JPH0657867B2 - High strength non-magnetic stainless steel - Google Patents
High strength non-magnetic stainless steelInfo
- Publication number
- JPH0657867B2 JPH0657867B2 JP60054185A JP5418585A JPH0657867B2 JP H0657867 B2 JPH0657867 B2 JP H0657867B2 JP 60054185 A JP60054185 A JP 60054185A JP 5418585 A JP5418585 A JP 5418585A JP H0657867 B2 JPH0657867 B2 JP H0657867B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- hardness
- cold
- cold working
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は磁気特性を利用して機能する各種機器・装置に
使用される耐食性に優れ、かつ高強度を有する非磁性ス
テンレス鋼に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a non-magnetic stainless steel having excellent corrosion resistance and high strength, which is used in various devices and apparatuses that function by utilizing magnetic properties.
<従来技術とその問題点> SUS304に代表されるCr−Ni系オーステナイト
ステンレス鋼は良好は耐食性と焼鈍状態で非磁性のオー
ステナイト組織を有するので、非磁性鋼として電気、精
密機器部品用に使用されている。また部品によっては強
度を必要とするため冷間加工を施した後に使用されてい
る。しかしながら、SUS304鋼はオーステナイト相
が準安定であるため、冷間加工中にマルテンサイト変態
が生じ、磁性を帯びるようになる。そこでそのような目
的には、オーステナイト相がさらに安定なSUS31
6、あるいは、高強度鋼としてN含有量の高いSUS3
04、SUS316Nが使用されている。<Prior art and its problems> Cr-Ni-based austenitic stainless steel represented by SUS304 has good corrosion resistance and a non-magnetic austenitic structure in the annealed state. Therefore, it is used as a non-magnetic steel for electric and precision instrument parts. ing. Since some parts require strength, they are used after cold working. However, since the austenite phase of SUS304 steel is metastable, martensitic transformation occurs during cold working and becomes magnetic. Therefore, for such a purpose, SUS31 having a more stable austenite phase is used.
6 or SUS3 with high N content as high strength steel
04, SUS316N is used.
しかしながら、これらのCr−Ni系オーステナイト鋼
は本来、非磁性鋼として開発されたものでなく、汎用鋼
を単に非磁性用途に転用したものにすぎない。例えば、
よりオーステナイト相の安定なSUS316系は高価な
Ni、Moを多量に含有しているが、Moは耐食性に優
れた効果を発揮するものの高強度あるいは非磁性に対す
る寄与は低い。またN含有量の高いSUS316Nも冷
間加工による強度の上昇は低く、高強度材とは言い難
い。However, these Cr-Ni austenitic steels were not originally developed as non-magnetic steels, but general steels were merely diverted to non-magnetic applications. For example,
The SUS316 series, which has a more stable austenite phase, contains a large amount of expensive Ni and Mo. Mo has an excellent effect on corrosion resistance, but it does not contribute to high strength or non-magnetism. In addition, SUS316N having a high N content also has a small increase in strength due to cold working, and cannot be said to be a high strength material.
高Si含有鋼としては、耐熱鋼や耐応力腐食割れ鋼があ
り、これらの鋼種はSiが耐酸化性あるいは応力腐食割
れ防止に優れた効果を発揮することによる。また、優れ
た耐擦傷性を有する鋼としては、特公昭56−3238
7号公報の鋼があり、その化学成分はCr:12〜19
%、Ni:4〜12%、Mn7〜12%、Si3〜5
%、C:0.01〜0.12%、N:0.03〜0.3%
で、焼鈍時のオーステナイト組織を確保するためにSi
の含有量に直接比例した量のオーステナイト生成元素N
iを含有させてある。High Si content steels include heat resistant steels and stress corrosion cracking steels, and these steel types are based on the fact that Si exerts an excellent effect on oxidation resistance or stress corrosion cracking prevention. Further, as a steel having excellent scratch resistance, Japanese Patent Publication No. 56-3238
There is steel disclosed in Japanese Patent No. 7 and its chemical composition is Cr: 12 to 19
%, Ni: 4-12%, Mn7-12%, Si3-5
%, C: 0.01 to 0.12%, N: 0.03 to 0.3%
In order to secure the austenite structure during annealing,
Austenite forming element N in an amount directly proportional to the content of
i is included.
さらに耐焼付性、耐掻疵性を有する鋼として特公昭56
−11379号公報の鋼があり、その化学成分はCr:
13〜25%、Ni:5〜15%、Mn:0.5〜5.
5%、Si:2.5〜5.0%、C:0.15%以下、
N:0.05〜0.20%で、潤滑剤が使用できない条
件下での摺動部材に使用できるもので、SiとNの地質
の強化ならびにSiによる酸化被膜の生成とその自己回
復性の強化を利用するものである。Furthermore, as a steel having seizure resistance and scratch resistance, Japanese Patent Publication No. 56
-11379, there is a steel of which the chemical composition is Cr:
13-25%, Ni: 5-15%, Mn: 0.5-5.
5%, Si: 2.5 to 5.0%, C: 0.15% or less,
N: 0.05 to 0.20%, which can be used as a sliding member under the condition that a lubricant cannot be used. It strengthens the geology of Si and N, and produces an oxide film by Si and its self-recovery property. It uses the enhancement.
しかしながら、これらの高Si含有オーステナイト鋼は
溶接性ならびに冷間加工により硬化された状態での非磁
性の確保について全く考慮されていない。すなわち、こ
れらの鋼は成分系によっては溶接時の高温割れがはげし
く、また冷間加工によりマルテンサイトが生成するため
磁性を帯びるようになり、非磁性鋼としては使用できな
い。However, these high Si content austenitic steels are not considered at all in terms of weldability and ensuring non-magnetism in a state hardened by cold working. That is, these steels are prone to high temperature cracking during welding depending on the component system, and become magnetic due to the formation of martensite by cold working, and cannot be used as non-magnetic steels.
以上概説したように、溶接性が良好な加工硬化型の高強
度非磁性ステンレス鋼としてのCr−Ni系オーステナ
イトステンレス鋼はいまだ提供されていないのが現状で
ある。As outlined above, the present situation is that Cr-Ni austenitic stainless steel as work-hardening type high strength non-magnetic stainless steel having good weldability has not yet been provided.
<問題解決の手段> 本発明者等は多年Cr−Ni系オーステナイトステンレ
ス鋼の硬さと透磁率におよぼす合金元素ならびに冷間加
工および熱処理の影響を調査した結果、SiとNは冷間
加工を施した後、ならびに冷間加工後に適度の熱処理を
施した後の強度の上昇に著しい効果を有することを見出
だした。さらにVはCおよび/またはNと析出物を形成
することにより焼鈍後の強度を増大させるのみならず冷
間加工あるいは冷間加工とそれに続く適度の熱処理によ
り著しい強度の上昇をもたらすことを見出した。そこで
Cr−NiベースにSiおよびNの固溶強化元素を添加
し、さらに析出強化元素であるVを添加した鋼に、冷間
加工あるいは冷間加工とその後の熱処理を施すことによ
り高強度化を図り、かつ、オーステナイト相安定化元素
を添加することにより、冷間加工後の非磁性を維持する
オーステナイト鋼の成分を設計した。本発明において非
磁性とは透磁率が1.01以下のものをさす。<Means for Solving Problems> The present inventors have investigated the effects of alloying elements and cold working and heat treatment on the hardness and magnetic permeability of Cr-Ni austenitic stainless steels for many years, and as a result, Si and N were cold worked. It has been found that it has a significant effect on the increase in strength after heat treatment and after appropriate heat treatment after cold working. Further, it was found that V not only increases the strength after annealing by forming precipitates with C and / or N but also brings about a remarkable increase in strength by cold working or cold working followed by moderate heat treatment. . Therefore, the strength of steel is increased by adding cold-working or cold-working and subsequent heat treatment to the steel in which the solid solution strengthening elements of Si and N are added to the Cr-Ni base, and further V which is the precipitation strengthening element is added. By designing and adding an austenite phase stabilizing element, the composition of the austenitic steel that maintains the non-magnetic property after cold working was designed. In the present invention, the term “non-magnetic” means that the magnetic permeability is 1.01 or less.
<発明の構成と作用> 本発明によれば、 重量で、C:0.12%以下、Si:3〜6%、Mn:
3〜9%、Ni:12〜16%、Cr:12〜22%、
N:0.1〜0.25%、V:0.5%以下を含有し、
残部Feならびに不純物からなり、次式 A(γ)=Ni+0.5Mn+30(C+N)-1.3Cr-2.6Si+13V+11.8で定
義されるA(γ)値が -10.0<A(γ)<0 を満足し、かつ Ni当量=Ni+0.6Mn+9.69(C+N)+0.18Cr-0.11Si2+2.3V で定義されるNi当量に対して、実験式 Y=exp(0.45X−4.60) (ただし、式中Yは冷間圧延率(%)、XはNi当量で
ある) で示される第6図の曲線A−A線以下の冷間加工がされ
たことを特徴とする高強度非磁性ステンレス鋼が提供さ
れる。<Structure and Action of the Invention> According to the present invention, C: 0.12% or less, Si: 3 to 6%, and Mn: by weight.
3 to 9%, Ni: 12 to 16%, Cr: 12 to 22%,
N: 0.1 to 0.25%, V: 0.5% or less,
The balance is Fe and impurities, and the A (γ) value defined by the following formula A (γ) = Ni + 0.5Mn + 30 (C + N) -1.3Cr-2.6Si + 13V + 11.8 is -10.0 <A ( γ) <0 is satisfied, and the Ni equivalent defined by Ni equivalent = Ni + 0.6Mn + 9.69 (C + N) + 0.18Cr-0.11Si 2 + 2.3V, Y = exp (0 .45X-4.60) (where Y is the cold rolling ratio (%) and X is the Ni equivalent) in the formula, cold working was carried out below the curve AA line in FIG. A high strength non-magnetic stainless steel is provided.
本発明の鋼において、CはNと同様に強力なオーステナ
イト相安定化元素であり、かつ強度の向上に有効な元素
であるが、反面Cは耐食性ならびに溶接性を著しく低下
させるので、それらの事情を考慮すると、本発明鋼の場
合、上限は0.12%となる。In the steel of the present invention, C is a strong austenite phase stabilizing element similar to N and is an element effective for improving strength. On the other hand, C significantly reduces corrosion resistance and weldability. In consideration of the above, in the case of the steel of the present invention, the upper limit is 0.12%.
Siは本発明鋼の主要な特徴である高強度を達成する有
用な元素であり、その目的を達成するためには少くとも
3%必要であるが、またSi含有量が増加すると冷間加
工後に鋼が磁性を帯びるようになるとともに、熱間加工
性が劣化するために上限を6%とする。Si is a useful element that achieves the high strength, which is the main feature of the steel of the present invention, and at least 3% is necessary to achieve its purpose, but when the Si content increases, it also increases after cold working. The upper limit is set to 6% because the steel becomes magnetized and the hot workability deteriorates.
MnはNiと同様に冷間加工後の非磁性を確保するため
に必須の元素である。さらにMnはNの固溶度を高める
元素でもある。これらの性能を発揮するには3%以上必
要であり、また冷間加工後の非磁性を保つためにSi含
有量に応じてNiとともにMnの含有量を調整する必要
があるが、多量のMnは冷間加工後の硬さの減少をもた
らすとともに溶接時の高温割れ感受性を高めるため、上
限を9%とする。Mn, like Ni, is an essential element for ensuring non-magnetism after cold working. Further, Mn is also an element that enhances the solid solubility of N. 3% or more is necessary to exert these performances, and the content of Mn together with Ni needs to be adjusted according to the Si content in order to maintain the non-magnetic property after cold working. In order to reduce the hardness after cold working and to increase the hot crack sensitivity during welding, the upper limit is 9%.
Niはオーステナイト鋼の基本成分であり、オーステナ
イト相の安定化に寄与する元素である。冷間加工後の非
磁性を保つためには、12%以上必要であり、さらにS
i、Mnの含有量に応じて、前記のようにNi含有量を
調整する必要がある。しかし多量のNiはMn同様冷間
加工後の硬さの減少をもたらすとともに、溶接時の高温
割れ感受性を高めるので上限を16%とする。Ni is a basic component of austenitic steel and is an element that contributes to stabilization of the austenitic phase. 12% or more is necessary to maintain non-magnetic property after cold working.
It is necessary to adjust the Ni content as described above according to the i and Mn contents. However, a large amount of Ni brings about a decrease in hardness after cold working similarly to Mn, and increases the hot crack sensitivity during welding, so the upper limit is made 16%.
Crはステンレス鋼の基本成分であり、良好な耐食性を
得るためには16%以上の含有が必要であるが、多量に
含有されると、多量のデルタフェライトが生成し、熱間
加工性が低下するとともにり、非磁性が確保できなくな
るため上限を22%とする。Cr is a basic component of stainless steel, and it is necessary to contain 16% or more in order to obtain good corrosion resistance. However, if it is contained in a large amount, a large amount of delta ferrite is generated and the hot workability is deteriorated. However, the upper limit is set to 22% because non-magnetism cannot be secured.
Nは本発明鋼の主要な特徴である非磁性を維持し、かつ
高強度を得るために有効な元素である。これらの性能を
発揮させるには0.1%以上含有させる必要がある。し
かし、0.25%を超えると、健全な鋼塊が得られない
のでこれを上限とする。N is an element effective for maintaining the non-magnetism, which is the main feature of the steel of the present invention, and for obtaining high strength. In order to exhibit these performances, it is necessary to contain 0.1% or more. However, if it exceeds 0.25%, a sound steel ingot cannot be obtained, so this is made the upper limit.
Vは本発明鋼の主要な特徴である高強度を得るために有
効な元素であるが、第7図に示すように多量のVを添加
しても強度の増加はあまり得られず、逆にデルタフェラ
イト生成量が多くなり、非磁性が確保できなくなるため
に上限を0.5%とする。V is an element effective for obtaining high strength, which is a main feature of the steel of the present invention, but as shown in FIG. 7, even if a large amount of V is added, the strength is not increased so much, and conversely. The upper limit is set to 0.5% because the amount of delta ferrite generated increases and non-magnetism cannot be secured.
A(γ)とNi当量の式とA(γ)の数値範囲は実験結
果から洞察によって導出されたものである。The formulas for A (γ) and Ni equivalents and the numerical range of A (γ) are derived from insights from the experimental results.
すなわち、本発明はCr−Ni系オーステナイトステン
レス鋼にSiおよびNならびにMnを多量含有させ、さ
らに適量のVを添加して、上記のように組成を調整し、
これを冷間加工し、あるいは冷間加工と熱処理を施すこ
とにより、高強度化し、かつ冷間加工後の透磁率が1.
01以下に抑え得るものである。冷間加工後の熱処理は
300〜600℃で行うことが望ましい。That is, in the present invention, Cr-Ni-based austenitic stainless steel is made to contain a large amount of Si, N and Mn, and an appropriate amount of V is added to adjust the composition as described above.
By subjecting this to cold working, or by subjecting it to cold working and heat treatment, the strength is increased and the magnetic permeability after cold working is 1.
It can be suppressed to 01 or less. The heat treatment after cold working is preferably performed at 300 to 600 ° C.
<発明の具体的記載> 次に図面を参照して本発明を詳細に説明する。本発明者
ら知見によれば、Cr−Ni系オーステナイトステンレ
ス鋼の硬さと透磁率と冷間圧延または冷間圧延とそれに
続く熱処理後の強度と合金元素の間には次のような関係
がある。<Detailed Description of the Invention> Next, the present invention will be described in detail with reference to the drawings. According to the knowledge of the present inventors, there is the following relationship between the hardness and magnetic permeability of Cr-Ni-based austenitic stainless steel and the strength after cold rolling or cold rolling followed by heat treatment and alloying elements. .
第1図は本発明の17Cr-14Ni-5Mn-ySi-0.05C-xN-0.15V鋼
(x,yは変数)の60%冷間加工後の硬さとSi、N
の含有量の関係を示す。第2図は同じ鋼の60%冷間加
工後500℃で1時間熱処理した後の硬さとSi、Nの
含有量の関係を示す。すなわち、第1図は、本発明の17
Cr-5Mn-ySi-0.05C-xN-0.15V鋼(x、yは変数)の硬さ
に及ぼすSi、Nの相互の関係を示したものである。す
なわち図は60%の冷間加工状態でHV420が得られ
るSi、Nの相互関係、含有量割合を示している。した
がって、HV420の線よりもSi、Nの割合が下がれ
ば硬さは低下し、たとえばHV400の得られるSi、
Nの割合は図中に示す線図となる。逆にSi、Nの割合
が高くなれば硬さも高くなる。FIG. 1 shows hardness and Si, N after 60% cold working of 17Cr-14Ni-5Mn-ySi-0.05C-xN-0.15V steel (x and y are variables) of the present invention.
The relationship of the content of is shown. FIG. 2 shows the relationship between the hardness and the Si and N contents of the same steel after 60% cold working and heat treatment at 500 ° C. for 1 hour. That is, FIG.
It shows the mutual relationship between Si and N that affects the hardness of Cr-5Mn-ySi-0.05C-xN-0.15V steel (x and y are variables). That is, the figure shows the interrelationship of Si and N and the content ratio of HV420 in the cold working state of 60%. Therefore, if the ratio of Si and N is lower than that of the line of HV420, the hardness decreases, and for example, the Si obtained by HV400,
The ratio of N is shown in the diagram. On the contrary, the higher the ratio of Si and N, the higher the hardness.
第2図は同一の鋼の60%冷間加工後500℃で1時間
処理した際にHV500あるいはHV480が得られる
Si、Hの含有割合を示している。これらの図から分る
ようにSi、Nともに、冷間加工物および時効後の硬さ
上昇に大きく寄与する。これらの図から分かるようにS
iとNは相補って冷間加工後の硬さを上昇させる。FIG. 2 shows the Si and H content ratios at which HV500 or HV480 is obtained when the same steel is cold worked by 60% and then treated at 500 ° C. for 1 hour. As can be seen from these figures, both Si and N contribute greatly to the cold work and increase in hardness after aging. As you can see from these figures, S
i and N complementarily increase the hardness after cold working.
第3図は17Cr-14Ni-5Mn-4.7Si-0.05C-0.15N組成のV無
添加鋼とV添加鋼の、60%冷間加工に500℃で1時
間熱処理した後の硬さの変化を示す線図である。この図
から分るように、V無添加鋼に比してV添加鋼は冷間圧
延および冷間圧延熱処理後の硬さが大である。Figure 3 shows the change in hardness of 17Cr-14Ni-5Mn-4.7Si-0.05C-0.15N composition V-free steel and V-added steel after heat treatment at 500 ℃ for 1 hour in 60% cold working. It is a diagram showing. As can be seen from this figure, the V-added steel has a greater hardness after cold rolling and cold rolling heat treatment than the V-free steel.
第4図は本発明の16.5Cr-14.0Ni-5.0Mn-5.0Si-0.10C-0.
16N-0.22V鋼の60%冷間圧延後の硬さに及ぼす熱処理
温度(均熱時間、1時間)の影響を示す線図であるが、
この図から分るように、冷間加工後の熱処理は300〜
600℃で行うべきである。これより低い温度域では硬
化効果がなく、これより高い温度域では軟化が起る。FIG. 4 shows 16.5Cr-14.0Ni-5.0Mn-5.0Si-0.10C-0.
It is a diagram showing the effect of heat treatment temperature (soaking time, 1 hour) on the hardness of 16N-0.22V steel after 60% cold rolling.
As can be seen from this figure, the heat treatment after cold working is 300 ~
It should be done at 600 ° C. There is no curing effect in the lower temperature range, and softening occurs in the higher temperature range.
第5図は比較鋼である16Cr-13Ni-1.65Mn-xSi-0.05C-0.0
4N-0.10V鋼(xは変数)の冷間圧延後の透磁率に及ぼす
Siの影響を示す線図である。従来Siは冷間加工に対
するオーステナイト相の安定化に寄与するといわれてい
たが、この図に見られるように、Siは冷間加工後の透
磁率を上昇させ、その含有量が多くなる程その効果は著
しい。従って、高強度化に必須の元素であるSiの含有
量に応じてオーステナイト相安定化元素の含有量を調整
する必要がある。すなわち冷間加工後の透磁率に及ぼす
Ni当量の値は前記の式で定義されることが見出され
た。Fig. 5 shows a comparative steel, 16Cr-13Ni-1.65Mn-xSi-0.05C-0.0.
It is a diagram which shows the influence of Si on the magnetic permeability after cold rolling of 4N-0.10V steel (x is a variable). Conventionally, it was said that Si contributes to stabilization of the austenite phase against cold working, but as shown in this figure, Si increases the magnetic permeability after cold working, and the effect increases as the content increases. Is remarkable. Therefore, it is necessary to adjust the content of the austenite phase stabilizing element according to the content of Si, which is an element essential for strengthening. That is, it was found that the value of Ni equivalent which affects the magnetic permeability after cold working is defined by the above-mentioned formula.
第6図は本発明の鋼において、加えられる冷間圧延の圧
下率と非磁性を維持するために必要な最少限のNi当量
値の関係を示す。冷間加工後の非磁性を維持するために
必要な前記のように定義されるNi当量の最小限の値
は、第6図の曲線A−Aで与えられ、高度に冷間圧延さ
れる鋼ほど高いNi当量値を有しなければならないこと
が分った。FIG. 6 shows the relationship between the reduction ratio of the cold rolling applied and the minimum Ni equivalent value required to maintain non-magnetism in the steel of the present invention. The minimum value of Ni equivalent weight as defined above required to maintain non-magnetic properties after cold working is given by curve A-A in FIG. 6 and is a highly cold rolled steel. It has been found that it must have a reasonably high Ni equivalent value.
第7図は19Cr-14Ni-5Mn-5Si-0.06C-0.15N-xV鋼(xは変
数)の冷間圧延後、500℃で1時間熱処理を施した後
の硬さに及ぶすVの影響を示す線図である。この図から
Vの本願鋼の硬さに及ぼす影響は約0.15%で飽和す
ることが分る。Figure 7 shows the effect of V on the hardness of 19Cr-14Ni-5Mn-5Si-0.06C-0.15N-xV steel (x is a variable) after cold rolling and after heat treatment at 500 ° C for 1 hour. FIG. From this figure, it can be seen that the effect of V on the hardness of the steel of the present application is saturated at about 0.15%.
また高Si、高Mn、高Niを含有するステンレス鋼は
1種の高合金鋼であり、良好な溶接性を得るには溶接時
に適量のデルタフェライトを生成させるように組成を設
計する必要がある。そこで数々の実験を重ねた結果、オ
ーステナイト相の安定度指数、A(γ)を前記のように
定義し、その値が前記のように、−10.0と0の間に
あるように調整すればよいことが判明した。該A(γ)
値が−10.0未満では多量のデルタフェライトが生成
して非磁性が維持されず、0以上では良好な溶接性が確
保されない。Further, the stainless steel containing high Si, high Mn, and high Ni is one kind of high alloy steel, and in order to obtain good weldability, it is necessary to design the composition so as to generate an appropriate amount of delta ferrite during welding. . As a result of repeated experiments, the stability index of the austenite phase, A (γ), was defined as described above, and the value was adjusted so that it was between -10.0 and 0 as described above. It turned out to be good. The A (γ)
If the value is less than -10.0, a large amount of delta ferrite is generated and non-magnetism is not maintained, and if it is 0 or more, good weldability is not secured.
<実施例> 本発明鋼の特徴を従来鋼ならびに比較鋼と比べて実施例
をもって明らかにする。<Example> The characteristics of the steel of the present invention will be clarified by an example as compared with the conventional steel and the comparative steel.
第1表に示す鋼が溶製された。試料A1、A2は従来鋼
でA1はSUS304鋼、A2はSUS316鋼でNi量が規格の上
限に近いものである。C1〜C3は比較鋼で、C1はS
i含有量が高いもの、C2はSi、NおよびMn含有量
が高いが、Ni含有量が9%と低いものである。C3は
成分含有量は本発明の範囲内であるが、A(γ)値が本
発明範囲を外れている。B1〜B6が本発明鋼である。The steel shown in Table 1 was melted. Samples A1 and A2 are conventional steels, A1 is SUS304 steel, A2 is SUS316 steel, and the amount of Ni is close to the upper limit of the standard. C1 to C3 are comparative steels, C1 is S
The i content is high, and C2 has a high Si, N and Mn content, but the Ni content is as low as 9%. C3 has a component content within the range of the present invention, but has an A (γ) value outside the range of the present invention. B1 to B6 are the steels of the present invention.
それぞれの鋼は30kg高周波誘導溶解炉で溶製された。
それぞれの鋼を10mm厚、120mm幅に鍛造し、容体化
処理し、これを3mmまで冷間圧延し、中間焼鈍した後さ
らに1.5mmまで冷間圧延し、最終焼鈍を施した後に1
20×300mmの試片とした。Each steel was melted in a 30 kg high frequency induction melting furnace.
Each steel was forged to a thickness of 10 mm and a width of 120 mm, heat treated, cold rolled to 3 mm, intermediate annealed, further cold rolled to 1.5 mm, and finally annealed.
The test piece was 20 × 300 mm.
これらの試片は目標の冷間圧延を施した後、ビッカース
硬さを20kgの荷重で測定し、透磁率を島津磁気天秤M
B−3型を用いて1000Oeの磁場のもとで測定し
た。These samples were subjected to the target cold rolling, and then the Vickers hardness was measured with a load of 20 kg, and the magnetic permeability was determined by a Shimadzu magnetic balance M.
The measurement was performed using a B-3 type under a magnetic field of 1000 Oe.
第2表は、第1表の各鋼の焼鈍後、20%、40%、6
0%冷間圧延後、および冷間圧延の後に500℃、1時
間の熱処理を施した後でのビッカース硬さ、60%冷間
圧延後の透磁率、ならびに溶接性の評価を示す。 Table 2 shows 20%, 40%, 6% after annealing of each steel in Table 1.
Evaluations of Vickers hardness after 0% cold rolling and after heat treatment at 500 ° C. for 1 hour after cold rolling, magnetic permeability after 60% cold rolling, and weldability are shown.
ここで溶接性の評価はTIG溶接後にカラーチェックを
行ない、割れが観察されないものを○、割れが多数観察
されるものを×とした。Here, the weldability was evaluated by performing a color check after TIG welding, and ◯ indicates that no cracks were observed, and x indicates that many cracks were observed.
第2表から知られるように、A1鋼(SUS304)は
60%の冷間圧延により硬さが、Hv455、熱処理後
の硬さがHv486と硬度では優れているが、Ni当量
が13.77と低く、冷間加工後の透磁率が非常に高
い。すなわち、SUS304は冷間加工によりマルテン
サイト相が生成し、透磁率が上昇するため、非磁性鋼と
して使用できない。またA2鋼(SUS316)は60
%の冷間圧延後の透磁率が1.01以下で非磁性である
ものの、60%冷間圧延後の硬さがHv376、また熱
処理後の硬さが、Hv407と低く、高強度材としては
不充分である。C1鋼およ びC2鋼はSUS304と同様強度レベルは高いが、冷
間圧延後の透磁率は高い。C3鋼は60%冷間圧延を施
した後の硬さが高く、また透磁率も1.01以下と非磁
性を維持しているが、A(γ)値が正の値であり、溶接
性が著しく悪い。As is known from Table 2, A1 steel (SUS304) is excellent in hardness by Hv455 and Hv486 by 60% cold rolling, but has Ni equivalent of 13.77. Low, very high magnetic permeability after cold working. That is, SUS304 cannot be used as a non-magnetic steel because the martensite phase is generated by cold working and the magnetic permeability increases. A2 steel (SUS316) is 60
% Non-magnetic after 1.0% cold rolling, the hardness after 60% cold rolling is Hv376 and the hardness after heat treatment is as low as Hv407, which is high strength material. Not enough. C1 steel and And C2 steel have high strength levels like SUS304, but have high magnetic permeability after cold rolling. C3 steel has a high hardness after being subjected to 60% cold rolling and has a magnetic permeability of 1.01 or less, which is non-magnetic, but the A (γ) value is a positive value and the weldability is high. Is extremely bad.
これらに対して、本発明鋼であるB1〜B6鋼はSi、
Nの含有量が高く、Vを含み、60%の冷間圧延後の硬
さがHv420以上、また60%の冷間圧延後500℃
で熱処理を施すことにより硬さがHv500以上にな
る。また透磁率について、前記式で与えられるNi当量
が19.0以上となる様にNi、MnおよびNを適量含
有しており、60%の冷間圧延を施した後でも、透磁率
が1.01以下であり、非磁性についても優れたもので
ある。さらに前記式で与えられるA(γ)値が-10.0〜
0となるように組成調整されており、溶接性も良好であ
る。On the other hand, the B1 to B6 steels of the present invention are Si,
High N content, including V, 60% hardness after cold rolling is Hv 420 or more, and 60% after cold rolling 500 ° C.
The hardness becomes Hv500 or more by performing the heat treatment at. Regarding the magnetic permeability, it contains appropriate amounts of Ni, Mn and N so that the Ni equivalent given by the above formula becomes 19.0 or more, and the magnetic permeability is 1. even after cold rolling of 60%. It is 01 or less and is excellent in non-magnetism. Furthermore, the A (γ) value given by the above formula is -10.0 to
The composition is adjusted so as to be 0, and the weldability is also good.
<発明の効果> 本発明鋼は耐食性が良好で、冷間加工後および冷間加工
後熱処理を施した後の硬さに優れ、かつ冷間加工後の透
磁率が1.01以下である充分安定した非磁性を有す
る、高強度を必要とする電気および電子機器部品や装置
用の材料として極めて高い実用性を有する非磁性ステン
レス鋼を提供する。<Effects of the Invention> The steel of the present invention has good corrosion resistance, is excellent in hardness after being subjected to heat treatment after cold working and after cold working, and has a magnetic permeability of 1.01 or less after cold working. (EN) Provided is a non-magnetic stainless steel having stable non-magnetism and having extremely high practicality as a material for electric and electronic equipment parts and devices requiring high strength.
第1図は本発明の17Cr-14Ni-5Mn-ySi-0.05C-xN-0.15V鋼
(y,xは変数)の60%冷間加工後の硬さとSiとNの含
有量の関係を示す線図である。 第2図は同じ鋼の60%冷間加工後500℃で1時間熱
処理した後の硬さとSi、Nの含有量の関係を示す線図
である。 第3図は17Cr-14Ni-5Mn-4.7Si-0.05C-0.15N組成のV無
添加鋼とV添加鋼の、60%冷間加工に500℃で1時
間熱処理した後の硬さの変化を示す線図である。 第4図は本発明の16.5Cr-14.0Ni-5.0Mn-5.0Si-0.11C-0.
16N-0.22V鋼の60%冷間加工後の硬さに及ぼす熱処理
温度(均熱時間1時間)の影響を示す線図である。 第5図は比較鋼である16Cr-13Ni-1.5Mn-xSi-0.05C-0.04
N-0.15V鋼(xは変数)の冷間圧延後の透磁率に及ぼす
Siの影響を示す線図である。 第6図は本発明の鋼において非磁性を維持するのに必要
とするNi当量と冷間圧延率の上限の関係を示す。 第7図は19Cr-14Ni-5Mn-5Si-0.06C-0.15N-xV鋼(xは変
数)の冷間圧延後、500℃で1時間熱処理を施した後
の硬さに及ぼすVの影響を示す線図である。FIG. 1 shows the relationship between hardness and Si and N contents of 60Cr-14Ni-5Mn-ySi-0.05C-xN-0.15V steel (y and x are variables) of the present invention after 60% cold working. It is a diagram. FIG. 2 is a diagram showing the relationship between hardness and Si and N contents after heat-treating the same steel at 60 ° C. for 1 hour after cold working. Figure 3 shows the change in hardness of 17Cr-14Ni-5Mn-4.7Si-0.05C-0.15N composition V-free steel and V-added steel after heat treatment at 500 ℃ for 1 hour in 60% cold working. It is a diagram showing. FIG. 4 shows 16.5Cr-14.0Ni-5.0Mn-5.0Si-0.11C-0.
It is a diagram which shows the influence of the heat treatment temperature (soaking time 1 hour) on the hardness after 16% cold working of 16N-0.22V steel. Fig. 5 shows a comparative steel, 16Cr-13Ni-1.5Mn-xSi-0.05C-0.04.
It is a diagram which shows the influence of Si which acts on the magnetic permeability after cold rolling of N-0.15V steel (x is a variable). FIG. 6 shows the relationship between the Ni equivalent required to maintain non-magnetism and the upper limit of the cold rolling rate in the steel of the present invention. Figure 7 shows the effect of V on the hardness of 19Cr-14Ni-5Mn-5Si-0.06C-0.15N-xV steel (x is a variable) after cold rolling and after heat treatment at 500 ° C for 1 hour. It is a diagram showing.
Claims (1)
6%、Mn:3〜9%、Ni:12〜16%、Cr:1
2〜22%、N:0.1〜0.25%、V:0.5%以
下を含有し、残部Feならびに不純物からなり、次式 A(γ)=Ni+0.5Mn+30(C+N)-1.3Cr-2.6Si+13V+11.8 で定義されるA(γ)値が -10.0<A(γ)<0 を満足し、かつ Ni当量=Ni+0.6Mn+9.69(C+N)+0.18Cr-0.11Si2+2.3V で定義されるNi当量に対して、実験式 Y≦exp(0.45X−4.60) (ただし、式中Yは冷間圧延率(%)、XはNi当量で
ある) で示される第6図の曲線A−A線以下の冷間加工がされ
たことを特徴とする高強度非磁性ステンレス鋼。1. C: 0.12% or less by weight, Si: 3 to
6%, Mn: 3-9%, Ni: 12-16%, Cr: 1
2 to 22%, N: 0.1 to 0.25%, V: 0.5% or less, and the balance Fe and impurities. The following formula A (γ) = Ni + 0.5Mn + 30 (C + N) -1.3Cr-2.6Si + 13V + 11.8, A (γ) value satisfies -10.0 <A (γ) <0, and Ni equivalent = Ni + 0.6Mn + 9.69 (C + N) For the Ni equivalent defined by + 0.18Cr-0.11Si 2 + 2.3V, the empirical formula Y ≦ exp (0.45X−4.60) (where Y is the cold rolling rate (%), X Is a Ni equivalent), and is a high-strength non-magnetic stainless steel characterized by being cold-worked below the curve AA line in FIG.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60054185A JPH0657867B2 (en) | 1985-03-20 | 1985-03-20 | High strength non-magnetic stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60054185A JPH0657867B2 (en) | 1985-03-20 | 1985-03-20 | High strength non-magnetic stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61213352A JPS61213352A (en) | 1986-09-22 |
JPH0657867B2 true JPH0657867B2 (en) | 1994-08-03 |
Family
ID=12963485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60054185A Expired - Lifetime JPH0657867B2 (en) | 1985-03-20 | 1985-03-20 | High strength non-magnetic stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0657867B2 (en) |
-
1985
- 1985-03-20 JP JP60054185A patent/JPH0657867B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61213352A (en) | 1986-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900006870B1 (en) | Ferrite-austenitic stainless steel | |
US4765953A (en) | High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability | |
JP2533481B2 (en) | Non-magnetic high strength stainless steel and method for producing the same | |
US4849166A (en) | High strength stainless steel | |
JP4190993B2 (en) | Ferritic stainless steel sheet with improved crevice corrosion resistance | |
JP2668113B2 (en) | Method for producing high-strength non-magnetic stainless steel material with excellent workability | |
JPS6145697B2 (en) | ||
JP3384887B2 (en) | Precipitation hardened stainless steel for springs with excellent strength and torsion characteristics | |
JPH0657867B2 (en) | High strength non-magnetic stainless steel | |
JPH04214842A (en) | High strength stainless steel excellent in workability | |
JPH064905B2 (en) | Non-magnetic stainless steel with excellent spring characteristics | |
JPH0641624B2 (en) | Work hardening type non-magnetic stainless steel | |
JP2007197806A (en) | Austenitic stainless steel and spring produced by the steel | |
JPS62156257A (en) | High strength, nonmagnetic cold rolled steel sheet | |
JPS62230957A (en) | Precipitation hardening-type nonmagnetic stainless steel | |
JP3271791B2 (en) | Manufacturing method of non-magnetic stainless steel thick plate | |
JPH0463247A (en) | High strength and high ductility stainless steel | |
JP3271790B2 (en) | Manufacturing method of non-magnetic stainless steel thick plate | |
KR100215727B1 (en) | Super duplex stainless steel with high wear-resistance | |
JPH07188866A (en) | Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid | |
JPS61213351A (en) | High strength nonmagnetic stainless steel | |
JP3289947B2 (en) | Manufacturing method of stainless steel for high strength spring with excellent stress corrosion cracking resistance used in hot water environment | |
JPH033727B2 (en) | ||
KR20240129339A (en) | High-strength non-magnetic austentic stainless steel and method for manufacturing the same | |
JPH045726B2 (en) |