JPH065816A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH065816A
JPH065816A JP4185960A JP18596092A JPH065816A JP H065816 A JPH065816 A JP H065816A JP 4185960 A JP4185960 A JP 4185960A JP 18596092 A JP18596092 A JP 18596092A JP H065816 A JPH065816 A JP H065816A
Authority
JP
Japan
Prior art keywords
film
word line
selected word
transistor
active region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4185960A
Other languages
Japanese (ja)
Inventor
Hideaki Kuroda
英明 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4185960A priority Critical patent/JPH065816A/en
Publication of JPH065816A publication Critical patent/JPH065816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enhance data holding characteristics of a memory cell by reducing a density of a boundary level in an isolation part of diffused layers of transistors for constituting the cell. CONSTITUTION:An element active region 13 formed of a diffused layer 14 of a transistor 32 is continuously formed in a direction perpendicular to an extending direction of a W-polyside layer 23 of a word line, and the layer 14 are isolated by a P-N junction between a pair of adjacent non-selected word lines 23b in its perpendicular direction. A transistor 33 having the line 23b as a gate electrode is formed in a depletion type. Thus, a density of a boundary level in the isolation part is lower than that of the case that the layers 14 are isolated by an SiO2 film, etc., formed by a selectively oxidizing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願の発明は、折り返しビット線
構造のDRAMと称されている半導体記憶装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device called a DRAM having a folded bit line structure.

【0002】[0002]

【従来の技術】図7、8は、折り返しビット線構造のD
RAMの一従来例における素子活性領域のパターンを示
している。この一従来例では、Si基板11の表面をL
OCOS(選択酸化)法で酸化されて素子分離用のSi
2 膜12が形成されているが、このSiO2 膜12に
囲まれている素子活性領域13が、ワード線(図示せ
ず)の延在方向を短辺方向とし、この延在方向と直角な
方向を長辺方向とする孤立した長方形になる様に、Si
2 膜12がパターニングされている。
7 and 8 show a folded bit line structure D.
7 shows a pattern of an element active region in a conventional example of a RAM. In this conventional example, the surface of the Si substrate 11 is
Si for element isolation after being oxidized by OCOS (selective oxidation) method
Although the O 2 film 12 is formed, the element active region 13 surrounded by the SiO 2 film 12 has the extending direction of the word line (not shown) as the short side direction and is perpendicular to the extending direction. To form an isolated rectangle whose long side is the same direction
The O 2 film 12 is patterned.

【0003】メモリセルを構成するトランジスタの拡散
層14は素子活性領域13に形成されているが、上述の
様に素子活性領域13が孤立した長方形であるので、拡
散層14同士は、何れの方向においてもSiO2 膜12
によって分離されている。
The diffusion layer 14 of the transistor constituting the memory cell is formed in the element active region 13. However, since the element active region 13 is an isolated rectangle as described above, the diffusion layers 14 may be arranged in any direction. Also in the SiO 2 film 12
Are separated by.

【0004】[0004]

【発明が解決しようとする課題】ところが、素子活性領
域13の長辺方向の端部とSiO2 膜12との境界部1
5にはLOCOS法による酸化時に応力が集中し易く、
境界部15では界面準位の密度が高い。この界面準位は
発生・再結合中心16になり、室温付近での拡散層14
とSi基板11との間の接合リークの支配的原因になっ
ている。このため、図7、8に示した一従来例では、メ
モリセルのデータ保持特性が十分ではなかった。
However, the boundary portion 1 between the end portion of the element active region 13 in the long side direction and the SiO 2 film 12 is formed.
5, stress is likely to be concentrated during oxidation by the LOCOS method,
At the boundary portion 15, the density of interface states is high. This interface state becomes the generation / recombination center 16, and the diffusion layer 14 near room temperature
Is a dominant cause of junction leakage between the Si substrate 11 and the Si substrate 11. For this reason, in the conventional example shown in FIGS. 7 and 8, the data retention characteristic of the memory cell was not sufficient.

【0005】[0005]

【課題を解決するための手段】請求項1の半導体記憶装
置は、トランジスタ32とキャパシタ44とでメモリセ
ルが構成されており、ワード線23の延在方向では一対
の前記ワード線23が前記延在方向に並んでいる前記メ
モリセルに対して共に順次に選択ワード線部23aと非
選択ワード線部23bとになっており、前記延在方向と
直角な方向では互いに隣接している一対づつの前記ワー
ド線23が前記直角な方向に並んでいる前記メモリセル
に対して共に順次に前記選択ワード線部23aと前記非
選択ワード線部23bとになっている半導体記憶装置に
おいて、前記トランジスタ32の拡散層14が形成され
ている素子活性領域13が前記直角な方向に連続的に形
成されており、前記直角な方向で互いに隣接している一
対の前記非選択ワード線部23b間で、前記拡散層14
同士がPN接合によって分離されていることを特徴とし
ている。
According to another aspect of the semiconductor memory device of the present invention, a memory cell is composed of a transistor 32 and a capacitor 44, and a pair of the word lines 23 extends in the extending direction of the word line 23. The memory cells arranged in the current direction are sequentially formed with a selected word line portion 23a and a non-selected word line portion 23b, and are paired adjacent to each other in the direction perpendicular to the extending direction. In the semiconductor memory device in which the word lines 23 are sequentially the selected word line portion 23a and the non-selected word line portion 23b with respect to the memory cells arranged in the right angle direction, The element active region 13 in which the diffusion layer 14 is formed is continuously formed in the perpendicular direction, and the pair of the non-selection wires adjacent to each other in the perpendicular direction. Between lead wire portion 23b, the diffusion layer 14
It is characterized in that they are separated by a PN junction.

【0006】請求項2の半導体記憶装置は、前記非選択
ワード線部23bをゲート電極とするトランジスタ33
がデプリション型であることを特徴としている。
According to another aspect of the semiconductor memory device of the present invention, the transistor 33 having the non-selected word line portion 23b as a gate electrode is used.
Is a depletion type.

【0007】[0007]

【作用】請求項1の半導体記憶装置では、ワード線23
の延在方向と直角な方向で互いに隣接している一対の非
選択ワード線部23b間で、トランジスタ32の拡散層
14同士がPN接合によって分離されているので、選択
酸化法で形成された酸化膜12等で分離されている場合
に比べて、分離部における界面準位の密度が低い。
According to the semiconductor memory device of claim 1, the word line 23 is used.
Since the diffusion layers 14 of the transistor 32 are separated by the PN junction between the pair of unselected word line portions 23b that are adjacent to each other in the direction perpendicular to the extending direction, the oxidation formed by the selective oxidation method. The interface state density in the separation portion is lower than that in the case where the separation is performed by the film 12 or the like.

【0008】請求項2の半導体記憶装置では、非選択ワ
ード線部23b下の半導体基板11が元々反転状態にな
っているので、蓄積状態から反転状態に至る途中で生ず
る空乏状態が生じず、非選択ワード線部23b下の半導
体基板11に空乏層が形成されない。
According to another aspect of the semiconductor memory device of the present invention, since the semiconductor substrate 11 under the non-selected word line portion 23b is originally in the inversion state, the depletion state which occurs during the transition from the accumulation state to the inversion state does not occur. No depletion layer is formed on the semiconductor substrate 11 below the selected word line portion 23b.

【0009】[0009]

【実施例】以下、本願の発明の一実施例を、図1〜6を
参照しながら説明する。なお、図7、8に示した一従来
例と同一の構成部分には、同一の符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The same components as those in the conventional example shown in FIGS. 7 and 8 are designated by the same reference numerals.

【0010】図1、5が、本実施例を示している。この
様な本実施例を製造するためには、LOCOS法等でS
i基板11の表面に素子分離用のSiO2 膜12を形成
して、このSiO2 膜12に囲まれている素子活性領域
13を形成するが、この素子活性領域13のパターン
は、図5に示す様に、ストライプ状にする。
1 and 5 show this embodiment. In order to manufacture this embodiment like this, S is formed by the LOCOS method or the like.
The element isolation SiO 2 film 12 is formed on the surface of the i-substrate 11, and the element active region 13 surrounded by the SiO 2 film 12 is formed. The pattern of the element active region 13 is shown in FIG. Stripe as shown.

【0011】次に、図2に示す様に、犠牲酸化膜として
のSiO2 膜17を数百nmの膜厚で素子活性領域13
の表面に形成し、素子活性領域13のうちで後に形成す
る選択ワード線部が通過すべき領域及びその近傍の領域
のみを覆うレジスト18をSi基板11上でパターニン
グする。そして、このレジスト18とSiO2 膜12と
をマスクにして、As+ 、Phos+ 、Sb+ 等のN型
の不純物21を、素子活性領域13の表面における濃度
が1015〜1018cm-3程度になる様に、SiO2 膜1
7を介してイオン注入する。
Next, as shown in FIG. 2, a SiO 2 film 17 as a sacrificial oxide film having a film thickness of several hundred nm is formed on the element active region 13.
A resist 18 is formed on the surface of the Si substrate 11 and is patterned on the Si substrate 11 so as to cover only a region of the element active region 13 through which a selected word line portion to be formed later and a region in the vicinity thereof. Then, using the resist 18 and the SiO 2 film 12 as a mask, the concentration of N-type impurities 21 such as As + , Phos + , Sb +, etc. on the surface of the element active region 13 is 10 15 to 10 18 cm −3. SiO 2 film 1
Ion implantation is performed through 7.

【0012】この結果、図3に示す様に、不純物21に
よって拡散層14が形成される。その後、HF等でSi
2 膜17を除去し、ゲート酸化膜としてのSiO2
22を熱酸化で素子活性領域13の表面に形成した後、
図3、5に示す様に、メモリセルアレイ部ではワード線
になるゲート電極をW−ポリサイド膜23等で形成す
る。
As a result, as shown in FIG. 3, the diffusion layer 14 is formed by the impurities 21. After that, HF etc.
After removing the O 2 film 17 and forming a SiO 2 film 22 as a gate oxide film on the surface of the element active region 13 by thermal oxidation,
As shown in FIGS. 3 and 5, in the memory cell array portion, the gate electrode to be the word line is formed of the W-polycide film 23 or the like.

【0013】W−ポリサイド膜23のうちで、レジスト
18に覆われていた領域を通過している部分が、アクセ
ス用のトランジスタのゲート電極つまりメモリセルを動
作させるための選択ワード線部23aになる。また、W
−ポリサイド膜23のうちで、レジスト18に覆われて
いなかった領域を通過している部分が、メモリセルの動
作に関与しない非選択ワード線部23bになる。
Of the W-polycide film 23, the portion passing through the region covered with the resist 18 becomes the gate electrode of the access transistor, that is, the selected word line portion 23a for operating the memory cell. . Also, W
-A portion of the polycide film 23 that passes through a region that is not covered with the resist 18 becomes an unselected word line portion 23b that does not participate in the operation of the memory cell.

【0014】その後、図3、5に示す様に、素子活性領
域13のうちで非選択ワード線部23b間の領域のみを
覆うレジスト24をパターニングし、このレジスト24
とW−ポリサイド膜23とSiO2 膜12とをマスクし
て、Phos+ 、As+ 、Sb+ 等のN型の不純物25
を1012〜1014cm-2程度のドーズ量にイオン注入す
る。
Thereafter, as shown in FIGS. 3 and 5, a resist 24 which covers only the region between the non-selected word line portions 23b in the element active region 13 is patterned, and the resist 24 is patterned.
And the W-polycide film 23 and the SiO 2 film 12 are masked, and N-type impurities 25 such as Phos + , As + , Sb +
Is ion-implanted at a dose of about 10 12 to 10 14 cm −2 .

【0015】この結果、図4に示す様に、既に形成して
ある拡散層14と不純物25とによって、選択ワード線
部23a下を除く素子活性領域13に、拡散層14が形
成される。その後、膜厚が数百nmのSiO2 膜26を
CVD法で堆積させ、このSiO2 膜26の全面に対し
てRIEを行って、SiO2 膜26から成る側壁をW−
ポリサイド膜23の側部に形成する。そして、このSi
2 膜26をLDDスペーサにして、周辺回路部のトラ
ンジスタ(図示せず)をLDD構造にする。
As a result, as shown in FIG. 4, the diffusion layer 14 and the impurities 25 already formed form the diffusion layer 14 in the element active region 13 except under the selected word line portion 23a. After that, a SiO 2 film 26 having a film thickness of several hundreds nm is deposited by the CVD method, and RIE is performed on the entire surface of the SiO 2 film 26 so that the side wall formed of the SiO 2 film 26 is W-.
It is formed on the side portion of the polycide film 23. And this Si
The O 2 film 26 is used as an LDD spacer, and a transistor (not shown) in the peripheral circuit section has an LDD structure.

【0016】その後、図4、5に示す様に、レジスト2
4とは反転したパターンのレジスト27、つまり素子活
性領域13のうちで非選択ワード線部23b間の領域の
みを開放しているレジスト27をパターニングする。そ
して、このレジスト27とW−ポリサイド膜23とSi
2 膜12、26とをマスクして、B+ 、BF2 + 等の
P型の不純物28を、素子活性領域13の表面における
濃度が1017〜1019cm-3程度になる様にイオン注入
する。なお、必要であれば、不純物28の加速エネルギ
を変えながらイオン注入をしてもよい。
After that, as shown in FIGS.
The resist 27 having a pattern opposite to that of 4 is patterned, that is, the resist 27 which opens only the region between the non-selected word line portions 23b in the element active region 13. Then, the resist 27, the W-polycide film 23, and the Si
By masking the O 2 films 12 and 26, ions of P type impurities 28 such as B + and BF 2 + are formed so that the concentration on the surface of the element active region 13 becomes about 10 17 to 10 19 cm −3. inject. If necessary, the ion implantation may be performed while changing the acceleration energy of the impurity 28.

【0017】この結果、素子活性領域13のうちで非選
択ワード線部23b間の領域の導電型が反転して、図1
に示した様に、この領域にP型の拡散層31が形成され
る。この第1図からも明らかな様に、選択ワード線部2
3aをゲート電極とするトランジスタ32はエンハンス
メント型であり、非選択ワード線部23bをゲート電極
とするトランジスタ33はデプリション型である。
As a result, the conductivity type of the region between the non-selected word line portions 23b in the element active region 13 is inverted, and
As shown in, the P-type diffusion layer 31 is formed in this region. As is apparent from FIG. 1, the selected word line section 2
The transistor 32 having 3a as a gate electrode is an enhancement type, and the transistor 33 having a non-selected word line portion 23b as a gate electrode is a depletion type.

【0018】その後、膜厚が数百nmのPSG膜若しく
は不純物を含まないSiO2 膜か、膜厚が数十nmのS
iN膜か、またはこれらを組み合わせた膜で、層間絶縁
膜34を形成する。そして、不純物を含む多結晶Si膜
35を全面に形成し、この多結晶Si膜35のうちでキ
ャパシタの記憶ノード電極と拡散層14とのコンタクト
部に開口36を形成する。
After that, a PSG film having a film thickness of several hundreds nm, an SiO 2 film containing no impurities, or an S film having a film thickness of several tens nm is used.
The interlayer insulating film 34 is formed of an iN film or a film combining these. Then, a polycrystalline Si film 35 containing impurities is formed on the entire surface, and an opening 36 is formed in a contact portion between the storage node electrode of the capacitor and the diffusion layer 14 in the polycrystalline Si film 35.

【0019】その後、SiO2 膜37を全面に形成し、
このSiO2 膜37の全面と層間絶縁膜34等とをエッ
チバックして、SiO2 膜37から成る側壁を開口36
の内周面に形成すると共に、この側壁に囲まれた状態で
拡散層14に達しているコンタクト孔38を層間絶縁膜
34等に開孔する。従って、SiO2 膜37から成る側
壁の幅だけ、コンタクト孔38は開口36に対して自己
整合的に縮小されている。
After that, a SiO 2 film 37 is formed on the entire surface,
The entire surface of the SiO 2 film 37 and the interlayer insulating film 34 are etched back, and the side wall made of the SiO 2 film 37 is opened 36.
A contact hole 38 which is formed on the inner peripheral surface of and reaches the diffusion layer 14 while being surrounded by the side wall is opened in the interlayer insulating film 34 and the like. Therefore, the contact hole 38 is reduced in size in a self-aligned manner with respect to the opening 36 by the width of the side wall made of the SiO 2 film 37.

【0020】しかも、合わせずれのために開口36がW
−ポリサイド膜23に近づくと、W−ポリサイド膜23
による段差のために、SiO2 膜37から成る側壁が高
く且つ広幅になるので、コンタクト孔38は開口36ほ
どにはW−ポリサイド膜23に近づかず、コンタクト孔
38とW−ポリサイド膜23との間の層間耐圧が確保さ
れている。つまり、SiO2 膜37から成る側壁を利用
したコンタクト孔38の開孔は、合わせずれを縮小する
効果、または合わせ余裕を拡大する効果を有している。
Moreover, the opening 36 has a width W due to misalignment.
-When approaching the polycide film 23, the W-polycide film 23
Since the side wall made of the SiO 2 film 37 becomes high and wide due to the step due to, the contact hole 38 does not approach the W-polycide film 23 as much as the opening 36, and the contact hole 38 and the W-polycide film 23 are not formed. The interlayer breakdown voltage between them is secured. That is, the opening of the contact hole 38 using the side wall made of the SiO 2 film 37 has the effect of reducing the misalignment or the effect of increasing the alignment margin.

【0021】その後、コンタクト孔38を介して拡散層
14にコンタクトする様に、不純物を含む多結晶Si膜
41を全面に形成し、多結晶Si膜41、35を記憶ノ
ード電極のパターンに加工する。そして、誘電体膜42
と不純物を含む多結晶Si膜43とを順次に全面に形成
し、これらをプレート電極のパターンに加工して、キャ
パシタ44を完成させる。
Thereafter, a polycrystalline Si film 41 containing impurities is formed on the entire surface so as to contact the diffusion layer 14 through the contact hole 38, and the polycrystalline Si films 41 and 35 are processed into a pattern of the storage node electrode. . Then, the dielectric film 42
And a polycrystalline Si film 43 containing impurities are sequentially formed on the entire surface, and these are processed into a pattern of a plate electrode to complete a capacitor 44.

【0022】その後、膜厚が数百nmのPSG膜若しく
はBPSG膜か、またはこれらを組み合わせた膜で、層
間絶縁膜45を形成する。そして、拡散層14に達する
ビット線用のコンタクト孔46を層間絶縁膜45等に開
孔し、W−ポリサイド膜47等でビット線を形成する。
そして更に、Al配線(図示せず)の形成等の従来公知
の工程を経て、このDRAMを完成させる。
After that, the interlayer insulating film 45 is formed of a PSG film or a BPSG film having a film thickness of several hundreds of nm, or a film combining these films. Then, a bit line contact hole 46 reaching the diffusion layer 14 is opened in the interlayer insulating film 45 or the like, and a bit line is formed by the W-polycide film 47 or the like.
Then, the DRAM is completed through a conventionally known process such as formation of Al wiring (not shown).

【0023】ところで、以上の実施例において、不純物
21のイオン注入を省略することも考えられる。しか
し、不純物21をイオン注入しなければ、トランジスタ
33がエンハンスメント型になり、蓄積状態から反転状
態に至る途中で、W−ポリサイド膜23下の素子活性領
域13に空乏層が形成される。そして、この空乏層のた
めに拡散層14とSi基板11との間の接合リークが増
大し、メモリセルのデータ保持特性が劣化する。
By the way, in the above embodiment, it is possible to omit the ion implantation of the impurity 21. However, if the impurity 21 is not ion-implanted, the transistor 33 becomes an enhancement type, and a depletion layer is formed in the element active region 13 under the W-polycide film 23 during the transition from the accumulation state to the inversion state. The depletion layer increases the junction leak between the diffusion layer 14 and the Si substrate 11, and deteriorates the data retention characteristic of the memory cell.

【0024】また、本実施例では、図1からも明らかな
様に、P型の拡散層31がW−ポリサイド膜23と重畳
していないが、この拡散層31を形成するための不純物
28が多過ぎると、図6に示す様に、拡散層31がW−
ポリサイド膜23と重畳する。この結果、ゲートコント
ロールダイオードが形成され、拡散層14とSi基板1
1との間の接合リークが増大して、やはりメモリセルの
データ保持特性が劣化する。
Further, in this embodiment, as is clear from FIG. 1, the P-type diffusion layer 31 does not overlap the W-polycide film 23, but impurities 28 for forming this diffusion layer 31 are not included. If the amount is too large, as shown in FIG.
It overlaps with the polycide film 23. As a result, a gate control diode is formed, and the diffusion layer 14 and the Si substrate 1 are formed.
The junction leak between the memory cell and the memory cell 1 increases, and the data retention characteristic of the memory cell also deteriorates.

【0025】一方、既述の様に、SiO2 膜37から成
る側壁を利用したコンタクト孔38の開孔は、合わせず
れを縮小する効果、または合わせ余裕を拡大する効果を
有しているが、W−ポリサイド膜23がSiO2 膜12
上の高い位置にあると、この効果は少ない。しかし、図
1、5から明らかな様に、本実施例では、非選択ワード
線部23bも素子活性領域13上に位置しているので、
上記の効果を最大限に利用することができて、メモリセ
ル面積を縮小することができる。
On the other hand, as described above, the opening of the contact hole 38 using the side wall made of the SiO 2 film 37 has the effect of reducing the misalignment or the effect of increasing the alignment margin. The W-polycide film 23 is the SiO 2 film 12.
In the upper high position, this effect is less. However, as apparent from FIGS. 1 and 5, in the present embodiment, the non-selected word line portion 23b is also located on the element active region 13,
The above effect can be utilized to the maximum extent, and the memory cell area can be reduced.

【0026】[0026]

【発明の効果】請求項1の半導体記憶装置では、メモリ
セルを構成しているトランジスタの拡散層同士の分離部
における界面準位の密度が低いので、この分離部におけ
る発生・再結合中心の密度も低い。このため、この発生
・再結合中心を介したトランジスタの拡散層と半導体基
板との間の接合リークが少なく、メモリセルのデータ保
持特性が優れている。
In the semiconductor memory device according to the first aspect of the present invention, since the density of the interface state in the separation portion between the diffusion layers of the transistors constituting the memory cell is low, the density of generation / recombination centers in this separation portion is low. Is also low. Therefore, the junction leak between the diffusion layer of the transistor and the semiconductor substrate via the generation / recombination center is small, and the data retention characteristic of the memory cell is excellent.

【0027】請求項2の半導体記憶装置では、非選択ワ
ード線部下の半導体基板に空乏層が形成されないので、
トランジスタの拡散層と半導体基板との間の接合リーク
が更に少なく、メモリセルのデータ保持特性が更に優れ
ている。
In the semiconductor memory device of the second aspect, since the depletion layer is not formed on the semiconductor substrate below the non-selected word line portion,
The junction leakage between the diffusion layer of the transistor and the semiconductor substrate is further reduced, and the data retention characteristic of the memory cell is further excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の発明の一実施例を示しており、図5のI
−I線に沿う位置における側断面図である。
1 shows an embodiment of the invention of the present application, which is indicated by I in FIG.
It is a sectional side view in the position which follows the -I line.

【図2】一実施例を製造するための初期の工程を示して
おり、図1と同じ位置における側断面図である。
FIG. 2 is a side cross-sectional view showing the initial process for manufacturing an example, taken at the same position as in FIG.

【図3】図2に続く工程を示す側断面図である。FIG. 3 is a side sectional view showing a step that follows FIG.

【図4】図3に続く工程を示す側断面図である。FIG. 4 is a side sectional view showing a step that follows FIG.

【図5】一実施例の平面図である。FIG. 5 is a plan view of an example.

【図6】一実施例で生じ得る課題を説明するための側断
面図である。
FIG. 6 is a side sectional view for explaining a problem that may occur in one embodiment.

【図7】本願の発明の一従来例における素子活性領域の
平面図である。
FIG. 7 is a plan view of an element active region in a conventional example of the present invention.

【図8】図7のVIII−VIII線に沿う位置におけ
る側断面図である。
8 is a side sectional view taken along a line VIII-VIII in FIG.

【符号の説明】[Explanation of symbols]

13 素子活性領域 14 拡散層 23 W−ポリサイド膜 23a 選択ワード線部 23b 非選択ワード線部 32 トランジスタ 33 トランジスタ 44 キャパシタ 13 Device Active Region 14 Diffusion Layer 23 W-Polycide Film 23a Selected Word Line Section 23b Non-Selected Word Line Section 32 Transistor 33 Transistor 44 Capacitor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 トランジスタとキャパシタとでメモリセ
ルが構成されており、ワード線の延在方向では一対の前
記ワード線が前記延在方向に並んでいる前記メモリセル
に対して共に順次に選択ワード線部と非選択ワード線部
とになっており、前記延在方向と直角な方向では互いに
隣接している一対づつの前記ワード線が前記直角な方向
に並んでいる前記メモリセルに対して共に順次に前記選
択ワード線部と前記非選択ワード線部とになっている半
導体記憶装置において、 前記トランジスタの拡散層が形成されている素子活性領
域が前記直角な方向に連続的に形成されており、 前記直角な方向で互いに隣接している一対の前記非選択
ワード線部間で、前記拡散層同士がPN接合によって分
離されていることを特徴とする半導体記憶装置。
1. A memory cell is composed of a transistor and a capacitor, and a pair of the word lines in the extending direction of the word line are sequentially selected word with respect to the memory cells arranged in the extending direction. Line portions and non-selected word line portions, and a pair of the word lines that are adjacent to each other in the direction orthogonal to the extending direction are both aligned with the memory cells arranged in the orthogonal direction. In a semiconductor memory device in which the selected word line portion and the non-selected word line portion are sequentially formed, an element active region in which a diffusion layer of the transistor is formed is continuously formed in the orthogonal direction. The semiconductor memory device, wherein the diffusion layers are separated from each other by a PN junction between a pair of the unselected word line portions that are adjacent to each other in the orthogonal direction.
【請求項2】 前記非選択ワード線部をゲート電極とす
るトランジスタがデプリション型であることを特徴とす
る請求項1記載の半導体記憶装置。
2. The semiconductor memory device according to claim 1, wherein the transistor using the non-selected word line portion as a gate electrode is a depletion type.
JP4185960A 1992-06-19 1992-06-19 Semiconductor memory Pending JPH065816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4185960A JPH065816A (en) 1992-06-19 1992-06-19 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4185960A JPH065816A (en) 1992-06-19 1992-06-19 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH065816A true JPH065816A (en) 1994-01-14

Family

ID=16179893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4185960A Pending JPH065816A (en) 1992-06-19 1992-06-19 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH065816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203477B1 (en) 1998-10-12 2001-03-20 Komatsu Machinery Corporation Cutter changing systems and methods for internal crankshaft miller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203477B1 (en) 1998-10-12 2001-03-20 Komatsu Machinery Corporation Cutter changing systems and methods for internal crankshaft miller

Similar Documents

Publication Publication Date Title
JP2689888B2 (en) Semiconductor device and manufacturing method thereof
KR900000207B1 (en) Semiconductor memory device with trench surrounding each memory cell
US5025301A (en) DRAM which uses MISFETS in the peripheral circuit
EP0186855A2 (en) Semiconductor read only memory device and method of manufacturing the same
EP0453998B1 (en) Semiconductor memory device having a bit line constituted by a semiconductor layer
US5276343A (en) Semiconductor memory device having a bit line constituted by a semiconductor layer
US5025294A (en) Metal insulator semiconductor type dynamic random access memory device
EP0169346A1 (en) Dynamic memory cell and method for manufacturing the same
EP0514679A2 (en) Semiconductor integrated memory device
JPH11289060A (en) Manufacture of semiconductor integrated circuit device
JPH08227981A (en) Manufacture of dram unit cell and its array or dram unit in substrate
US20020055229A1 (en) Split gate flash memory with virtual ground array structure and method of fabricating the same
US4990998A (en) Semiconductor device to prevent out-diffusion of impurities from one conductor layer to another
US5106774A (en) Method of making trench type dynamic random access memory device
JPH05315567A (en) Semiconductor device and manufacture thereof
US5113238A (en) Contactless non-volatile memory array cells
JPS61107762A (en) Manufacture of semiconductor memory device
US5714778A (en) Semiconductor device including memory cell having a capacitance element added to a node of the cell
JPH02246264A (en) Semiconductor device and manufacture thereof
US5012312A (en) Semiconductor integrated circuit and a process for producing the same
US7135735B2 (en) Semiconductor device
US6355517B1 (en) Method for fabricating semiconductor memory with a groove
JPH065816A (en) Semiconductor memory
JPH08274275A (en) Semiconductor device and manufacture thereof
JPH06177263A (en) Manufacture of metal contact of word-line branch