JPH0658501A - Pressurized fluidized bed boiler and operation method thereof - Google Patents

Pressurized fluidized bed boiler and operation method thereof

Info

Publication number
JPH0658501A
JPH0658501A JP21491392A JP21491392A JPH0658501A JP H0658501 A JPH0658501 A JP H0658501A JP 21491392 A JP21491392 A JP 21491392A JP 21491392 A JP21491392 A JP 21491392A JP H0658501 A JPH0658501 A JP H0658501A
Authority
JP
Japan
Prior art keywords
fluidized bed
air
heat transfer
fluidized
fuel supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21491392A
Other languages
Japanese (ja)
Inventor
Susumu Yoshioka
進 吉岡
Yoshinori Otani
義則 大谷
Hiroshi Takezaki
博 武崎
Akio Ueda
昭雄 植田
Taro Sakata
太郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP21491392A priority Critical patent/JPH0658501A/en
Publication of JPH0658501A publication Critical patent/JPH0658501A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a fluidized bed boiler capable of easily controlling a load and a method thereof. CONSTITUTION:A plurality of air dispersing members 2a-2d are disposed at a predetermined interval in the direction of the height of a fluidized bed, and a group of heat transfer pipes 6a-6c are disposed between adjacent air dispersing members 2a-2d, and further fuel supply nozzles 4a-4d are provided upwardly of the respective air dispersing members 2a-2d and at locations in the fluidized layer 103. Upon an increase of a load rate, an air supply location is moved from the uppermost stage to lower stage locations of the air dispersing members 2a-2d in succession without changing the height of the fluidized layer surface 10 and in conformity with the increase of the load rate, and a fluid medium 100 existent at the upper portions of the air dispersing members 2a-2d is fluidized stepwise to substantially increase a heat transfer area of the group of the heat transfer pipes 6a-6c contributing to vapor production. Additionally thereto, a fuel supporting location is also moved from the uppermost stage to lower stage locations of the fuel supply nozzles 4a-4d in succession to increase the amount of fuel supply in conformity with increases of the heat transfer area and the amount of heat absorption. Temperature of fuel gas is prevented from being lowered even upon a decrease of the load, and hence a pressurized container 101 is prevented from being excessively large-sized for accommodation of a fluidized medium tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加圧流動層ボイラに関
し、特に加圧流動層燃焼炉で石炭を燃焼し、スチームタ
ービンとガスタービンを駆動して電力を得る複合サイク
ル発電プラント等に用いられる加圧流動層ボイラにおい
て、負荷制御の容易な加圧流動層ボイラおよびその運転
方法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized bed boiler, and more particularly, it is used in a combined cycle power plant for burning coal in a pressurized fluidized bed combustion furnace to drive a steam turbine and a gas turbine to obtain electric power. In a pressurized fluidized bed boiler, a pressurized fluidized bed boiler whose load is easily controlled and an operating method thereof are provided.

【0002】[0002]

【従来の技術】石炭火力発電所の高効率化の要求から従
来のスチームタービンによる発電だけでなく、それに加
えてガスタービンによる発電も可能な加圧流動層ボイラ
複合サイクル発電プラントの開発が進められている。図
2に従来の加圧流動層ボイラを示すが、10ないし15
kg/cmg程度までの所定の圧力に加圧された加圧
容器101の中に流動層燃焼炉102が収納され、流動
層燃焼炉102内には脱硫剤である石灰石粒子を主体と
する流動媒体100が充填されている。この流動媒体1
00は炉底に設けられた空気分散器2から供給される燃
焼用空気31によって流動化されて、流動層103を形
成する。
2. Description of the Related Art Due to the demand for higher efficiency of coal-fired power plants, the development of a pressurized fluidized bed boiler combined cycle power plant capable of not only conventional steam turbine power generation but also gas turbine power generation has been promoted. ing. FIG. 2 shows a conventional pressurized fluidized bed boiler.
A fluidized bed combustion furnace 102 is housed in a pressure vessel 101 pressurized to a predetermined pressure up to about kg / cm 2 g, and the fluidized bed combustion furnace 102 mainly contains limestone particles as a desulfurizing agent. The fluidized medium 100 is filled. This fluid medium 1
00 is fluidized by the combustion air 31 supplied from the air disperser 2 provided at the bottom of the furnace to form the fluidized bed 103.

【0003】燃料104の石炭粒子は燃料供給ノズル4
から該流動層103内に吹き込まれて流動層103内で
前述の燃焼用空気31によって燃焼する。流動層103
内にはほぼ全領域に亘って伝熱管群6が配置され、石炭
の燃焼熱は該伝熱管群6を通してボイラ給水106の加
熱、スチームの発生によって除去される。これによって
流動層103は所定の温度、典型的には860℃に保持
される。
The coal particles of the fuel 104 are fed to the fuel supply nozzle 4
Is blown into the fluidized bed 103 from the above and is burned in the fluidized bed 103 by the above-mentioned combustion air 31. Fluidized bed 103
A heat transfer tube group 6 is arranged in almost the entire area inside, and combustion heat of coal is removed by heating the boiler feed water 106 and generation of steam through the heat transfer tube group 6. As a result, the fluidized bed 103 is maintained at a predetermined temperature, typically 860 ° C.

【0004】発生したスチーム105は図示していない
蒸気タービンに供給されて電力を得る。一方、流動層燃
焼炉102からの燃焼ガス32は流動層103の上部の
空間、いわゆるフリーボード107を通って流動層燃焼
炉102の出口から排出されてサイクロン108でダス
ト109を除去し、さらに精密脱塵された後、図示しな
いガスタービンに供給されて電力を得る。
The generated steam 105 is supplied to a steam turbine (not shown) to obtain electric power. On the other hand, the combustion gas 32 from the fluidized bed combustion furnace 102 passes through the space above the fluidized bed 103, a so-called freeboard 107, and is discharged from the outlet of the fluidized bed combustion furnace 102 to remove the dust 109 by the cyclone 108. After dedusting, it is supplied to a gas turbine (not shown) to obtain electric power.

【0005】この様に従来の加圧流動層ボイラにおける
スチーム発生量すなわち電力発生量の制御は次のように
して行われていた。例えば特開平1−217108号公
報に開示された方法は図2に示したボイラで説明する
と、燃料104の供給量の変化とともに流動層103の
層高を上、下して流動層103内に浸漬している伝熱管
群6の伝熱面積を変化して行うものである。流動層10
3の層高の上、下操作は流動層103からの流動媒体1
00の抜き出しおよび再供給によって行うが、そのため
に加圧容器101内には別置きの流動媒体タンク110
を設けて抜き出し導管111、供給導管112を通して
流動層103内の流動媒体100の抜き出し、再供給を
行う。
As described above, the control of the steam generation amount, that is, the electric power generation amount in the conventional pressurized fluidized bed boiler has been performed as follows. For example, the method disclosed in Japanese Unexamined Patent Publication No. 1-217108 will be described with reference to the boiler shown in FIG. 2. As the supply amount of the fuel 104 changes, the bed height of the fluidized bed 103 is raised and lowered and immersed in the fluidized bed 103. The heat transfer area of the heat transfer tube group 6 is changed. Fluidized bed 10
The operation of raising and lowering the bed height of 3 is performed by the fluidized medium 1 from the fluidized bed 103.
00 is withdrawn and re-supplied. Therefore, in the pressurized container 101, a separate fluid medium tank 110 is installed.
Is provided and the fluid medium 100 in the fluidized bed 103 is withdrawn and re-supplied through the extraction conduit 111 and the supply conduit 112.

【0006】従来技術において負荷を減少する場合、流
動媒体100を流動層103から流動媒体タンク110
に抜き出して流動層103の層高を低下するが、流動層
103の層高の低下によって流動層103内に浸漬され
ていた伝熱管群6は一部の上部領域がフリーボード10
7に露出される。その結果、流動層103の温度と同じ
860℃で放出された燃焼ガス32はフリーボード10
7に露出した伝熱管群6によって冷却されて温度が低下
する。そのため流動層燃焼炉102の出口に配置された
図示していないガスタービンの入口ガスの温度が低下
し、ガスタービン出力を低下させて加圧流動層ボイラ複
合発電プラントとして発電効率を低下させてしまう。
When the load is reduced in the prior art, the fluidized medium 100 is moved from the fluidized bed 103 to the fluidized medium tank 110.
However, the heat transfer tube group 6 immersed in the fluidized bed 103 due to the decrease in the bed height of the fluidized bed 103 is partially removed from the freeboard 10.
Exposed to 7. As a result, the combustion gas 32 released at 860 ° C., which is the same as the temperature of the fluidized bed 103, becomes freeboard 10.
The heat transfer tube group 6 exposed at 7 cools and the temperature decreases. Therefore, the temperature of the inlet gas of a gas turbine (not shown) arranged at the outlet of the fluidized bed combustion furnace 102 is lowered, and the output of the gas turbine is lowered to lower the power generation efficiency as the pressurized fluidized bed boiler combined cycle power plant. .

【0007】逆に負荷を増加する場合は流動媒体タンク
110の流動媒体100を流動媒体タンク110から流
動層103へ供給導管112を通して供給し、流動層1
03の層高を増加させる。この流動層103の層高を増
加させることによってフリーボード107に露出されて
いた伝熱管群6を流動媒体100内に浸漬させる。その
結果、流動層103の温度と同じ860℃の流動媒体1
00と伝熱管群6との接触面積が多くなり、スチーム1
05も大きくなって負荷を増加させることができる。
On the contrary, when the load is increased, the fluid medium 100 in the fluid medium tank 110 is supplied from the fluid medium tank 110 to the fluidized bed 103 through the feed conduit 112, and the fluidized bed 1
Increase the bed height of 03. By increasing the bed height of the fluidized bed 103, the heat transfer tube group 6 exposed on the freeboard 107 is immersed in the fluidized medium 100. As a result, the fluidized medium 1 at 860 ° C. which is the same as the temperature of the fluidized bed 103
00 and the heat transfer tube group 6 have a large contact area, and steam 1
05 can also be increased to increase the load.

【0008】一方、常圧流動層ボイラにおける負荷変化
の一方法に特公平1−28285号公報記載の方法があ
る。この方法は流動層内に伝熱管および上下方向に複数
段の空気分散器を有し、かつ、流動層面より上部の側壁
に燃料供給導管を設けた流動層ボイラにおいて、流動層
高の変化によらず、負荷に応じて前記空気分散器の上下
方向の空気導入高さを変え、実質的に流動状態にある流
動媒体と伝熱管群の接触面積を変化して負荷を変化させ
るのもである。
On the other hand, as a method for changing the load in a normal pressure fluidized bed boiler, there is a method described in Japanese Patent Publication No. 1-28585. In this method, in a fluidized bed boiler having a heat transfer tube and a plurality of vertically arranged air dispersers in the fluidized bed, and a fuel supply conduit provided on the side wall above the fluidized bed surface, the height of the fluidized bed is changed. Instead, the vertical air introduction height of the air disperser is changed according to the load, and the contact area between the fluid medium and the heat transfer tube group in a substantially flowing state is changed to change the load.

【0009】[0009]

【発明が解決しようとする課題】上記の流動層103の
層高の変化による負荷制御方法を採用した特開平1−2
17108号公報記載の方法は、円滑な負荷変化を実現
するものの、次のような問題点を有する。すなわち、負
荷の減少に対応するために流動媒体100を流動層燃焼
炉102から流動媒体タンク110に抜き出して流動層
103の層高を低下していくが、流動増103の層高の
低下によって流動増103の上部に配置されている伝熱
管群6はフリーボード107に露出される。その結果、
流動層103の温度と同じ860℃で放出された燃焼ガ
ス32は露出された伝熱管群6によって冷却されて温度
が低下する。その結果、ガスタービン入口のガス温度が
低下してガスタービンの出力を低下させ、加圧流動層ボ
イラ複合発電プラントとして発電効率を低下させてしま
う。
[Patent Document 1] Japanese Laid-Open Patent Publication No. 1-21 which employs the above-described load control method by changing the bed height of the fluidized bed 103.
Although the method described in Japanese Patent No. 17108 realizes a smooth load change, it has the following problems. That is, the fluidized medium 100 is withdrawn from the fluidized bed combustion furnace 102 to the fluidized medium tank 110 to reduce the load, and the bed height of the fluidized bed 103 is reduced. The heat transfer tube group 6 arranged on the upper part of the additional unit 103 is exposed to the freeboard 107. as a result,
The combustion gas 32 released at 860 ° C., which is the same as the temperature of the fluidized bed 103, is cooled by the exposed heat transfer tube group 6 and the temperature is lowered. As a result, the gas temperature at the inlet of the gas turbine is lowered, the output of the gas turbine is lowered, and the power generation efficiency of the pressurized fluidized bed boiler combined cycle power plant is lowered.

【0010】また、流動媒体タンク110を必要とする
ためにそれを収納する加圧容器101が大きくなり、そ
の製作、検査に多大の工数を要する。一方、特公平1−
28285号公報記載の常圧流動層ボイラにおける負荷
変化方法をそのまま加圧流動層ボイラへ適用した場合、
石炭は加圧流動層ボイラへの供給形態として好ましい石
炭と水の混合スラリー状で供給されるので、該スラリー
中の水分の一部が流動層面上のフリーボード部で蒸発
し、その潜熱によって燃焼ガス温度を低下させる。した
がって、たとえ石炭の供給が加圧空気による気流輸送方
式であっても、輸送用加圧空気をフリーボード部温度ま
で加熱しない限り同様に燃焼ガス温度を低下させ、その
結果ガスタービン入口ガス温度を低下させてしまう。
Further, since the fluidized medium tank 110 is required, the pressure vessel 101 for accommodating the fluidized medium tank 110 becomes large, and a large number of man-hours are required for its production and inspection. On the other hand
When the load changing method in the atmospheric fluidized bed boiler described in Japanese Patent No. 28285 is directly applied to the pressurized fluidized bed boiler,
Since coal is supplied in the form of a mixed slurry of coal and water, which is a preferable form of supply to the pressurized fluidized bed boiler, part of the water content in the slurry evaporates in the freeboard section on the fluidized bed surface and burns due to its latent heat. Reduce gas temperature. Therefore, even if the coal is supplied by compressed air in the air flow method, unless the pressurized air for transportation is heated to the freeboard temperature, the combustion gas temperature is similarly lowered, and as a result, the gas turbine inlet gas temperature is reduced. Will lower it.

【0011】また、石炭は流動層面より上部に設けた燃
料供給導管から供給されるために、燃焼ガスの上昇流に
乗って未燃焼のまま炉外に排出される石炭微粉および石
炭から放出された揮発分の割合が増加し、燃焼効率を低
下させる。さらに、それらによってガスタービン入口に
設けられた除塵設備の負荷を増加させる。
Further, since coal is supplied from the fuel supply conduit provided above the fluidized bed surface, it is discharged from the coal fine powder and coal discharged outside the furnace while riding on the upward flow of the combustion gas. The proportion of volatile components increases, which lowers combustion efficiency. Further, they increase the load of the dust removing equipment provided at the gas turbine inlet.

【0012】本発明の目的は上記従来技術の欠点、すな
わち、負荷を低下したときの燃焼ガス温度の低下、流動
媒体タンクの収納のために加圧容器が過大になること、
および燃焼効率の低下の問題点を除き、負荷制御の容易
な加圧流動層ボイラおよびその運転方法を提供すること
にある。
The object of the present invention is the above-mentioned drawbacks of the prior art, that is, the temperature of the combustion gas is reduced when the load is reduced, and the pressurized container is excessively large to accommodate the fluidized medium tank.
Another object of the present invention is to provide a pressurized fluidized bed boiler with easy load control and an operating method thereof, excluding the problem of reduction in combustion efficiency.

【0013】[0013]

【課題を解決するための手段】上記本発明の目的は次の
構成によって達成される。すなわち、流動層の高さ方向
に所定の間隔を置いて複数の空気分散器を配置し、さら
に各々の空気分散器間に伝熱管群を配置した加圧流動層
ボイラにおいて、各々の空気分散器の上方でかつ流動層
内の位置に燃料供給ノズルをそれぞれ設けた加圧流動層
ボイラ、または、流動層の高さ方向に所定の間隔を置い
て複数の空気分散器を配置し、さらに各々の空気分散器
間に伝熱管群を配置した加圧流動層ボイラにおいて、燃
料供給位置の高さを流動層内に限定し、かつ流動層流動
化用の分散空気供給位置の高さと燃料供給位置の高さを
変えることで負荷変化に対応させた加圧流動層ボイラの
運転方法である。
The above object of the present invention is achieved by the following constitutions. That is, in a pressurized fluidized bed boiler in which a plurality of air dispersers are arranged at predetermined intervals in the height direction of the fluidized bed, and a heat transfer tube group is further arranged between the air dispersers, each air disperser Above, and a pressurized fluidized bed boiler provided with fuel supply nozzles at a position in the fluidized bed, or a plurality of air dispersers are arranged at predetermined intervals in the heightwise direction of the fluidized bed. In a pressurized fluidized bed boiler in which a heat transfer tube group is arranged between air dispersers, the height of the fuel supply position is limited to within the fluidized bed, and the height of the dispersed air supply position for fluidized bed fluidization and the fuel supply position This is a method of operating a pressurized fluidized bed boiler that responds to load changes by changing the height.

【0014】ここで、各々の空気分散器、燃料供給ノズ
ルの設置間隔および配置数の少なくともいずれかは所望
の負荷率の変化段間隔および変化段数によって決められ
る。また、流動層上面は少なくとも最上段の燃料供給ノ
ズルの上0.5m以上の位置に設定され、最上段の空気
分散器から流動層面までの間の流動層は起動、昇温のた
めの領域であり伝熱管群は配置しない。
Here, at least one of the installation intervals and the number of arrangements of the respective air dispersers and fuel supply nozzles is determined by the desired change interval and the number of change steps of the load factor. Further, the upper surface of the fluidized bed is set at a position at least 0.5 m above the uppermost fuel supply nozzle, and the fluidized bed between the uppermost air disperser and the fluidized bed surface is an area for starting and raising the temperature. Yes No heat transfer tube group is installed.

【0015】また、下段位置の空気分散器からの空気に
よって流動化されるべき媒体粒子が上段位置の空気分散
器に阻害されないように、空気分散器はパイプグリッド
形のように分散器上下間の粒子の流動が容易な空気分散
器を用いることが好ましい。さらに、石炭等の燃料の供
給方式は加圧空気による気流搬送方式、スラリーによる
ポンプ供給方式のいずれかに限定するものではない。
Further, in order to prevent the medium particles to be fluidized by the air from the air disperser at the lower position from being obstructed by the air disperser at the upper position, the air disperser has a pipe grid type and is disposed between the upper and lower parts of the disperser. It is preferable to use an air disperser in which particles can easily flow. Further, the supply method of fuel such as coal is not limited to the air flow transfer method using pressurized air or the pump supply method using slurry.

【0016】[0016]

【作用】上記の本発明の流動層燃焼炉において、負荷率
の増加に際しては流動層面の高さを変化することなく、
負荷率の増加に見合って空気供給位置を最上段から順次
下段位置の空気分散器に移動して、該空気分散器の上部
に存在する流動媒体を階段的に流動化して、流動化状態
の層内にあって実質的に蒸気発生に寄与する伝熱管群の
伝熱面積を増加させる。また、空気供給位置の移動にと
もなって燃料の供給位置も最上段から順次下段位置の燃
料供給ノズルに移動する。これらに伴う伝熱面積、さら
に熱吸収量の増加に見合って燃料供給量を増加させる。
In the above fluidized bed combustion furnace of the present invention, when the load factor is increased, the height of the fluidized bed surface is not changed,
In order to increase the load factor, the air supply position is sequentially moved from the uppermost stage to the air disperser at the lower stage position, and the fluidized medium existing in the upper part of the air disperser is fluidized stepwise to form a fluidized layer. To increase the heat transfer area of the heat transfer tube group that is inside and substantially contributes to steam generation. Further, as the air supply position moves, the fuel supply position also sequentially moves from the uppermost stage to the lower position fuel supply nozzle. The fuel supply amount is increased in proportion to the increase in the heat transfer area and the heat absorption amount.

【0017】逆に、最下段の空気分散器、燃料供給ノズ
ルから空気および石炭を供給し、負荷率100%の燃焼
状態から負荷率を段階的に減少するときは、最下段から
順次上段位置のものに使用する空気分散器および燃料供
給口を移動し、下部領域の流動化を停止して燃焼領域お
よび実質的に作用している伝熱管群の伝熱面積を減少さ
せる。
On the contrary, when air and coal are supplied from the air disperser and the fuel supply nozzle in the lowermost stage and the load factor is gradually reduced from the combustion state with a load factor of 100%, the lowermost stage is sequentially moved to the upper stage position. The air disperser and the fuel supply port used for the thing are moved, fluidization of a lower area | region is stopped, and the heat transfer area of a combustion area and the heat transfer tube group which is working substantially is reduced.

【0018】上記のように、負荷変化に対して本発明は
流動層高を変化することなく燃焼用空気の供給高さ、お
よび燃料供給高さを上下することで対応させるようにし
た。こうして流動層の層高を変化させないので流動媒体
内に浸漬されている伝熱管群がフリーボードに露出され
ることがなく、さらにフリーボードには燃料が供給され
ないので水分や輸送用空気も供給されないので、流動層
から放出された燃焼ガスはフリーボードで温度が低下す
ることはない。
As described above, the present invention copes with a change in load by raising or lowering the supply height of combustion air and the fuel supply height without changing the fluidized bed height. In this way, since the bed height of the fluidized bed is not changed, the heat transfer tube group immersed in the fluidized medium is not exposed to the freeboard, and further, since fuel is not supplied to the freeboard, neither moisture nor transport air is supplied. Therefore, the temperature of the combustion gas released from the fluidized bed does not drop on the freeboard.

【0019】したがって、本発明の加圧流動層ボイラの
典型的な適用例であるガスタービン入口のガス温度が高
くなり、ガスタービンの出力を低下させることがなくな
る。さらに、流動層内の流動媒体量を変化させる必要が
なくなるので流動媒体の貯蔵、再供給のための別置きの
流動媒体タンクを省略またはその容量を小さくすること
ができる。
Therefore, the gas temperature at the gas turbine inlet, which is a typical application example of the pressurized fluidized bed boiler of the present invention, becomes high, and the output of the gas turbine is not reduced. Further, since it is not necessary to change the amount of the fluid medium in the fluidized bed, a separate fluid medium tank for storing and re-supplying the fluid medium can be omitted or its capacity can be reduced.

【0020】[0020]

【実施例】次に図面をもって本発明の実施例を詳細に説
明する。図1は本発明の一実施例の加圧流動層ボイラで
あり、所定の圧力に加圧された加圧容器101の中に流
動層燃焼炉102、サイクロン108が収納され、流動
層燃焼炉102内には脱硫剤である石灰石粒子を主体と
する流動媒体100が充填され、流動層103を形成し
ている。また、流動層燃焼炉102にはその底部および
流動層103の高さ方向に複数段の空気分散器2a〜2
d、燃料供給ノズル4a〜4dが設けられている。それ
ぞれの空気分散器2a〜2dの一端が加圧容器内101
に開放できる空気弁3a〜3dがそれぞれ接続されてい
る。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows a pressurized fluidized bed boiler according to an embodiment of the present invention, in which a fluidized bed combustion furnace 102 and a cyclone 108 are housed in a pressure vessel 101 pressurized to a predetermined pressure, and a fluidized bed combustion furnace 102 is provided. A fluidized medium 100 mainly composed of limestone particles as a desulfurizing agent is filled therein to form a fluidized bed 103. In addition, the fluidized bed combustion furnace 102 has a plurality of stages of air dispersers 2 a to 2 in the bottom portion thereof and in the height direction of the fluidized bed 103.
d, fuel supply nozzles 4a to 4d are provided. One end of each of the air dispersers 2a to 2d is in the pressure vessel 101.
Air valves 3a to 3d that can be opened are connected to the respective air valves.

【0021】空気分散器2a〜2dの各々はそれ自身、
および下部の空気分散器2から上昇してくる空気によっ
て流動化される流動媒体100粒子の上下の流動を妨げ
ないような型式のものが用いられる。本実施例の空気分
散器2a〜2dは上記の条件を満足するパイプグリッド
形を採用する。空気分散器2a〜2dと一対となって該
分散器2a〜2dの上方には燃焼炉壁を貫通して燃料供
給ノズル4a〜4dがそれぞれ設けられ、各々の燃料供
給ノズル4は切替バルブ5a〜5cを通して燃料供給導
管に接続されて燃料104の石炭が供給されるようにな
っている。また、石炭は加圧条件への供給が容易に行え
るように、本実施例では石炭と水の混合スラリーによる
ポンプ輸送システムを採用している。このとき、炉内脱
硫剤としてのドロマイトあるいは石灰石の粒子が上述の
石炭、水混合スラリーに添加されて供給される。なお、
初期充填の流動媒体100は媒体ホッパー115から導
管116を通って供給される。
Each of the air dispersers 2a-2d is itself
Also, a type that does not hinder the upward and downward flow of the fluidized medium 100 particles that are fluidized by the air that rises from the lower air disperser 2 is used. The air dispersers 2a to 2d of this embodiment adopt a pipe grid type that satisfies the above conditions. Fuel supply nozzles 4a to 4d are provided above the dispersers 2a to 2d in a pair with the air dispersers 2a to 2d, penetrating through the combustion furnace wall, and each fuel supply nozzle 4 has a switching valve 5a to. 5c is connected to a fuel supply conduit to supply coal of fuel 104. Further, in order to facilitate the supply of coal to the pressurized condition, a pumping system using a mixed slurry of coal and water is adopted in this embodiment. At this time, particles of dolomite or limestone as an in-furnace desulfurizing agent are added to the above-mentioned coal / water mixed slurry and supplied. In addition,
The initially filled fluid medium 100 is fed from a media hopper 115 through conduit 116.

【0022】空気分散器2a〜2dの各分散器間の領域
には伝熱管群6a〜6cがそれぞれ設置され、最下段の
伝熱管群6aに導入された給水106は伝熱管群6b、
6cを経てスチーム105が生成される。また、最下段
の空気分散器2aの下方の炉底9は適宜断面が縮小され
て流動媒体100の排出導管7となる。排出導管7には
流動媒体100の排出機構8が設けられている。また、
流動層燃焼炉102の炉頂は燃焼ガス32の排出導管が
あり、サイクロン108に接続される。
Heat transfer tube groups 6a to 6c are installed in the regions between the air distributors 2a to 2d, respectively, and the feed water 106 introduced into the lowermost heat transfer tube group 6a receives heat transfer tube groups 6b and 6b.
The steam 105 is generated through 6c. Further, the furnace bottom 9 below the lowermost air disperser 2a is appropriately reduced in cross section to become the discharge conduit 7 for the fluidized medium 100. The discharge conduit 7 is provided with a discharge mechanism 8 for the fluidized medium 100. Also,
The top of the fluidized bed combustion furnace 102 has a discharge conduit for the combustion gas 32 and is connected to a cyclone 108.

【0023】流動層燃焼炉102内の流動層面10上部
の空間はフリーボード107と呼ばれ、流動層103か
ら放出された燃焼ガス32はフリーボード107を上昇
し、サイクロン108に導入される。サイクロン108
からはダスト109が加圧容器101外に排出され、ま
た、ダスト109の出口とは反対側のサイクロン108
の出口下流には、図示していないが精密脱塵装置および
ガスタービンが接続され、除塵された燃焼ガス32がガ
スタービン(図示せず)に導入される。また、サイクロ
ン108から排出する燃焼ガス32流路の周りは加圧容
器101に導入される燃焼用空気31の導入路としてお
り、ここから加圧容器101に導入された燃焼用空気3
1は空気弁3a〜3d、空気分散器2a〜2dをそれぞ
れ通って流動層燃焼炉102に供給される。
The space above the fluidized bed surface 10 in the fluidized bed combustion furnace 102 is called a freeboard 107, and the combustion gas 32 released from the fluidized bed 103 moves up the freeboard 107 and is introduced into the cyclone 108. Cyclone 108
The dust 109 is discharged to the outside of the pressure vessel 101, and the cyclone 108 on the side opposite to the outlet of the dust 109.
Although not shown, a precision dust remover and a gas turbine are connected downstream of the outlet of the exhaust gas, and the combustion gas 32 from which dust has been removed is introduced into the gas turbine (not shown). Around the flow path of the combustion gas 32 discharged from the cyclone 108 is an introduction path for the combustion air 31 introduced into the pressure vessel 101, and the combustion air 3 introduced into the pressure vessel 101 from here.
1 is supplied to the fluidized bed combustion furnace 102 through the air valves 3a to 3d and the air dispersers 2a to 2d, respectively.

【0024】流動層燃焼炉102内には流動媒体100
が充填されるが、該流動媒体100は最上部の空気分散
器2d、燃料供給ノズル4dを覆い、さらに最上段の燃
料供給ノズル4dの上0.5m以上に流動層面10が来
るような量の流動媒体100が充填されている。空気分
散板2dの上部の領域は起動時の流動層領域となるが、
燃料供給ノズル4dの上0.5m以上の流動層103の
高さは該ノズル4dから供給される石炭が未燃焼のまま
フリーボード107に吹き抜けるのを防ぐのに必要な高
さである。また、最上段の空気分散器2dの直上部には
燃焼炉102壁を貫通して起動用バーナー11が設置さ
れ、起動時の昇温のために高温の燃焼ガスが流動層10
3内に供給されるようになっている。該バーナー11は
最上段の空気分散器2dと最上段の空気弁3dの間に設
けて空気分散器2dを通して高温のガスを流動層103
内に供給するようにしても良い。
A fluidized medium 100 is placed in the fluidized bed combustion furnace 102.
However, the fluidized medium 100 covers the uppermost air disperser 2d and the fuel supply nozzle 4d, and the fluidized bed surface 10 is positioned 0.5 m or more above the uppermost fuel supply nozzle 4d. The fluidized medium 100 is filled. The upper area of the air dispersion plate 2d is the fluidized bed area at startup,
The height of the fluidized bed 103 which is 0.5 m or more above the fuel supply nozzle 4d is a height required to prevent the coal supplied from the nozzle 4d from blowing through the freeboard 107 without being burned. Further, a startup burner 11 is installed right above the uppermost air disperser 2d so as to penetrate through the wall of the combustion furnace 102, and a high temperature combustion gas is supplied to the fluidized bed 10 to raise the temperature at startup.
It is designed to be supplied within 3. The burner 11 is provided between the uppermost air disperser 2d and the uppermost air valve 3d so as to pass the high temperature gas through the air disperser 2d in the fluidized bed 103.
You may make it supply inside.

【0025】上記した構成の加圧流動層ボイラにおい
て、まず流動層燃焼炉102の起動、すなわち流動層1
03の昇温は最上段の空気分散器2dの上部領域から行
う。空気分散器2dからの空気によって該分散器2dの
上部領域の流動媒体100を流動化させると共に起動用
バーナー11から高温燃焼炉ガスを導入して前記分散器
2dの上部領域の流動層103を昇温させる。さらに、
該領域の温度が石炭の着火および燃焼維持に十分な温度
に達した段階で最上段の燃料供給ノズル4dから石炭を
供給し、石炭による昇温を行い、目標の流動層温度まで
昇温させる。
In the pressurized fluidized bed boiler having the above structure, first, the fluidized bed combustion furnace 102 is started, that is, the fluidized bed 1
The temperature of 03 is raised from the upper region of the uppermost air disperser 2d. The fluidized medium 100 in the upper region of the disperser 2d is fluidized by the air from the air disperser 2d, and the high temperature combustion furnace gas is introduced from the starting burner 11 to raise the fluidized bed 103 in the upper region of the disperser 2d. Let it warm. further,
When the temperature of the region reaches a temperature sufficient to ignite and maintain the combustion of coal, coal is supplied from the uppermost fuel supply nozzle 4d to raise the temperature of the coal to the target fluidized bed temperature.

【0026】次いで、空気の供給を空気弁3dから空気
弁3cに切り替えて空気分散器2cに移動し、空気分散
器2cの上部領域を流動化する。それとともに燃料10
4の切替バルブ5cを切り替えて燃料104の供給を燃
料供給ノズル4dから燃料供給ノズル4cに切り替え
る。これによって空気分散器2dの上部領域を含む空気
分散器2cの上部領域が流動状態に保たれ、供給された
石炭が燃焼して所定の温度に昇温、維持される。空気分
散器2cの上部領域の流動化によって該領域にある伝熱
管群6cからの熱吸収が行われ、伝熱面積に見合った量
のスチーム105が発生する。
Next, the air supply is switched from the air valve 3d to the air valve 3c and moved to the air disperser 2c to fluidize the upper region of the air disperser 2c. Fuel 10
The switching valve 5c of No. 4 is switched to switch the supply of the fuel 104 from the fuel supply nozzle 4d to the fuel supply nozzle 4c. As a result, the upper region of the air disperser 2c including the upper region of the air disperser 2d is kept in a fluidized state, and the supplied coal is burned to raise and maintain the temperature to a predetermined temperature. Due to the fluidization of the upper region of the air disperser 2c, heat is absorbed from the heat transfer tube group 6c in that region, and the amount of steam 105 commensurate with the heat transfer area is generated.

【0027】さらに、スチーム105の発生量を増加す
なわち負荷を増加する場合には、上記と同様にして空気
分散器2および燃料供給ノズル4を順次下位のものに移
動して流動層103の流動状態にある領域を増加させ、
すなわち実質的に作用している伝熱管6の伝熱面積を増
加させて熱吸収量を増加させる。また、流動層103の
温度は熱吸収量の増加に見合って石炭供給量を増加させ
ることで維持される。
Further, when the amount of generated steam 105 is increased, that is, the load is increased, the air disperser 2 and the fuel supply nozzle 4 are sequentially moved to the lower order in the same manner as above, and the fluidized state of the fluidized bed 103 is increased. Increase the area at
That is, the heat transfer area of the heat transfer tube 6 which is substantially operating is increased to increase the heat absorption amount. Further, the temperature of the fluidized bed 103 is maintained by increasing the coal supply amount corresponding to the increase in the heat absorption amount.

【0028】図1は空気分散器2bから空気が、燃料供
給ノズル4bから石炭がそれぞれ供給されている状態を
示した図であり、空気分散器2bより下位領域の流動媒
体100は非流動化領域(斜線部)117であり、伝熱
管群6aは実質的にスチーム105発生に寄与していな
い状態にある。これに対し空気分散器2bの上位領域の
流動媒体100は流動状態にあり、伝熱管群6b、6c
から熱吸収が行われている。また、負荷率100%を達
成している場合には定常運転状態にある空気分散器2お
よび燃料供給ノズル4はそれぞれ最下位の空気分散器2
a、燃料供給ノズル4aの位置にあり、このとき流動層
103の全量域が流動状態にあり、すべての伝熱管群6
a、6b、6cによってスチーム105は発生される。
FIG. 1 is a diagram showing a state in which air is supplied from the air disperser 2b and coal is supplied from the fuel supply nozzle 4b, and the fluidized medium 100 in a region below the air disperser 2b is a non-fluidized region. (Hatched portion) 117, and the heat transfer tube group 6 a is in a state of not substantially contributing to the generation of the steam 105. On the other hand, the fluid medium 100 in the upper region of the air disperser 2b is in a fluidized state, and the heat transfer tube groups 6b and 6c.
Is absorbing heat from. Further, when the load factor of 100% is achieved, the air disperser 2 and the fuel supply nozzle 4 in the steady operation state are the lowest air disperser 2 respectively.
a, at the position of the fuel supply nozzle 4a, at this time, the entire amount region of the fluidized bed 103 is in a fluidized state, and all the heat transfer tube groups 6
The steam 105 is generated by a, 6b, and 6c.

【0029】このように、本実施例では3個の伝熱管群
6a、6b、6cを有し、上述のように空気分散器2a
〜2d、燃料供給ノズル4a〜4dの使用する位置を変
化させて3段階に負荷を変えることができる。すなわ
ち、伝熱管群6の設置数は所望の負荷変化段数によって
決まり、それに見合った空気分散器2、燃料供給ノズル
4の対が設けられる。また、前記空気分散器2、燃料供
給ノズル4、伝熱管群6の設置数に代えてあるいはこれ
らの設置数と共に各々の空気分散器2、燃料供給ノズル
4、伝熱管群6の設置間隔を所望の負荷率の変化段間隔
および/または負荷率の変化段数によって決めることが
できる。
As described above, this embodiment has the three heat transfer tube groups 6a, 6b, 6c, and the air disperser 2a as described above.
.About.2d, the positions at which the fuel supply nozzles 4a to 4d are used can be changed to change the load in three stages. That is, the number of heat transfer tube groups 6 to be installed is determined by the desired number of load change stages, and a pair of the air disperser 2 and the fuel supply nozzle 4 corresponding to the number of load change stages is provided. Further, instead of the number of the air dispersers 2, the fuel supply nozzles 4, and the heat transfer tube groups 6 installed, or together with the number of the installed air dispersers 2, the fuel supply nozzles 4, the heat transfer tube groups 6 are installed at desired intervals. It can be determined by the interval of change stages of the load factor and / or the number of change stages of the load factor.

【0030】本実施例の加圧流動層ボイラの運転におい
て、燃焼炉102の圧力10〜20気圧、温度は800
〜950℃、流動層103の空塔ガス速度は0.5〜
1.5m/sの範囲が採用される。また、流動媒体10
0の粒子にはドロマイトあるいは石灰石粒子が用いられ
る。上記の構成、作用により負荷を変化させても流動層
面10は最上位の伝熱管群6cを常に覆っている状態で
形成されるので、流動層103から放出される燃焼ガス
32は従来のようにフリーボート107で熱交換によっ
て温度が低下することなくサイクロン108、精密除塵
装置を通ってガスタービンに導入される。
In the operation of the pressurized fluidized bed boiler of this embodiment, the pressure of the combustion furnace 102 is 10 to 20 atm and the temperature is 800.
~ 950 ° C, the superficial gas velocity of the fluidized bed 103 is 0.5 ~
A range of 1.5 m / s is adopted. Also, the fluid medium 10
Dolomite or limestone particles are used as particles of 0. Even if the load is changed by the above configuration and action, the fluidized bed surface 10 is formed in a state of always covering the uppermost heat transfer tube group 6c, so that the combustion gas 32 released from the fluidized bed 103 is as in the conventional case. The free boat 107 is introduced into the gas turbine through the cyclone 108 and the precision dust remover without lowering the temperature due to heat exchange.

【0031】[0031]

【発明の効果】本発明によれば、負荷率が低い運転条件
においても燃焼ガス温度がフリーボート部で低下するこ
とがないのでガスタービン出力を低下させることがな
い。また、燃料供給ノズルが流動層内にあるので燃焼効
率を高位に保持することができる。従って石炭火力プラ
ントの高効率化が達成でき、出力電力当りの石炭消費量
を低減するとともに炭酸ガス量の排出量も低減できる。
According to the present invention, since the combustion gas temperature does not decrease in the free boat section even under the operating condition where the load factor is low, the output of the gas turbine is not decreased. Further, since the fuel supply nozzle is in the fluidized bed, the combustion efficiency can be kept high. Therefore, high efficiency of the coal-fired power plant can be achieved, the coal consumption per output power can be reduced, and the emission amount of carbon dioxide gas can be reduced.

【0032】また、流動媒体の貯蔵、払い出しを行うた
めの別置きの流動媒体タンクを省略またはその容量を小
さくすることができるので、それを収納する加圧容器が
小さくなり、その製作、検査工数を少なくすることがで
きる。その上、コンパクトな加圧流動層ボイラを実現す
ることができる。
Further, since a separate fluid medium tank for storing and delivering the fluid medium can be omitted or its capacity can be reduced, the pressure vessel for accommodating the fluid medium tank can be made small, and the number of manufacturing and inspection steps thereof can be reduced. Can be reduced. Moreover, a compact pressurized fluidized bed boiler can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の加圧流動層燃焼ボイラの一実施例を
示す図である。
FIG. 1 is a diagram showing an embodiment of a pressurized fluidized bed combustion boiler of the present invention.

【図2】 従来の加圧流動層燃焼ボイラを示す図であ
る。
FIG. 2 is a diagram showing a conventional pressurized fluidized bed combustion boiler.

【符号の説明】[Explanation of symbols]

2…空気分散器、3…空気弁、4…燃料供給ノズル、5
…切替バルブ、6…伝熱管群、7…排出導管、9…炉
底、10…流動層面、11…起動用バーナ、31…燃焼
用空気、32…燃焼ガス、101…加圧容器、102…
流動層燃焼炉、103…流動層、104…燃料、105
…スチーム、106…ボイラ給水、107…フリーボー
ド、108…サイクロン、109…ダスト、110…流
動媒体タンク、115…媒体ホッパー、117…非流動
化領域
2 ... Air disperser, 3 ... Air valve, 4 ... Fuel supply nozzle, 5
... switching valve, 6 ... heat transfer tube group, 7 ... exhaust conduit, 9 ... furnace bottom, 10 ... fluidized bed surface, 11 ... starter burner, 31 ... combustion air, 32 ... combustion gas, 101 ... pressurized container, 102 ...
Fluidized bed combustion furnace, 103 ... Fluidized bed, 104 ... Fuel, 105
... Steam, 106 ... Boiler water supply, 107 ... Freeboard, 108 ... Cyclone, 109 ... Dust, 110 ... Fluid medium tank, 115 ... Medium hopper, 117 ... Non-fluidization area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 昭雄 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 坂田 太郎 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Ueda 3-36 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Ltd. Kure Research Institute (72) Inventor Taro Sakata 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Ltd. Kure Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流動層の高さ方向に所定の間隔を置いて
複数の空気分散器を配置し、さらに各々の空気分散器間
に伝熱管群を配置した加圧流動層ボイラにおいて、各々
の空気分散器の上方でかつ流動層内の位置に燃料供給ノ
ズルをそれぞれ設けたことを特徴とする加圧流動層ボイ
ラ。
1. A pressurized fluidized bed boiler in which a plurality of air dispersers are arranged at predetermined intervals in the height direction of the fluidized bed, and a group of heat transfer tubes is arranged between the respective air dispersers. A pressurized fluidized bed boiler characterized in that a fuel supply nozzle is provided above the air disperser and at a position within the fluidized bed.
【請求項2】 各々の空気分散器、燃料供給ノズルの間
隔および設置数の少なくともいずれかを所望の負荷率の
変化段間隔および変化段数の少なくともいずれかによっ
て決めることを特徴とする請求項1記載の加圧流動層ボ
イラ。
2. The at least one of the intervals and the number of installed air dispersers and fuel supply nozzles is determined by at least one of the desired load factor change step interval and / or the change step number. Pressurized fluidized bed boiler.
【請求項3】 流動層上面は少なくとも最上段の燃料供
給ノズルの上0.5m以上の位置に設定することを特徴
とする請求項1記載の加圧流動層ボイラ。
3. The pressurized fluidized bed boiler according to claim 1, wherein the upper surface of the fluidized bed is set at a position at least 0.5 m above the uppermost fuel supply nozzle.
【請求項4】 流動層の高さ方向に所定の間隔を置いて
複数の空気分散器を配置し、さらに各々の空気分散器間
に伝熱管群を配置した加圧流動層ボイラにおいて、燃料
供給位置の高さを流動層内に限定し、かつ流動層流動化
用の分散空気供給位置の高さと燃料供給位置の高さを変
えることで負荷変化に対応させることを特徴とする加圧
流動層ボイラの運転方法。
4. A pressurized fluidized bed boiler in which a plurality of air dispersers are arranged at predetermined intervals in the height direction of the fluidized bed, and a heat transfer tube group is arranged between the air dispersers. Pressurized fluidized bed characterized in that the height of the position is limited to the inside of the fluidized bed, and the height of the dispersed air supply position for fluidized bed fluidization and the height of the fuel supply position are changed to respond to load changes. How to operate the boiler.
JP21491392A 1992-08-12 1992-08-12 Pressurized fluidized bed boiler and operation method thereof Pending JPH0658501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21491392A JPH0658501A (en) 1992-08-12 1992-08-12 Pressurized fluidized bed boiler and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21491392A JPH0658501A (en) 1992-08-12 1992-08-12 Pressurized fluidized bed boiler and operation method thereof

Publications (1)

Publication Number Publication Date
JPH0658501A true JPH0658501A (en) 1994-03-01

Family

ID=16663655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21491392A Pending JPH0658501A (en) 1992-08-12 1992-08-12 Pressurized fluidized bed boiler and operation method thereof

Country Status (1)

Country Link
JP (1) JPH0658501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521611A (en) * 1997-04-14 2001-11-06 株式会社 荏原製作所 Pressurized fluidized bed boiler combined cycle power generation system
JP2007232309A (en) * 2006-03-02 2007-09-13 Dowa Holdings Co Ltd Fluidized bed furnace
KR20170042249A (en) * 2015-10-08 2017-04-18 아멕 포스터 휠러 에너지아 오와이 Method of introducing primary fluidizing gas into a furnace of a fluidized bed boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521611A (en) * 1997-04-14 2001-11-06 株式会社 荏原製作所 Pressurized fluidized bed boiler combined cycle power generation system
JP2007232309A (en) * 2006-03-02 2007-09-13 Dowa Holdings Co Ltd Fluidized bed furnace
KR20170042249A (en) * 2015-10-08 2017-04-18 아멕 포스터 휠러 에너지아 오와이 Method of introducing primary fluidizing gas into a furnace of a fluidized bed boiler

Similar Documents

Publication Publication Date Title
US4279207A (en) Fluid bed combustion
CN1041016C (en) Fluidized bed reactor system and method having a heat exchanger
EP0164692B1 (en) Method for igniting a combustion chamber with a fluidized bed and a power plant for carrying out the method
JP2564163B2 (en) Fluidized bed equipment
FI90378B (en) PFBC power plant
MXPA02006871A (en) Cfb with controllable in-bed heat exchanger.
US4530207A (en) Power plant with a fluidized bed combustion chamber
US4303023A (en) Fluidized bed fuel burning
JPS5915701A (en) Boiler with fluidized bed
US4809625A (en) Method of operating a fluidized bed reactor
US4363292A (en) Fluidized bed reactor
US4338887A (en) Low profile fluid bed heater or vaporizer
EP0698726A2 (en) Pressurized circulating fluidized bed reactor combined cycle power generation system
KR100272724B1 (en) Process for decreasing n2o emissions from a fluidized bed reactor
JPH0658501A (en) Pressurized fluidized bed boiler and operation method thereof
GB2049134A (en) Fluidized bed fuel burning
US4790267A (en) Arrangement for burning fuels in a fluidized bed with an augmented solids circulation in a combustion chamber of a steam generator
JP2731631B2 (en) Method for maintaining a nominal operating temperature of flue gas in a PFBC power plant
GB2178674A (en) A method of operating a fluidized bed reactor
JP2972631B2 (en) Fluidized bed boiler and heat exchange method thereof
JPS60221607A (en) Fluidized-bed combustion equipment of divided cell type
JP3513918B2 (en) Fluidized bed boiler
JP2785041B2 (en) Fluidized bed plant
JP2758167B2 (en) Fluidized bed boiler
JPH0297805A (en) Fluidized-bed boiler