JPH065865Y2 - Twin screw dewatering extruder - Google Patents

Twin screw dewatering extruder

Info

Publication number
JPH065865Y2
JPH065865Y2 JP1990029095U JP2909590U JPH065865Y2 JP H065865 Y2 JPH065865 Y2 JP H065865Y2 JP 1990029095 U JP1990029095 U JP 1990029095U JP 2909590 U JP2909590 U JP 2909590U JP H065865 Y2 JPH065865 Y2 JP H065865Y2
Authority
JP
Japan
Prior art keywords
screw
twin
cylinder
seal ring
dewatering extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990029095U
Other languages
Japanese (ja)
Other versions
JPH03121820U (en
Inventor
謙一 小池
寛三郎 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP1990029095U priority Critical patent/JPH065865Y2/en
Publication of JPH03121820U publication Critical patent/JPH03121820U/ja
Application granted granted Critical
Publication of JPH065865Y2 publication Critical patent/JPH065865Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/575Screws provided with elements of a generally circular cross-section for shearing the melt, i.e. shear-ring elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、二軸脱水押出機に関し、特に、外径が互いに
軸方向においてかみ合ったシールリングを各スクリュ軸
に用いることにより、原料の溶融及び加圧状態を定常的
に保ち、一定の割合で原料を下流側に搬送するための新
規な改良に関する。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a twin-screw dewatering extruder, and in particular, by using a seal ring whose outer diameters are axially engaged with each other on each screw shaft, the raw material is melted. Also, the present invention relates to a new improvement for constantly maintaining the pressurized state and conveying the raw material to the downstream side at a constant rate.

〔従来の技術〕[Conventional technology]

従来、用いられていたこの種の二軸脱水押出機としては
種々あるが、その中で代表的な構成について述べると、
第5図で示す特公昭59-37021号公報に開示された構成を
挙げることができる。
Conventionally, there are various types of this type of twin-screw dewatering extruder that have been conventionally used.
The structure disclosed in Japanese Examined Patent Publication No. 59-37021 shown in FIG. 5 can be mentioned.

すなわち、第5図では、その構成を極めて簡略化した概
略構成図として示しているが、符号1で示されるもの
は、脱水スリット2を有する複数の脱水シリンダ(脱水
部を構成する)C,Cが、他の中間シリンダC
,C〜Cと共に直列配設されているシリンダで
あり、このシリンダ1内には、順ねじフライト3、ニー
ディングディスク4及び逆ねじフライト5を直列に設け
たスクリュ軸6が回転自在に設けられている。
That is, in FIG. 5, the configuration is shown as a schematic configuration diagram in which the configuration is extremely simplified, but the one denoted by the reference numeral 1 is a plurality of dehydration cylinders (constituting a dehydration section) C 2 having dehydration slits 2 , C 4 is the other intermediate cylinder C 1 ,
This is a cylinder arranged in series with C 3 , C 5 to C 9 , and in this cylinder 1, a screw shaft 6 in which a forward screw flight 3, a kneading disk 4 and a reverse screw flight 5 are provided in series rotates. It is provided freely.

従って、順ねじフライト3で下流に送られる含水樹脂材
料等の原料を、逆ねじフライトで逆流させて下流への送
りをせき止めることにより、原料を逆ねじフライトの上
流側で圧縮して含有水分を絞り出し、脱水部から水を排
出するようにしている。
Therefore, the raw material such as the water-containing resin material sent to the downstream in the forward screw flight 3 is reversely flowed in the reverse screw flight to prevent the feed to the downstream, thereby compressing the raw material on the upstream side of the reverse screw flight to reduce the water content. Water is squeezed out and drained from the dehydration unit.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

従来の二軸脱水押出機は、以上のように構成されていた
ため、次のような課題が存在していた。
Since the conventional twin-screw dewatering extruder is configured as described above, the following problems exist.

すなわち、二軸脱水押出機全体としては、原料が上流か
ら下流へ送られて脱水混練処理されるものであるため、
原料及び水蒸気化した含有水分が逆ねじフライトを突発
的または不連続的に下流に流出するので、サージング現
象を起こし、脱水部に発生する溶融樹脂の充満率が不安
定になったり、下流のベント部における樹脂材料のせり
上がりを誘発する原因となっていた。
That is, as the entire twin-screw dewatering extruder, since the raw material is sent from the upstream to the downstream for dehydration kneading treatment,
The raw material and the steamed water content suddenly or discontinuously flow out to the downstream side of the reverse screw flight, causing a surging phenomenon and making the filling rate of the molten resin in the dehydration section unstable, or venting downstream. This caused the resin material to rise in the area.

また、逆ねじフライトでは、スクリュ軸の回転数により
練り返し力が第6図に示すように大巾に変化して、安定
した押出しが困難であった。
Further, in the reverse screw flight, the kneading-back force greatly changed depending on the rotation speed of the screw shaft as shown in FIG. 6, and stable extrusion was difficult.

そのために、処理された樹脂製品の品質にムラが発生し
たり、脱水率も悪くなっており、二軸脱水押出機の定常
で静粛な運転ができず、その対策として、二軸脱水押出
機が本来有する機械能力に比して処理能力を低下させて
運転せざるを得なかった。
As a result, the quality of the treated resin product is uneven and the dehydration rate is poor, and the twin-screw dewatering extruder cannot operate in a steady and quiet manner. It was inevitable to operate with a lower processing capacity than the original mechanical capacity.

本考案は、以上のような課題を解決するためになされた
もので、特に、外径部が互いに軸方向においてかみ合っ
たシールリングを各スクリュ軸に用いることにより、原
料の溶融及び加圧状態を定常的に保ち、スクリュ回転数
の変化に対しても殆ど影響を受けない運転性状を実現
し、一定の割合で原料を下流側に搬送するようにした二
軸脱水押出機を提供することを目的とする。
The present invention has been made in order to solve the above problems, and in particular, by using a seal ring having outer diameter portions meshing with each other in the axial direction for each screw shaft, the melting and pressurizing state of the raw material can be improved. An object of the present invention is to provide a twin-screw dewatering extruder that maintains a steady state, realizes operating characteristics that are hardly affected by changes in the screw rotation speed, and conveys raw materials at a constant rate downstream. And

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案による二軸脱水押出機は、シリンダ内に設けられ
た一対のスクリュ軸を用いて原料を混練して搬送し、前
記原料の水分を前記シリンダに設けた脱水部を介して排
出するようにした二軸脱水押出機において、前記シリン
ダに設けた脱水スリットの下流位置に対応し前記各スク
リュ軸上に互いに軸方向において外径がかみ合ったシー
ルリングを備えた構成である。
The twin-screw dewatering extruder according to the present invention uses a pair of screw shafts provided in a cylinder to knead and convey the raw material, and discharges the water content of the raw material through a dewatering unit provided in the cylinder. In the twin-screw dewatering extruder described above, a seal ring corresponding to the downstream position of the dewatering slit provided in the cylinder is provided on each of the screw shafts and the outer diameters of which mesh with each other in the axial direction.

また、前記シールリングは、前記各スクリュ軸に複数個
設けられている構成である。
Further, a plurality of the seal rings is provided on each screw shaft.

〔作用〕[Action]

本考案による二軸脱水押出機においては、シリンダに設
けた脱水スリットの下流位置に対応し各スクリュ軸上
に、互いに軸方向において外径部がかみ合ったシールリ
ングが設けられているため、原料である樹脂材料の通過
箇所が、シールリングの外径とシリンダの内径との隙間
及び各シールリング間の軸方向隙間のみとなり、これら
の各隙間を、スクリュ軸のその他の隙間の流路面積より
小さくすることにより、樹脂材料の流れが制限されるの
で、シールリングの上流側である脱水部で樹脂材料が加
圧圧縮され、含有水分が絞り出される。
In the twin-screw dewatering extruder according to the present invention, a seal ring having outer diameter portions meshing with each other in the axial direction is provided on each screw shaft at a position corresponding to the downstream position of the dewatering slit provided in the cylinder. The passage point of a certain resin material is only the gap between the outer diameter of the seal ring and the inner diameter of the cylinder and the axial gap between each seal ring, and each of these gaps is smaller than the flow passage area of the other gaps of the screw shaft. By doing so, the flow of the resin material is limited, so that the resin material is compressed under pressure in the dehydration section on the upstream side of the seal ring, and the water content is squeezed out.

また、樹脂材料の加圧力がシールリングの各隙間による
抵抗力を越えると下流側へ流出するが、逆ねじフライト
を使用していないので、無理な流れが発生せず、定常的
な加圧脱水あるいは溶融を行うことができる。
Also, when the pressure of the resin material exceeds the resistance force due to each gap of the seal ring, it flows out to the downstream side, but since reverse screw flight is not used, an unreasonable flow does not occur and steady pressure dehydration is performed. Alternatively, melting can be performed.

さらに、前述の各隙間は、スクリュの回転数の変化に関
係なく一定していのるで、シールリングの上流側におけ
る樹脂材料の溶融状態及び加圧力が定常的であり、連続
的且つ定常的に一定の割合の樹脂材料を下流側へ搬送す
ることができる。
Furthermore, since each of the above-mentioned gaps is constant regardless of the change in the number of rotations of the screw, the molten state of the resin material and the pressurizing force on the upstream side of the seal ring are steady and continuous and steady. It is possible to convey a fixed proportion of the resin material to the downstream side.

〔実施例〕〔Example〕

以下、図面と共に本考案による二軸脱水押出機の好適な
実施例について詳細に説明する。
Hereinafter, preferred embodiments of the twin-screw dewatering extruder according to the present invention will be described in detail with reference to the drawings.

尚、従来例と同一又は同等部分については、同一符号を
用いて説明する。
The same or equivalent parts as those of the conventional example will be described using the same reference numerals.

第1図から第3図までは、本考案による二軸脱水押出機
を示すためのもので、第1図は要部を示す断面図、第2
図は他の実施例を示す要部断面図、第3図は全体構成を
示す概略構成図、第4図はスクリュ軸回転時の樹脂圧力
特性図である。
1 to 3 are for showing a twin-screw dewatering extruder according to the present invention, and FIG. 1 is a sectional view showing a main part, and FIG.
FIG. 4 is a cross-sectional view of a main part showing another embodiment, FIG. 3 is a schematic configuration view showing the overall configuration, and FIG. 4 is a resin pressure characteristic diagram when the screw shaft rotates.

まず、第3図において符号1で示されるものは、脱水ス
リット2を有する複数の脱水シリンダ(脱水部を構成す
る)C,Cが他の中間シリンダC,C,C
と共に直列配設されているシリンダであり、このシ
リンダ1内には、順ねじフライト3、ニーディングディ
スク4及びシールリング部7を直列に設けたスクリュ軸
6が回転自在に設けられている。
First, what is denoted by reference numeral 1 in FIG. 3 is a plurality of dewatering cylinders C 2 and C 4 having dewatering slits 2 (constituting a dewatering portion) having other intermediate cylinders C 1 , C 3 and C 5 .
This is a cylinder that is arranged in series with C 9 , and in this cylinder 1, a screw shaft 6 in which a forward screw flight 3, a kneading disk 4, and a seal ring portion 7 are provided in series is rotatably provided. .

前記シールリング部7を含む構成は、第1図に示される
ように構成されており、まず、前記シリンダ1内には、
一対のスクリュ軸6,6が互いに並設され、各順ねじフ
ライト3が互いに軸方向においてかみ合うように構成さ
れている。
The configuration including the seal ring portion 7 is configured as shown in FIG. 1. First, in the cylinder 1,
A pair of screw shafts 6 and 6 are arranged side by side, and each forward screw flight 3 is configured to mesh with each other in the axial direction.

次に、前記各スクリュ軸6,6における前記各順ねじフ
ライト3の下流側には、テーパ部8aを有するほぼ円板
形をなすシールリング8が一体に形成されており、各シ
ールリング8によってシールリング部7を構成してい
る。前記各シールリング8の外径8bは、その軸方向に
おいて互いにかみ合うように構成されると共に、この外
径8bとシリンダ1の内径1a間には、隙間aが形成
されている。前記各シールリング8のテーパ部8aと対
向して形成されて垂直面8c間には、軸方向隙間a
形成されている。従って、各隙間a,aは、スクリ
ュ軸1の他の部位すなわち順ねじフライト部の流路面積
よりも小さく構成され、原料の流れを制限することがで
きる。
Next, a substantially disk-shaped seal ring 8 having a tapered portion 8a is integrally formed on the screw shafts 6 and 6 on the downstream side of the forward screw flights 3, and the seal rings 8 form The seal ring portion 7 is configured. Outer diameter 8b of the respective sealing ring 8, together configured to mate with each other in the axial direction, between the outer diameter 8b and the inner diameter 1a of the cylinder 1, the gap a 1 is formed. An axial gap a 2 is formed between the vertical surfaces 8c, which are formed so as to face the tapered portion 8a of each seal ring 8. Therefore, the gaps a 1 and a 2 are configured to be smaller than the flow passage area of the other part of the screw shaft 1, that is, the forward screw flight part, and can restrict the flow of the raw material.

さらに、前記シールリング部7の下流側には、他の順ね
じフライト3が形成されている。
Further, another forward screw flight 3 is formed on the downstream side of the seal ring portion 7.

本考案による二軸脱水押出機は、前述したように構成さ
れており、以下に、その動作について説明する。
The twin-screw dewatering extruder according to the present invention is configured as described above, and its operation will be described below.

まず、前記シールリング部7の上流側に供給された原料
である樹脂材料は、前記シールリング部7の各隙間
,aによってその流れが制限されるために、脱水
部である脱水シリンダC,Cで加圧・圧縮され、含
有水分が絞り出されて排出される。
First, since the flow of the resin material, which is the raw material supplied to the upstream side of the seal ring portion 7, is restricted by the gaps a 1 and a 2 of the seal ring portion 7, the dehydration cylinder which is the dehydration portion. It is pressurized / compressed with C 2 and C 4 , and the water content is squeezed out and discharged.

前述の状態で、樹脂材料の加圧力がシールリング部7の
抵抗力を越えると、下流側へ流出する。この場合、従来
のような逆ねじフライトを使用していないので、無理な
流れが発生せず、定常的な加圧脱水あるいは溶融が行わ
れる。
In the above-mentioned state, when the pressure force of the resin material exceeds the resistance force of the seal ring portion 7, it flows out to the downstream side. In this case, since the reverse-screw flight as in the conventional case is not used, an unreasonable flow does not occur, and steady pressure dehydration or melting is performed.

また、前記各隙間a,aは、スクリュ軸の回転数の
変化に関係なく一定しているので、シールリング部7の
上流側における樹脂材料の溶融状態及び加圧力が定常的
であり、連続的且つ定常的に一定の割合の樹脂材料が下
流側へ供給され、第4図に示されるように、スクリュ軸
6の回転に対する樹脂圧力も、第6図に示す従来の特性
よりも大巾(従来の約1/5)に改善されることが明らか
である。
Further, since the gaps a 1 and a 2 are constant regardless of the change in the rotation speed of the screw shaft, the molten state and the pressure of the resin material on the upstream side of the seal ring portion 7 are constant, A constant proportion of the resin material is continuously and steadily supplied to the downstream side, and as shown in FIG. 4, the resin pressure with respect to the rotation of the screw shaft 6 is larger than the conventional characteristic shown in FIG. It is clear that this will be improved to about 1/5 of the conventional value.

また、第2図に示す構成は、第1図の他の実施例を示す
ものであり、前記シールリング部7が、各スクリュ軸6
毎に複数のシールリング8を有するようにした構成で、
作用は第1図と同様であるので、第1図と同一部分には
同一符号を付し、その説明は省略している。
The configuration shown in FIG. 2 shows another embodiment of FIG. 1, in which the seal ring portion 7 is attached to each screw shaft 6
With a configuration having a plurality of seal rings 8 for each,
Since the operation is the same as that in FIG. 1, the same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof is omitted.

尚、前述の脱水部は脱水シリンダに限らず、他の手段を
用いることもできる。
The dehydrating unit is not limited to the dehydrating cylinder, and other means can be used.

また、原料としては、樹脂材料に限らず他の材料を用い
ることもできる。
Further, the raw material is not limited to the resin material, and other materials can be used.

〔考案の効果〕[Effect of device]

本考案による二軸脱水押出機は、以上のように構成され
ているため、次のような効果を得ることができる。
Since the twin-screw dewatering extruder according to the present invention is configured as described above, the following effects can be obtained.

すなわち、従来の逆ねじフライトに代えて間隙の変化の
ないシールリング部を設けたことにより、脱水時に発生
する樹脂圧力変動を小さくして樹脂材料の移送を定常的
に行うことにより、従来の逆ねじフライトでは得られな
い高脱水率が得られる。
In other words, by replacing the conventional reverse screw flight with a seal ring part that does not change the gap, the resin pressure fluctuation that occurs during dehydration is reduced and the resin material is steadily transferred. High dehydration rate that cannot be obtained by screw flight is obtained.

従って、品質の向上を得ることができると共に、運転面
では急激な樹脂圧力変動が少なくなり、ベントシリンダ
部での樹脂のせり上がりが防止され、スクリュ軸回転数
当たりの処理能力を大巾に高めることが可能となった等
の効果を得ることができる。
Therefore, the quality can be improved, and the resin pressure can be prevented from abruptly fluctuating suddenly on the operation side, the resin can be prevented from rising in the vent cylinder portion, and the processing capacity per screw shaft rotation speed can be greatly increased. It is possible to obtain the effect that it becomes possible.

【図面の簡単な説明】[Brief description of drawings]

第1図から第4図迄は、本考案による二軸脱水押出機を
示すためのもので、第1図は要部を示す断面図、第2図
は他の実施例を示す断面図、第3図は全体構成を示す概
略構成図、第4図はスクリュ軸回転時の樹脂圧力特性
図、第5図は従来の二軸脱水押出機を示す概略構成図、
第6図は従来のスクリュ軸回転時の樹脂圧力特性図であ
る。 1はシリンダ、3は順ねじフライト、6はスクリュ軸、
8はシールリング、8bは外径である。
1 to 4 are for showing a twin-screw dewatering extruder according to the present invention. FIG. 1 is a sectional view showing an essential part, FIG. 2 is a sectional view showing another embodiment, and FIG. 3 is a schematic configuration diagram showing the overall configuration, FIG. 4 is a resin pressure characteristic diagram when the screw shaft is rotating, FIG. 5 is a schematic configuration diagram showing a conventional twin-screw dewatering extruder,
FIG. 6 is a resin pressure characteristic diagram when the conventional screw shaft is rotated. 1 is a cylinder, 3 is a forward screw flight, 6 is a screw shaft,
8 is a seal ring and 8b is an outer diameter.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】シリンダ(1)内に設けられた一対のスクリ
ュ軸(6)を用いて原料を混練して搬送し、前記原料の水
分を前記シリンダ(1)に設けた脱水部を介して排出する
ようにした二軸脱水押出機において、 前記シリンダ(1)に設けた脱水スリット(2)の下流位置に
対応する前記各スクリュ軸(6)上に互いに軸方向におい
て外径(8b)がかみ合うシールリング(8)を備えたことを
特徴とする二軸脱水押出機。
A raw material is kneaded and conveyed by using a pair of screw shafts (6) provided in a cylinder (1), and the water content of the raw material is passed through a dehydrating section provided in the cylinder (1). In the twin-screw dewatering extruder configured to discharge, the outer diameter (8b) in the axial direction is mutually on the screw shafts (6) corresponding to the downstream positions of the dewatering slits (2) provided in the cylinder (1). A twin-screw dewatering extruder, characterized in that it has a seal ring (8) that meshes with it.
【請求項2】前記シールリング(8)は、前記各スクリュ
軸(6)に複数個設けられていることを特徴とする請求項
1記載の二軸脱水押出機。
2. The twin-screw dewatering extruder according to claim 1, wherein a plurality of the seal rings (8) are provided on each screw shaft (6).
JP1990029095U 1990-03-23 1990-03-23 Twin screw dewatering extruder Expired - Lifetime JPH065865Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990029095U JPH065865Y2 (en) 1990-03-23 1990-03-23 Twin screw dewatering extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990029095U JPH065865Y2 (en) 1990-03-23 1990-03-23 Twin screw dewatering extruder

Publications (2)

Publication Number Publication Date
JPH03121820U JPH03121820U (en) 1991-12-12
JPH065865Y2 true JPH065865Y2 (en) 1994-02-16

Family

ID=31531874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990029095U Expired - Lifetime JPH065865Y2 (en) 1990-03-23 1990-03-23 Twin screw dewatering extruder

Country Status (1)

Country Link
JP (1) JPH065865Y2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982783B2 (en) * 1998-10-28 2007-09-26 株式会社ブリヂストン Recycling method of vulcanized rubber
EP2243610A1 (en) * 2009-04-20 2010-10-27 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and apparatus for low shear mixing of shear sensitive materials
KR101905352B1 (en) * 2010-07-23 2018-10-05 아란세오 도이치란드 게엠베하 Extruder with integrated die plate and method for degasing polymer mixtures
JP5956156B2 (en) * 2012-01-05 2016-07-27 株式会社ブリヂストン Multi-screw kneading extruder and method for producing wet masterbatch
JP5990119B2 (en) * 2013-03-18 2016-09-07 東京インキ株式会社 Dewatering device in twin screw extruder

Also Published As

Publication number Publication date
JPH03121820U (en) 1991-12-12

Similar Documents

Publication Publication Date Title
US4875847A (en) Twin-screw extruder having respective conical nose screw sections
KR100743476B1 (en) Conical twin-screw extruder and dehydrator
US4277182A (en) Extruder with short cycle multichannel wave screw
US7981340B2 (en) Method of degassing a flowable mass in a ring extruder
US6170975B1 (en) Multi-shaft extruder kneading discs, kneading disc blocks and extruder
JP2002210731A (en) Twin continuous kneader and method for kneading thereby
US3252182A (en) Screw press for extrusion of plastics
US3841814A (en) Apparatus for processing plastic materials
JPH065865Y2 (en) Twin screw dewatering extruder
US3239882A (en) Dispersion head for extruder
US5153009A (en) Extrusion device
US3929322A (en) Multiscrew extruder
US4356140A (en) Extrusion method with short cycle multichannel wave screw
US4935183A (en) Method of extruding material through a twin-screw extruder having respective conical nose screw sections
CA1049718A (en) Extrusion mill with means for venting fluids
US7080935B2 (en) Multi-screw extruder
US5324183A (en) Apparatus for producing a controllable, uniform conveying pressure for processing highly viscous rubber or thermoplastics
JP4279975B2 (en) Desolvation method by twin screw dewatering extruder and twin screw dewatering extruder
WO2022270012A1 (en) Oil extracting device, oil extracting method, and oil extracting method using co-rotating twin-screw extruder
US3547261A (en) Continuously operating plasticizing device
JP4279976B2 (en) Desolvation method by twin screw dewatering extruder and twin screw dewatering extruder
SU1172738A1 (en) Back-pressure and mixing device for twin-screw extruder
US3310835A (en) Disc extruder
JP2527515B2 (en) Kneading and mixing method of raw materials and screw cylinder structure
JP3738422B2 (en) Kneading extruder for granulation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term