also when the immersion nozzle is a symmetrical multiple nozzle and an open nozzle. (C) The continuous casting operation of the beam blank is stable, the production capacity can be improved, and the cost is reduced.
【図1】ビームブランクの連続鋳造における非対称単孔
浸漬ノズルによる鋳造初期の凝固殻と、左右フランジに
おける凝固殻厚みa、bを示す水平断面図である。FIG. 1 is a horizontal cross-sectional view showing a solidified shell at the initial stage of casting by an asymmetric single-hole immersion nozzle in continuous casting of a beam blank and solidified shell thicknesses a and b in the left and right flanges.
【図2】図1の場合のタンディッシュ、浸漬ノズルおよ
びビームブランク鋳型を示す正面断面図である。FIG. 2 is a front sectional view showing a tundish, an immersion nozzle and a beam blank mold in the case of FIG.
【図3】ビームブランクの連続鋳造における対称複数浸
漬ノズルと鋳造初期の凝固殻との配置を示す模式水平断
面図である。FIG. 3 is a schematic horizontal sectional view showing the arrangement of symmetrical multiple immersion nozzles and solidified shells in the initial stage of casting in continuous casting of beam blanks.
【図4】ビームブランク鋳片に発生する縦割れを示す斜
視図である。FIG. 4 is a perspective view showing vertical cracks occurring in a beam blank slab.
【図5】実施例1におけるオープン浸漬ノズルの場合
(A曲線)と、単孔非対称浸漬ノズルの場合(B曲線)
のメニスカスからの距離(mm)による左右フランジ部に
おける凝固殻厚み比a/bを対比する線図である。FIG. 5 shows a case of an open immersion nozzle in Example 1 (curve A) and a case of a single-hole asymmetrical immersion nozzle (curve B).
FIG. 6 is a diagram comparing the solidified shell thickness ratio a / b in the left and right flange portions with the distance (mm) from the meniscus.
【図6】実施例2における鋳型左半分と右半分における
冷却水量比が表1の如く異なる場合におけるメニスカス
からの距離(mm)と、左右フランジ部の凝固殻厚みa/
bとの関係を示す線図である。FIG. 6 shows the distance (mm) from the meniscus and the thickness a / of the solidified shell of the left and right flanges when the cooling water amount ratios in the left half and the right half of the mold in Example 2 are different as shown in Table 1.
It is a diagram which shows the relationship with b.
【図7】実施例2における鋳型冷却水量比がそれぞれ
1.0、1.3、1.8の場合のビームブランク鋳片に発
生した縦割れ発生率を示す線図である。FIG. 7 is a diagram showing vertical crack occurrence rates occurring in beam blank slabs when the mold cooling water amount ratios in Example 2 were 1.0, 1.3 and 1.8, respectively.
2 タンディッシュ 3 溶鋼 4 浸漬ノズル 6 ビームブランク鋳型 8 凝固殻 10 フランジ部 12 ウエブ部 14 縦割れ 2 Tundish 3 Molten steel 4 Immersion nozzle 6 Beam blank mold 8 Solidified shell 10 Flange portion 12 Web portion 14 Vertical crack
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年2月19日[Submission date] February 19, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図面の簡単な説明】[Brief description of drawings]
【図1】ビ−ムブランクの連続鋳造における非対称単孔
浸漬ノズルによる鋳造初期の凝固殻と、左右フランジに
おける凝固殻厚みa,bを示す水平断面図である。FIG. 1 is a horizontal cross-sectional view showing a solidified shell at the initial stage of casting by an asymmetric single-hole immersion nozzle in continuous casting of beam blanks and solidified shell thicknesses a and b in the left and right flanges.
【図2】図1の場合のタンディッシュ、浸漬ノズルおよ
びビ−ムブランク鋳型を示す正面断面図である。FIG. 2 is a front sectional view showing a tundish, a dipping nozzle and a beam blank mold in the case of FIG.
【図3】ビ−ムブランクの連続鋳造における対称複数浸
漬ノズルと鋳造初期の凝固殻との配置を示す模式水平断
面図である。FIG. 3 is a schematic horizontal cross-sectional view showing the arrangement of symmetrical multiple immersion nozzles and solidified shells at the initial stage of casting in continuous casting of beam blanks.
【図4】ビ−ムブランク鋳片に発生する縦割れを示す斜
視図である。FIG. 4 is a perspective view showing vertical cracks generated in a beam blank slab.
【図5】実施例1におけるオ−プン浸漬ノズルの場合
(A曲線)と、単孔非対称浸漬ノズルの場合(B曲線)
のメニスカスからの距離(mm)による左右フランジ部
における凝固殻厚み比a/bを対比する線図である。FIG. 5 is a case of an open immersion nozzle in Example 1 (A curve) and a case of a single-hole asymmetrical immersion nozzle (B curve).
FIG. 6 is a diagram comparing the solidified shell thickness ratio a / b in the left and right flange portions according to the distance (mm) from the meniscus of FIG.
【図6】実施例2における鋳型左半分と右半分における
冷却水量比が表1の如く異なる場合におけるメニスカス
からの距離(mm)と、左右フランジ部の凝固殻厚みa
/bとの関係を示す線図である。FIG. 6 shows the distance (mm) from the meniscus and the thickness a of the solidified shells of the left and right flanges when the cooling water amount ratios in the left half and the right half of the mold in Example 2 are different as shown in Table 1.
It is a diagram which shows the relationship with / b.
【図7】実施例2における鋳型冷却水量比がそれぞれ
1.0、1.3、1.8の場合のビ−ムブランク鋳片に
発生した縦割れ発生率を示す線図である。FIG. 7 is a diagram showing vertical crack occurrence rates occurring in beam blank slabs when the mold cooling water amount ratios in Example 2 were 1.0, 1.3, and 1.8, respectively.
【図8】従来技術の特開昭52−13428によるビ−
ムブランクの連続鋳造方法を説明するビ−ムブランクの
端面を示す斜視図である。FIG. 8: Beer according to the prior art JP-A-52-13428
It is a perspective view which shows the end surface of the beam blank explaining the continuous casting method of a beam blank.
【符号の説明】 2 タンディッシュ 3 溶鋼 4 浸漬ノズル 6 ビ−ムブランク鋳型 8 凝固殻 10 フランジ部 12 ウエブ部 13 フイレット部 14 縦割れ[Explanation of symbols] 2 Tundish 3 Molten steel 4 Immersion nozzle 6 Beam blank mold 8 Solidification shell 10 Flange portion 12 Web portion 13 Filet portion 14 Vertical cracking
Claims (1)
冷却水の制御系をビームブランクのウエブ中央部で分割
し該鋳型の右半分と左半分の2系列としそれぞれ独立し
て流量制御を行うことを特徴とするビームブランクの連
続鋳造方法。1. In continuous casting of a beam blank, the control system of the mold cooling water is divided at the center of the web of the beam blank, and the flow rate is controlled independently for each of the right half and the left half of the mold. A method for continuously casting a beam blank, the method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04187641A JP3089608B2 (en) | 1992-06-22 | 1992-06-22 | Continuous casting method of beam blank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04187641A JP3089608B2 (en) | 1992-06-22 | 1992-06-22 | Continuous casting method of beam blank |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06586A true JPH06586A (en) | 1994-01-11 |
JP3089608B2 JP3089608B2 (en) | 2000-09-18 |
Family
ID=16209675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04187641A Expired - Fee Related JP3089608B2 (en) | 1992-06-22 | 1992-06-22 | Continuous casting method of beam blank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3089608B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009521330A (en) * | 2005-12-24 | 2009-06-04 | コンカスト アクチェンゲゼルシャフト | Method and apparatus for continuous casting of steel preforms, especially type I preforms |
JP2015167952A (en) * | 2014-03-05 | 2015-09-28 | Jfeスチール株式会社 | continuous casting method of steel |
CN109093083A (en) * | 2018-09-28 | 2018-12-28 | 邢台钢铁有限责任公司 | A kind of continuous casting steel billet and its manufacturing method of surface quality optimization |
CN109304432A (en) * | 2018-11-12 | 2019-02-05 | 莱芜钢铁集团银山型钢有限公司 | A kind of the single-point unequal protection pouring device and application method of ultra-thin big specification Aluminum steel Hot Metal in Beam Blank |
CN109396409A (en) * | 2018-11-12 | 2019-03-01 | 莱芜钢铁集团银山型钢有限公司 | A kind of single-point unequal protection casting method producing ultra-thin big specification Aluminum steel Hot Metal in Beam Blank |
CN110732649A (en) * | 2019-10-24 | 2020-01-31 | 中冶南方连铸技术工程有限责任公司 | Method for controlling secondary cooling water of special-shaped blank |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102773426A (en) * | 2012-08-06 | 2012-11-14 | 莱芜钢铁集团有限公司 | Method for producing continuous casting slab by crystallizer of near-net-shape beam blank continuous casting machine |
-
1992
- 1992-06-22 JP JP04187641A patent/JP3089608B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009521330A (en) * | 2005-12-24 | 2009-06-04 | コンカスト アクチェンゲゼルシャフト | Method and apparatus for continuous casting of steel preforms, especially type I preforms |
JP2015167952A (en) * | 2014-03-05 | 2015-09-28 | Jfeスチール株式会社 | continuous casting method of steel |
CN109093083A (en) * | 2018-09-28 | 2018-12-28 | 邢台钢铁有限责任公司 | A kind of continuous casting steel billet and its manufacturing method of surface quality optimization |
CN109093083B (en) * | 2018-09-28 | 2020-09-01 | 邢台钢铁有限责任公司 | Continuous casting billet with optimized surface quality and manufacturing method thereof |
CN109304432A (en) * | 2018-11-12 | 2019-02-05 | 莱芜钢铁集团银山型钢有限公司 | A kind of the single-point unequal protection pouring device and application method of ultra-thin big specification Aluminum steel Hot Metal in Beam Blank |
CN109396409A (en) * | 2018-11-12 | 2019-03-01 | 莱芜钢铁集团银山型钢有限公司 | A kind of single-point unequal protection casting method producing ultra-thin big specification Aluminum steel Hot Metal in Beam Blank |
CN109396409B (en) * | 2018-11-12 | 2020-07-31 | 莱芜钢铁集团银山型钢有限公司 | Single-point non-equilibrium protection casting method for producing ultrathin large-size aluminum-containing steel special-shaped blank |
CN110732649A (en) * | 2019-10-24 | 2020-01-31 | 中冶南方连铸技术工程有限责任公司 | Method for controlling secondary cooling water of special-shaped blank |
CN110732649B (en) * | 2019-10-24 | 2021-06-08 | 中冶南方连铸技术工程有限责任公司 | Method for controlling secondary cooling water of special-shaped blank |
Also Published As
Publication number | Publication date |
---|---|
JP3089608B2 (en) | 2000-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6367539B1 (en) | Crystalliser for continuous casting | |
JPH06586A (en) | Method for continuously forging beam blank | |
JP4626384B2 (en) | Secondary cooling method for slab in continuous slab casting | |
US3931848A (en) | Method and apparatus for cooling a strand cast in an oscillating mold during continuous casting of metals, especially steel | |
CN112743053A (en) | Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method | |
US20040020632A1 (en) | Method and strand guide for supporting, guiding and cooling casting strands made of steel, especially preliminary sections for girders | |
JPS5838640A (en) | Continuous casting device for thin metal sheet | |
JPS623852A (en) | Beam blank continuous casting method | |
JPS62192229A (en) | Apparatus for direct production of thin metallic sheet and its production | |
JPS609553A (en) | Stopping down type continuous casting machine | |
US4754804A (en) | Method and apparatus for producing rapidly solidified metallic tapes | |
JPH0390261A (en) | Continuous casting method | |
JPH09122861A (en) | Method for secondarily cooling continuously cast slab | |
JPH08132184A (en) | Mold for continuous casting round cast billet and continuous casting method using same | |
JP2867894B2 (en) | Continuous casting method | |
JPH0569088A (en) | Method for continuously casting complex metal material | |
JPH06210410A (en) | Single belt type continuous casting apparatus | |
JPH0760424A (en) | Continuous casting method | |
JPS6213248A (en) | Continuous casting machine | |
JPS6087957A (en) | Apparatus for casting continuously thin metallic sheet | |
JPS63171249A (en) | Continuous casting method for cast metal strip | |
JPS61195764A (en) | Method and device for controlling pouring rate of continuous casting machine for thin sheet | |
JPS5838641A (en) | Continuous casting device for thin steel sheet | |
JPH06154979A (en) | Continuous casting apparatus | |
JPH08206794A (en) | Continuous casting method of slab of large section and continuous casting equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |