JPH0657519A - Finely porous polymer and its production - Google Patents

Finely porous polymer and its production

Info

Publication number
JPH0657519A
JPH0657519A JP4235197A JP23519792A JPH0657519A JP H0657519 A JPH0657519 A JP H0657519A JP 4235197 A JP4235197 A JP 4235197A JP 23519792 A JP23519792 A JP 23519792A JP H0657519 A JPH0657519 A JP H0657519A
Authority
JP
Japan
Prior art keywords
solvent
thermoplastic polymer
kneading
polymer
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4235197A
Other languages
Japanese (ja)
Other versions
JP2652599B2 (en
Inventor
Yoshikazu Yamaguchi
嘉一 山口
Hidemasa Yamaguchi
英将 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4235197A priority Critical patent/JP2652599B2/en
Publication of JPH0657519A publication Critical patent/JPH0657519A/en
Application granted granted Critical
Publication of JP2652599B2 publication Critical patent/JP2652599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To provide a production process of excellent productivity for a micro- cellular polymer having a uniform pore distribution and a sharp and narrow micro-cellular diameter distribution. CONSTITUTION:A combination of a thermoplastic polymer and a solvent where the polymer is solubilized at elevated temperature to form a stable fused solution and solidified to form a stable gel, when the solution is cooled down during the forming process, is rapidly formed and fed at a specific ratio into a screw- kneading extruder having a kneading function to form a uniform molten constitution. Then, the constitution product is injected into a mold connected to the extruder to give a molded product of a prescribed shape. Then, the solvent is removed from the molded product to give the objective micro-cellular polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、逆浸透圧法、限外濾過
法、微細多孔膜分離法に用いる高分子分離膜の製造方法
と、これ等高分子分離膜を用いた分離装置並びに濾過装
置に関するものである。最近の化学工業技術の発展は、
濾過分別操作に対しても従来の単に”濾し分ける”と云
う概念より大きく進展し高度な機能を要求するものとな
り、 逆浸透圧法とイオン交換を組合せた海水や地下かん水
からの脱塩による水の製造、精密工業に供給する超純水
の製造、海水からウランの濃縮等、 逆浸透圧法と限外濾過法を組合せた食品工業に於ける
果汁の濃縮や、排水からの蛋白や糖の回収(例えばチー
ズホエー、大豆ホエーの回収と分画)メッキ工業の排水
から無機塩の回収除去等、 限外濾過法を適用した水溶性電着塗装に於ける塗料粒
子の濾別回収、圧延や機械加工に於けるオイル−水エマ
ルジョンからの油分の分離回収、プールの水の浄化、等
に用いる高性能分離・濾過材、分離・濾過装置及び分離
・濾過システムの開発と機能向上要望が極めて高く、 精密工業用超清浄空気供給用フィルターや、 高性能の電池セパレーター用濾材、等の高性能濾材開
発要望や、 自動車用ガソリンフィルター、オイルフィルター等の
高性能濾材の開発並びに、その生産システムと製品生産
工程をも合理化し改革出来る濾材、の開発を求める声も
大きく、上記要望に答え得る分離材・濾材の供給は関連
工業の発展の面からも極めて要望が強く、その寄与効果
が大きい。又本発明は微細多孔質高分子膜の透気性(透
湿性)を利用した透気性衣料他の透気性被覆物質並びに
合成皮革及び、その製造方法にも関するものでもある。
靴などの皮革製品の他、衣料分野に於いても皮革の如く
空気は透すが水は透さないと云う機能を要求される製品
例えば、コート、ジャンパー、雨ガッパ等極めて多くの
商品があり、産業資材としても空気は透すが水は透さな
いと云う機能を要求されるハウスラッピング材等の多く
の資材があり、高機能のこれ等商品の供給とそれを高生
産性で製造する方法の開発が望まれて居る。本発明は、
上記の如く各種濾材分野及び透気性被覆物商品分野に於
ける要望に答え、又それに関連する工業の発展に寄与す
る発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer separation membrane used in a reverse osmosis method, an ultrafiltration method and a microporous membrane separation method, and a separation device and a filtration device using these polymer separation membranes. It is about. Recent developments in chemical engineering technology
Even for the filtration and separation operation, it is a great advancement from the conventional concept of simply "filtering out", and it requires advanced functions. Water obtained by desalination from seawater or ground brine by combining reverse osmosis and ion exchange Manufacturing, production of ultrapure water supplied to precision industry, concentration of uranium from seawater, concentration of fruit juice in food industry combining reverse osmosis and ultrafiltration, recovery of protein and sugar from wastewater ( For example, recovery and fractionation of cheese whey and soybean whey) recovery and removal of inorganic salts from wastewater of the plating industry, etc. by filtration collection of paint particles in water-soluble electrodeposition coating using ultrafiltration, rolling and machining. There is an extremely high demand for the development and improvement of functions of high-performance separation / filtration materials, separation / filtration devices and separation / filtration systems used for the separation and recovery of oil from oil-water emulsion, purification of pool water, etc. Industrial super Demand for development of high-performance filter media such as clean air supply filters and high-performance battery separator filter media, development of high-performance filter media such as automobile gasoline filters and oil filters, and rationalization of its production system and product production process There is also a great demand for the development of filter media that can be reformed, and the supply of separation media and filter media that can meet the above demands is extremely strong from the perspective of the development of related industries, and the contribution effect is great. The present invention also relates to an air-permeable covering material such as an air-permeable garment that utilizes the air permeability (moisture permeability) of the fine porous polymer membrane, a synthetic leather, and a method for producing the same.
In addition to leather products such as shoes, there are many products in the clothing field that require a function that allows air to pass through but does not allow water to pass, such as coats, jumpers, and rain gappa. As industrial materials, there are many materials such as house wrapping materials, which are required to have the function of allowing air to pass through but not water, and supply such highly functional products and manufacture them with high productivity. Development of methods is desired. The present invention is
As described above, the present invention is an invention that responds to the demands in the fields of various filter media and air-permeable coated products and contributes to the development of industry related thereto.

【0002】[0002]

【従来の技術】逆浸透圧法、限外濾過法、微細多孔膜分
離法に用いる微細多孔質高分子分離膜は、膜構成物質の
化学構造、結晶構造、結晶化度、微細構造、微細多孔材
に於ける孔の大きさとその分布状態、孔の密度と分布状
態、孔の型などにより、その機能が決定付けられるた
め、より高性能の濾材を得るために最適の濾材を選定し
最適の製造方法と条件を選定して、孔径分布が整い、よ
り小さい孔径を持ち、それらが均等に分散分布した濾材
を開発する事に努力が払われた結果、下記の如き方法が
開発され製造されて来た。 即ち、膜構成ポリマーに不溶性の微粒子体を混合し製
膜後、膜構成ポリマーの非溶剤で且つ微粒子体の溶剤で
微粒子体を抽出するか、微粒子体を化学反応を用いて可
溶化する事により除去し微細多孔質化する方法、例えば
古典的例としてビスコースドープに微細澱粉粒子を混合
し製膜し、膜中に存在する澱粉粒子を酵素の力を借り可
溶化し除去し微細多孔質化する方法が挙げられる。 水溶性高分子物質の水溶液内で疎水性単量体を乳化重
合し、この重合体皮膜から疎水性ポリマーの微粒子を抽
出する事による、親水性ポリマーに疎水性ポリマーがグ
ラフト重合或いはブロック共重合された微細多孔質重合
体を得る方法、 ポリエステル或いはポリカーボナートに放射線照射
し、次いでアルカリエッチングを行う事により微細多孔
質重合体を得る方法、 ポリプロピレンの如き結晶化速度が速く結晶性の高い
ポリマーを、高結晶化条件下で製膜或いは製糸し、次い
でこれに延伸を施す事によりマイクロボイドを発生せし
めて微細多孔質重合体を得る方法、 熱可塑性高分子物質に発泡性物質を混合し溶融押し出
しを行い製膜或いは製糸するとともに発泡させ微細多孔
質重合体を得る方法、 高分子物質をその高分子物質の良溶媒と膨潤剤或いは
非溶媒の混合溶液に溶解し安定なゾルを形成せしめ、製
膜し、次いでこのゾルより良溶媒の一部を蒸発せしめゲ
ル化させ、良溶媒の蒸発除去或いは非溶媒内への浸漬に
より更にゲル化を進行させ良溶媒を抽出除去する事によ
る、所謂コアセルベーション法に基く微細多孔質重合体
製造方法等がある。法は現在最も広範に行われる製造
法の一つで、高分子物質−溶媒系の組み合わせ、製膜−
ゲル化−多孔質化条件等に工夫を凝らし、多くの具体的
方法が開発され実施されて居るが、その一例を挙げる
と、セルローズトリアセテートを過塩素酸マグネシウ
ム、水、アセトンからなる混合溶媒に溶かし冷却調整
し、このドープを冷却されたガラス板上に流延し製膜
し、数分間アセトンの蒸発を許し次いで冷水中に浸漬し
残存するアセトンと過塩素酸マグネシウムを抽出除去
し、使用前に熱水で数分間熱処理する事により逆浸透法
用膜を製造する方法がある。又、透湿性を有する被覆物
や合成皮革製造に於いても前記に類する組成物を基材
に塗布し微粒子体を溶解除去し微細多孔化する方法や
に類した発泡剤を包含したポリウレタンなどの組成物を
基材に塗布し細多孔化する方法が用いられ製造されてき
た。
2. Description of the Related Art A fine porous polymer separation membrane used in a reverse osmosis method, an ultrafiltration method and a fine porous membrane separation method has a chemical structure, a crystal structure, a crystallinity, a fine structure and a fine porous material of a membrane constituent substance. The function is determined by the size and distribution of pores, the density and distribution of pores, the type of pores, etc., so the optimum filter medium is selected and the optimum manufacturing is performed to obtain a higher performance filter medium. As a result of efforts to develop a filter medium in which the pore size distribution is uniform, the pore size distribution is smaller, and the pore sizes are evenly distributed, by selecting the method and conditions, the following methods have been developed and manufactured. It was That is, by mixing insoluble fine particles with the film-forming polymer and forming a film, the fine particles are extracted with a non-solvent of the film-forming polymer and a solvent of the fine particles, or by solubilizing the fine particles using a chemical reaction. A method of removing and making it microporous, for example, as a classical example, mixing fine starch particles with viscose dope to form a film, and solubilizing and removing the starch particles present in the film with the aid of an enzyme to make them microporous. There is a method of doing. By emulsion-polymerizing a hydrophobic monomer in an aqueous solution of a water-soluble polymer and extracting fine particles of the hydrophobic polymer from the polymer film, the hydrophobic polymer is graft-polymerized or block-copolymerized with the hydrophilic polymer. A method for obtaining a fine porous polymer, a method for obtaining a fine porous polymer by irradiating polyester or polycarbonate with radiation, and then performing alkali etching, a polymer having a high crystallization rate such as polypropylene, and a highly crystalline polymer, A method of forming a film or yarn under high crystallization conditions, and then stretching this to generate microvoids to obtain a finely porous polymer, mixing a foaming substance with a thermoplastic polymer substance, and performing melt extrusion. A method for obtaining a finely porous polymer by performing film formation or yarn making and foaming, and the polymer substance is expanded with a good solvent for the polymer substance. Dissolve in a mixed solution of a wetting agent or a non-solvent to form a stable sol, form a film, then evaporate a part of the good solvent from this sol to cause gelation, evaporate and remove the good solvent, or immerse in a non-solvent There is a method for producing a fine porous polymer based on the so-called coacervation method by further promoting gelation and extracting and removing a good solvent. The method is one of the most widely used manufacturing methods at present. It is a combination of polymer-solvent system, film formation-
Many concrete methods have been developed and implemented by elaborating on the conditions of gelation-porosification, and one example is dissolving cellulose triacetate in a mixed solvent of magnesium perchlorate, water, and acetone. After cooling and adjusting, this dope was cast on a cooled glass plate to form a film, allowed to evaporate acetone for a few minutes, and then immersed in cold water to extract and remove residual acetone and magnesium perchlorate before use. There is a method of producing a membrane for reverse osmosis by heat-treating with hot water for several minutes. Further, also in the production of a coating having moisture permeability or a synthetic leather, a method of applying a composition similar to the above to a substrate to dissolve and remove fine particles to make fine pores, and polyurethane containing a foaming agent similar to A method of applying the composition to a substrate and making it finely porous has been used and manufactured.

【0003】[0003]

【本発明が解決しようとする課題】然しながら、 従来から行われて居た方法の内前記の〜に示され
る方法では、逆浸透圧法、限外濾過法に用いられる濾材
が必要とする、微細な孔径の細孔を狭い細孔径分布を持
ち、濾材に均等に分散分布させて穿孔された微細多孔質
体を製造する事が困難である難点があった。 前記のないしに示される方法は何れも工程数が多
く、又各工程の条件設定を極めて厳密に行う事が必須
で、高生産性にて再現性よく高度の品質管理下で生産を
行う事が難しい製造方法で、高生産性の工業的製造法と
は云い難いものであった。又、前記の製造方法からも明
らかな如く透湿性の微細多孔質被覆材並びに合成皮革の
製造法に於いても共通の問題点を有して居た。
However, among the methods that have been conventionally performed, the above-mentioned methods (1) to (3) require a fine filter which is required for the reverse osmosis method and the ultrafiltration method. There is a problem that it is difficult to manufacture perforated microporous bodies having a narrow pore size distribution with pores having a narrow pore size distribution and evenly distributed in the filter medium. Each of the above-mentioned methods has a large number of steps, and it is essential to set the conditions of each step extremely strictly, and it is possible to perform production under high quality control with high productivity and reproducibility. It was a difficult manufacturing method, and it was difficult to say that it was an industrial manufacturing method with high productivity. Further, as is apparent from the above-mentioned production method, there are common problems in the production methods of the moisture permeable fine porous coating material and the synthetic leather.

【0006】発明者は斯かる問題点を解決し微細な孔径
の細孔を狭い細孔径分布を持ち、濾材に均等に分散分布
させて穿孔した微細多孔質体を製造する方法として、以
前に特公昭41−19910号公報に示す方法「熱時に
均一且つ安定なゾルを形成し、成型過程で冷却されて安
定なゲルを形成する熱可塑性重合体−溶剤系若しくは可
塑剤系の加熱溶液又はゾルを膜状ないし板状物に成形
し、その成形過程に於いて空冷によりゲル化させ、この
ゲル中から溶剤又は可塑剤を抽出することを特徴とす
る、微細多孔質重合体成型物の製法」を発明し開示し
た。この方法は、安定した微細な孔径の細孔を狭い細孔
径分布を持ち、濾材に微細孔を均等に分散分布させて穿
孔した微細多孔質体を作製すると云う事に限れば極めて
優れた方法であり、従来の方法の如く煩雑且つ厳密な条
件設定と、厳密な条件管理を必要とせず、工程数も少な
くして熱可塑性重合体−溶剤系の組み合わせ並びに熱可
塑性重合体/溶剤比により微細孔の孔径と開孔率等の微
細多孔体の基本的性能を決定出来る画期的方法であった
が、製造方法としては下記の致命的欠陥を有し生産性悪
く、工業的規模で安定した品質の製品の製造を行うには
不適で実用化され難かった。 即ち、熱可塑性重合体を熱時に均一且つ安定なゾルを
形成し、成型過程で冷却されて安定なゲルを形成する溶
剤系若しくは可塑剤に溶解する作業は極めて困難で、迅
速に均一な溶液を得る事が出来ず溶解に長時間を要する
事、 溶解困難で溶解に長時間を要するため多量の溶解液を
調製し貯蔵して使用する事が必須と成り、溶解された調
合液が高温下長時間にわたり熱履歴を受ける事が避け難
く、この間の熱可塑性重合体の酸化劣化、解重合、熱可
塑性重合体−溶剤間の相互作用、例えばエステル交換反
応やエステル−アマイド交換反応等による品質低下が避
け難く、しかもこれ等が経時と伴に進行し経時的品質変
化を持たらすためため、単に分解変質による製品物性低
下のみならず品質の経時変化が著しく、一定の品質の製
品を製造出来ないと云う致命的欠陥があった。 又更に、機械的物性の優秀な微細多孔質重合体を得る
に充分な重合度を有する重合体では、溶解がより困難と
なる上に得られる溶液粘度が極めて高く溶解作業時に空
気を巻き込み溶液から脱泡作業が必須となり、この困難
な作業間に重合体の劣化が更に進み不完全脱泡により製
品に欠陥が生じ、脱泡の完全度が高く要求される製品
(例えば中空糸、フィルム等)の成型は不可能で対称外
であった。 更に、特公昭41−19910号公報に開示された方
法に於いては微細多孔質構造体への成型プロセスを念頭
に置き成型プロセス構成に適したプロセスとして何等の
配慮もされて居ななかったため、せいぜいコーティング
法によりシート状物を得る方法を想定出来るのが限界で
あり、中空糸状分離膜や微細多孔質成型体等の分離濾過
装置エレメント製造等の応用展開が困難であった。以上
の特にの理由より、特公昭41−19910号公報
にて開示された方法は、均一に微細孔が分布した微細多
孔性重合体を生産する極めて優れた基本技術(プリンシ
プル)を開示しながら、一定の品質の製品を安定に工業
生産する方法としては成り立たず、実生産プロセスとし
て成立させるには項の基本的対策実施が必須であっ
た。
The inventor has previously proposed a method for solving the above problems and producing a fine porous body having fine pores having a narrow pore size distribution and being uniformly dispersed and distributed in a filter medium, and perforated. Japanese Patent Publication No. 41-19910 discloses a method "a thermoplastic polymer-solvent-based or plasticizer-based heating solution or sol which forms a uniform and stable sol when heated and is cooled in the molding process to form a stable gel. A method for producing a fine porous polymer molded article, which is characterized in that it is formed into a film or plate, gelled by air cooling in the forming process, and a solvent or a plasticizer is extracted from the gel. Invented and disclosed. This method is a very excellent method as long as it has a narrow pore size distribution of stable fine pores and has a fine pores evenly distributed and distributed in the filter medium to produce a fine porous body. There is no need for complicated and strict condition setting and strict condition control as in the conventional method, the number of steps is reduced, and the combination of the thermoplastic polymer-solvent system and the thermoplastic polymer / solvent ratio are used to form fine pores. It was an epoch-making method that was able to determine the basic performance of the microporous body such as the pore size and porosity of the product. However, the production method had the following fatal defects and the productivity was poor, and the quality was stable on an industrial scale. Was not suitable for the production of the above products and was difficult to put into practical use. That is, it is extremely difficult to dissolve a thermoplastic polymer in a solvent system or a plasticizer that forms a uniform and stable sol when heated and is cooled in the molding process to form a stable gel. It is necessary to prepare, store and use a large amount of solution because it is difficult to obtain and it takes a long time to dissolve and it takes a long time to dissolve. It is unavoidable to undergo thermal history over time, during which oxidative deterioration of the thermoplastic polymer, depolymerization, interaction between the thermoplastic polymer and solvent, such as deterioration of quality due to ester exchange reaction or ester-amide exchange reaction, etc. It is unavoidable, and since these progress with time and change in quality over time, not only the physical properties of the product deteriorate due to decomposition and deterioration, but also the quality of the product changes significantly over time, making it impossible to manufacture products of constant quality. There was a fatal defect. Furthermore, in the case of a polymer having a degree of polymerization sufficient to obtain a fine porous polymer having excellent mechanical properties, the dissolution becomes more difficult and the viscosity of the obtained solution is extremely high. Defoaming work is indispensable, and deterioration of the polymer further progresses during this difficult work, resulting in defects in the product due to incomplete defoaming, and products requiring a high degree of complete defoaming (eg hollow fiber, film, etc.) Was impossible and was out of symmetry. Further, in the method disclosed in Japanese Patent Publication No. 41-19910, since no consideration was given to a molding process for forming a fine porous structure, no consideration was given as a process suitable for forming the molding process. The limitation is that the method of obtaining a sheet-like material by the coating method can be assumed at most, and it is difficult to develop the application such as the production of the separation / filtration device element such as the hollow fiber separation membrane or the fine porous molded body. For the above-mentioned particular reasons, the method disclosed in JP-B-41-19910 discloses an extremely excellent basic technique (principle) for producing a fine porous polymer having uniformly distributed fine pores. It was not established as a method for the stable industrial production of a product of a certain quality, and it was essential to implement the basic measures described in Section 2 to establish it as an actual production process.

【0007】本発明は、これ等従来の問題点を解消し安
易な製造方法及び条件下で、高生産性にて高度に品質管
理された、逆浸透圧法、限外濾過法、微細多孔膜分離法
に用いる、微細な孔径の細孔を狭い細孔径分布を持ち、
濾材に均等に分散分布させて穿孔された所定形状に成型
された微細多孔質高分子分離膜の製造方法と、これ等高
分子分離膜を用いた分離装置並びに濾過装置の製造方法
を提供し開示するものであり、又高生産性の透湿性の微
細多孔質被覆材並びに合成皮革の製造法を提供するもの
である。
The present invention solves these conventional problems, and under the easy production method and conditions, the high productivity and highly quality controlled reverse osmosis method, ultrafiltration method, and microporous membrane separation. Fine pores used in the method have a narrow pore size distribution,
Disclosed are a method for producing a microporous polymer separation membrane which is formed into a predetermined shape by being evenly distributed and distributed in a filter medium and formed into a perforated shape, a separation device using these polymer separation membranes, and a method for producing a filtration device. In addition, the present invention provides a highly productive moisture-permeable microporous coating material and a method for producing synthetic leather.

【問題を解決する手段】[Means to solve the problem]

【0008】本発明は、先に発明し特公昭41−199
10号公報に開示した基本原理を基礎として、実生産プ
ロセスとして成立させるために排除し解決すべき前記課
題ないし項を根本的に排除し改革した発明であり、
熱可塑性重合体と高温時に均一且つ安定な溶融溶液又は
ゾルを形成し、成型過程で冷却された時固化し安定なゲ
ルを形成せしめる化合物(以下溶媒と称す)との熱可塑
性重合体−溶媒系混合物を、所定の配合比率で迅速且つ
連続的に又均一に変質・劣化を伴わずに溶解させる方策
とし混練スクリュウ押出機構を用いて該基本原理を実現
実用化する製造プロセスを発明し、更に所定形状の製品
成型プロセスまでをも一括包含した製造システムを発明
し、高生産性で安定した品質の微細な孔径の細孔を狭い
細孔径分布を持ち、濾材に均等に分散分布させて穿孔し
た微細多孔質体を製造するプロセスを発明開発したので
ある。
The present invention was previously invented and published in Japanese Patent Publication No. 41-199.
Based on the basic principle disclosed in Japanese Patent Publication No. 10, the invention is a reformed invention in which the above-mentioned problems or items to be eliminated and solved in order to be established as an actual production process are fundamentally eliminated.
Thermoplastic polymer-solvent system of a thermoplastic polymer and a compound (hereinafter referred to as a solvent) which forms a uniform and stable molten solution or sol at high temperature and solidifies when cooled in the molding process to form a stable gel As a measure to dissolve the mixture rapidly and continuously in a prescribed mixing ratio and uniformly without deterioration / deterioration, a manufacturing process was invented to realize the basic principle by using a kneading screw extruding mechanism, and further invented. We have invented a manufacturing system that also includes the process of molding products in a shape, and have high productivity and stable quality with fine pore diameters that have a narrow pore diameter distribution and are evenly distributed in the filter medium to form fine pores. They have invented a process for producing a porous body.

【0009】即ち、本発明の基本構成は特許請求項に記
載した通り、 高温時に熱可塑性重合体と相溶し、均一且つ安定な溶
融溶液又はゾルを形成し成型過程で冷却された時固化し
安定な所定形状の固形体(ゲル)を形成せしめる溶媒と
の熱可塑性重合体−溶媒系の組合せである事、 該熱可塑性重合体−溶媒系の組合せに於いて熱可塑性
重合体/溶媒の構成比率が、熱可塑性重合体75ないし
20部/該溶媒25ないし80部である事、 該熱可塑性重合体−溶媒系の組合せの均一な溶融構成
体(ゾル)を迅速且つ連続的に一定配合比を保ちながら
定常的に形成させる方法として、混練機能を有するスク
リュウ混練押出機構を用いて行う事、即ち実施態様例と
して a.先ず該熱可塑性重合体を混練機能を有する加熱され
たスクリュウ混練押出機(又はスクリュウ式射出成型
機)に連続的且つ定量的に供給して溶融し、 b.次いで該溶媒を該スクリュウ混練押出機(又はスク
リュウ式射出成型機)の計量部分(メータリングゾー
ン)に設けた供給孔より連続的且つ定量的に供給する
か、或いは又該スクリュウ押出機に接続した混練用スク
リュウ押出機の該溶媒供給孔より連続的且つ定量的に供
給するかして両者を合し混練し均一に混和し溶解せしめ
る事、 続いて、該スクリュウ混練押出機に接続した成型用口
金(例えば中空糸紡出用口金又はT−ダイやインフレー
ション法フィルム押出し口金等)より押出し中空糸又は
フィルム・シート成型するか、又は該スクリュウ式射出
成型機に接続した成型金型内に混練溶解された該溶融物
を射出し冷却固化し(ゲル化)成型物を製作するか、或
いは又該スクリュウ混練押出機を射出成型機のプランジ
ャー部に接続し成型金型内に射出し冷却固化し所定の形
状の成型体を製作する事、 そして得られる該成型物から、包含される溶媒を重合
体の非溶剤で且つ該溶媒の溶剤にて抽出して微細多孔質
化させる事、よりなる中空糸状又はフィルム・シート状
或いは又所定形状の微細多孔質重合体の製造法である。
以上本発明の構成の概要を示したが、以下に本発明を構
成する各構成要素の実施態様を具体的に又詳細に説明す
る。
That is, the basic constitution of the present invention, as described in the claims, is compatible with the thermoplastic polymer at a high temperature to form a uniform and stable molten solution or sol, which solidifies when cooled in the molding process. It is a combination of a thermoplastic polymer-solvent system with a solvent that forms a stable solid body (gel) having a predetermined shape, and the composition of the thermoplastic polymer / solvent in the combination of the thermoplastic polymer-solvent system. The ratio is from 75 to 20 parts of the thermoplastic polymer / 25 to 80 parts of the solvent, and a uniform blending ratio (sol) of the thermoplastic polymer-solvent system combination is rapidly and continuously maintained at a constant compounding ratio. As a method for constantly forming while maintaining the above, a screw kneading and extruding mechanism having a kneading function is used, that is, a. First, the thermoplastic polymer is continuously and quantitatively supplied to a heated screw kneading extruder (or screw type injection molding machine) having a kneading function to melt, and b. Then, the solvent is continuously and quantitatively supplied from a supply hole provided in a measuring portion (metering zone) of the screw kneading extruder (or screw type injection molding machine) or is also connected to the screw extruder. Continuously and quantitatively supplying from the solvent supply hole of the kneading screw extruder to knead and knead both to uniformly mix and dissolve, and subsequently, a molding die connected to the screw kneading extruder (For example, a hollow fiber spinning spinneret or T-die or an inflation method film extrusion spinneret) is extruded to form a hollow fiber or a film / sheet, or kneaded and dissolved in a molding die connected to the screw type injection molding machine. Alternatively, the melt is injected to be cooled and solidified (gelled) to produce a molded product, or alternatively, the screw kneading extruder is connected to the plunger part of the injection molding machine to form a molding metal. It is injected into a mold, cooled and solidified to produce a molded product of a predetermined shape, and the solvent contained in the molded product obtained is extracted as a non-solvent of the polymer and a solvent of the solvent to obtain fine porosity. It is a method for producing a fine porous polymer having a hollow fiber shape, a film / sheet shape, or a predetermined shape, which is obtained by qualifying.
The outline of the configuration of the present invention has been shown above, and the embodiments of the respective components constituting the present invention will be specifically and specifically described below.

【0010】本発明に於ける重合体の微細多孔質化は先
に記載した通り、熱可塑性重合体と高温時に相溶し均一
且つ安定な溶融溶液又はゾルを形成し低温では固化しゲ
ルを形成せしめる溶媒との熱可塑性重合体/溶媒系の組
合せを、混練用スクリュウ押出機構を用いて加熱混合溶
融して均一な溶融流体を形成せしめ、この溶融流体を成
型用口金を通して押出しその融解点以下に冷却して、所
定の形状の成型物に固化成型し、熱可塑性重合体に該溶
媒が均一に包合された所定形状の成型物を得て、これか
ら包含される溶媒を抽出除去する事により微細多孔質物
質を得んとする方法であり、該溶媒の抽出除去あとが微
細孔を形成するため用いる溶媒の種類と量により微細孔
の孔径並びに穿孔量が調整でき、又本発明の原理に基づ
き極めて狭い微細孔径分布と極めて均等な穿孔分布が保
証される故、従来の方法では得られなかった極めて優秀
な微細多孔質体を与える事が出来るのである。本発明の
熱可塑性重合体−溶媒系に於ける溶媒とは、熱可塑性重
合体と熱時に於いてのみ相溶性があり混合され加熱され
た時均一な融体を形成し、融点降下を示し均一な熱可塑
性重合体−溶媒の混合系を形成し、又その融点以下に於
いては安定且つ均一な熱可塑性重合体−溶媒の混合系の
固相(ゲル)を形成せしめる化合物で、、単に熱可塑性
重合体を溶解する溶剤ではなく低温では溶解性を持たず
高温時に於いてのみ溶解性を持つ化合物であり、ここで
は便宜的に溶媒と記載して居る。斯かる本発明を実施す
るための要件を満足する熱可塑性重合体−溶媒系の組合
せは、後に例示する如く多くの適切な組合せがあるが、
溶媒選定に際しては前記の溶媒に要求される基本的要件
以外にも、溶媒が安定である事、沸点が高い事、毒性が
少ない事、易燃性でない事、反応性が高くない事、抽出
除去が容易である事などの条件を満足するものを選定す
る事が必要である。又本発明の方法に従えば従来の方法
と異なり熱可塑性重合体−溶媒系の溶融融体の成型物
は、単なる冷却固化と言う状態変化のみで所望の形状の
成型体が設定された形状通り忠実に成型され、何ら溶媒
の蒸発や抽出等による体積収縮・形態変化や流動による
形態変化が一切生じないため、忠実度の高い微細多孔質
重合体体成型物を通常の成型プロセスを適用して容易に
製造できる特徴を有する。
As described above, in the present invention, the polymer is made to be finely porous by being compatible with the thermoplastic polymer at a high temperature to form a uniform and stable molten solution or sol and solidifying at a low temperature to form a gel. The thermoplastic polymer / solvent system combination with the solvent to be mixed is heated and mixed by using a kneading screw extrusion mechanism to form a uniform molten fluid, and this molten fluid is extruded through a molding die to a temperature below its melting point. After cooling, solidification molding into a molded product of a predetermined shape is carried out to obtain a molded product of a predetermined shape in which the solvent is uniformly incorporated in the thermoplastic polymer, and the solvent contained therein is extracted and removed to obtain fine particles. A method for obtaining a porous substance, the pore size and the amount of fine pores can be adjusted by the type and amount of the solvent used for forming fine pores after extraction and removal of the solvent, and based on the principle of the present invention. Extremely narrow Because a very uniform perforation distribution and size distribution is guaranteed, it is than is possible to provide a very excellent microporous body which can not be obtained in a conventional manner. The solvent in the thermoplastic polymer-solvent system of the present invention is compatible with the thermoplastic polymer only when heated and forms a uniform melt when mixed and heated, showing a melting point drop and being uniform. A compound that forms a stable thermoplastic polymer-solvent mixed system, and forms a stable and uniform solid phase (gel) of the thermoplastic polymer-solvent mixed system at a temperature below its melting point. It is not a solvent that dissolves the plastic polymer, but a compound that is not soluble at low temperatures and is soluble only at high temperatures, and is described here as a solvent for convenience. There are many suitable combinations of thermoplastic polymer-solvent systems that satisfy the requirements for carrying out the present invention, as exemplified below.
When selecting a solvent, in addition to the basic requirements required for the above-mentioned solvent, the solvent must be stable, have a high boiling point, be less toxic, not flammable, not highly reactive, and be removed by extraction. It is necessary to select the one that satisfies the conditions such as the ease of operation. Further, according to the method of the present invention, unlike the conventional method, the molded product of the thermoplastic polymer-solvent-based melt melt has a desired shape by the change of the state, that is, simply by solidification by cooling. Since it is faithfully molded and does not undergo any volume shrinkage, morphological change due to solvent evaporation or extraction, or morphological change due to flow, it is possible to apply a high fidelity fine porous polymer molded product to a normal molding process. It has the characteristic that it can be easily manufactured.

【0011】本発明に於ける要件を満足する実用上有意
義な熱可塑性重合体−溶媒系の組合せの代表的具体例を
下記に示す。 ポリアマイド−溶媒系の組合せ例としては、ナイロン
6、ナイロン12、ナイロン66、ナイロン610等の
汎用ナイロン及びこれ等ナイロンを母体とするコポリア
ミド(例えばナイロン6/66共重合体やナイロン66
/610共重合体等)に対しε−カプロラクタム、カプ
リルラクタム、ラウリンラクタム等のラクタム類、ベン
ジールアルコール、及びエチレングリコール、ヂエチレ
ングリコール、トリエチレングリコール、ポリエチレン
グリコール(例えばPEG200,400,600,1
000,……… 4000,…… 20000)プロピ
レングリコール、ポリプロピレングリコール(例えば
PPG400,700等)等のグリコール類及びそのエ
ーテル等の溶媒が発明の要件を満足する化合物(溶媒と
称する)として挙げられる。 ポリエステル−溶媒系の組合せ例としては、ポリエチ
レンテレフタレート、ポリブチレンテレフタレート及び
これ等ポリエステルを母体とするコーポリエステル
(例えばポリエチレンテレフタレート/イソフタレー
ト、ポリエチレンテレフタレート/アジペート等の共重
合エステル)に対しε−カプロラクタム、ベンジールア
ルコール、及びエチレングリコール、ヂエチレングリコ
ール、トリエチレングリコール、ポリエチレングリコー
ル(例えばPEG200,400,600,1000,
……… 4000,…… 20000)プロピレングリ
コール、ポリプロピレングリコール(例えば PPG4
00,700等)等のグリコール類及びそのエーテル等
の溶媒やε−カプロラクトン、カプリロラクトン、エナ
ントラクトン等のラクトン類が発明の要件を満足する化
合物(溶媒と称する)として挙げられる。 エチレン−ヴィニールアルコール共重合体−溶媒系の
組合せ例としては、エチレン/ヴィニールアルコール共
重合比20/80〜45/65の範囲の共重合体に対し
てエチレングリコール、ヂエチレングリコール、トリエ
チレングリコール、ベンジールアルコール、プロピレン
グリコール、等の溶媒が発明の要件を満足する化合物
(溶媒と称する)として挙げられる。この他、微細多孔
質重合体を製造するために本発明が適用可能な多くの汎
用ポリマーに対する熱可塑性重合体−溶媒系の組合せの
代表例を表1.に示した。
Representative examples of practically meaningful thermoplastic polymer-solvent system combinations satisfying the requirements of the present invention are shown below. Examples of polyamide-solvent system combinations include general-purpose nylons such as nylon 6, nylon 12, nylon 66, and nylon 610, and copolyamides having these nylons as a matrix (for example, nylon 6/66 copolymer and nylon 66).
/ 610 copolymer etc.), lactams such as ε-caprolactam, capryllactam, laurinlactam, benzil alcohol, and ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol (for example, PEG200, 400, 600, 1).
000, ... 4,000, 20,000) Propylene glycol, polypropylene glycol (for example,
Solvents such as glycols such as PPG400 and 700) and ethers thereof and the like are mentioned as the compound (referred to as a solvent) satisfying the requirements of the invention. Examples of the polyester-solvent system combination include polyethylene terephthalate, polybutylene terephthalate, and copolyesters having these polyesters as a matrix.
(Eg, polyethylene terephthalate / isophthalate, polyethylene terephthalate / adipate, etc.) to ε-caprolactam, benzil alcohol, and ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol (eg, PEG200, 400, 600, 1,000,
……… 4000, …… 20000) Propylene glycol, polypropylene glycol (eg PPG4
00, 700 etc.), solvents such as glycols and ethers thereof, and lactones such as ε-caprolactone, caprylolactone, enanthlactone, etc. are mentioned as compounds (referred to as solvents) satisfying the requirements of the invention. Examples of the ethylene-vinyl alcohol copolymer-solvent system combination include ethylene glycol, diethylene glycol, triethylene glycol, and ethylene / vinyl alcohol copolymerization ratios of 20/80 to 45/65. Solvents such as benzil alcohol, propylene glycol and the like are mentioned as the compound (referred to as a solvent) satisfying the requirements of the invention. In addition to this, representative examples of thermoplastic polymer-solvent system combinations for many general-purpose polymers to which the present invention is applicable for producing microporous polymers are shown in Table 1. It was shown to.

【0012】[0012]

【表1】[Table 1]

【0013】本発明の熱可塑性重合体−溶媒系の均一溶
融溶液は、高温下で調製し使用するため酸化劣化や熱分
解を受けたり、又重合体−溶媒間の相互作用により例え
ば解重合、エステル交換反応、エステル−アマイド交換
反応等を受けたり、又溶媒が水分を含む場合加水分解を
受け劣化させる等品質を著しく低下させるする可能性を
有する。本発明の熱可塑性重合体−溶媒系の溶融溶液に
生じる熱分解や酸化劣化等の共通の劣化反応以外に特に
注意すべき劣化反応の例を示すと下記の通りである。 例えば、ポリエステルとエチレングリコール、ナイロ
ン6とω−カプロラクタム等の組合せに於いては重合平
衡に基づく逆向きの反応即ち、解重合反応による重合度
低下をおこし、 ポリアマイド類(ナイロン6、ナイロン66、ナイロ
ン610、………等)とエチレングリコール、ヂエチレ
ングリコール、………、の組合せ間や、ポリウレタン類
とエチレングリコール、ヂエチレングリコール、………
の組合せ間や、ポリエステル類(ポリエチレンテレフタ
レート、ポリブチレンテレフタレート………等)とω−
カプロラクタムの組合せ間等ではエステル交換反応(エ
ステルアマイド交換反応)により主鎖切断がおこり重合
体の分子量低下を生じ、 ポリエステル類(ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート………等)とポリエチレングリ
コール類の組合せ間、弾性ポリエステルとポリエチレン
グリコール類の組合せ間等ではエステル交換反応による
分子量低下を生じ、 ポリエステル類(ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート………等)とラクトン類の組合
せ間、弾性ポリエステルとラクトン類の組合せ間等では
共重合反応による共重合体の生成やエステル交換反応に
よる分子量低下を生じ、 溶媒が水分を包含する場合、ポリエステル類、弾性ポ
リエステル類、ポリアマイド類は加水分解を受け重合度
低下を起こす等、重合体の劣化を進行させ物性低下を起
こす多くの相互作用が存在する。従ってこの対策のため
に溶融溶液調合を迅速に行い、調製された溶融溶液の滞
留時間を出来得る限り短くして使用する事が必須で、そ
の対策を講じた製造方式を開発し重合体に劣化を生じし
めない製造条件を厳選する事が必須である。即ち、単純
にペレットを溶媒内に入れ加熱攪拌して溶融溶液を調整
するが如き方法では調整に長時間を要し重合体の劣化が
避け難く、又調製した溶液が使用中に時々刻々重合体の
劣化を進行させるため、安定した品質の製品を製造する
事が出来ず、本発明の混練用スクリュウ押出機構を用い
溶融ポリマー中に溶媒を供給して高温高圧下で混練し迅
速に溶融溶液を調整し直ちに所定形状に成型する製造プ
ロセスにより、始めて従来の課題を解決し特公昭41−
19910号公報に開示した製造原理の実用化を可能と
なし得るのである。
The thermoplastic polymer-solvent system homogeneously melted solution of the present invention is prepared and used at a high temperature, so that it undergoes oxidative deterioration and thermal decomposition, and due to the interaction between the polymer and the solvent, for example, depolymerization, There is a possibility that the quality will be remarkably deteriorated by undergoing an ester exchange reaction, an ester-amide exchange reaction, or the like, or by being hydrolyzed and deteriorated when the solvent contains water. Examples of deterioration reactions to be particularly noted other than common deterioration reactions such as thermal decomposition and oxidative deterioration that occur in the molten solution of the thermoplastic polymer-solvent system of the present invention are shown below. For example, in the case of a combination of polyester and ethylene glycol, nylon 6 and ω-caprolactam, a reverse reaction based on the polymerization equilibrium, that is, a decrease in the degree of polymerization due to a depolymerization reaction occurs, and polyamides (nylon 6, nylon 66, nylon) 610, ..., etc.) and ethylene glycol, diethylene glycol, ..., or between polyurethanes and ethylene glycol, diethylene glycol, ...
Between combinations of polyesters (polyethylene terephthalate, polybutylene terephthalate, etc.) and ω-
Between the combinations of caprolactam, etc., the main chain is cleaved by the transesterification (ester amide exchange reaction), and the molecular weight of the polymer is reduced, and between the combinations of polyesters (polyethylene terephthalate, polybutylene terephthalate ... ……) and polyethylene glycols. , Between the elastic polyester and polyethylene glycol, etc., the molecular weight decreases due to the transesterification reaction, between the polyester (polyethylene terephthalate, polybutylene terephthalate, etc.) and the lactone, and between the elastic polyester and the lactone. When the solvent contains water, the polyesters, elastic polyesters, and polyamides are hydrolyzed to reduce the polymerization degree. Be such, many interactions are present to cause the allowed property decrease progression degradation of the polymer. Therefore, for this measure, it is essential to prepare the melt solution promptly and use the prepared melt solution with the retention time as short as possible. It is essential to carefully select manufacturing conditions that will not cause That is, in such a method that a pellet is simply put in a solvent and heated and stirred to prepare a molten solution, it takes a long time to prepare and the deterioration of the polymer is unavoidable. Therefore, it is not possible to produce a product of stable quality because of the progress of the deterioration of the, the solvent is supplied into the molten polymer using the kneading screw extrusion mechanism of the present invention to knead under high temperature and high pressure to rapidly melt the solution. The manufacturing process of adjusting and immediately molding into a predetermined shape solves the conventional problems for the first time.
The manufacturing principle disclosed in Japanese Patent Publication No. 19910 can be put into practical use.

【0014】本発明を実施する製造プロセスの概要を典
型的な実施態様例の模式的表示にてフローシートに記し
説明する。典型的な実施態様のフローシートは図1.に
示す通りである。 即ち、 フローシートの左列は、熱可塑性重合体を混練機能
を有するスクリュウ押出機に供給し溶融し一定の押出し
速度(量)にて、それに接続した混練用スクリュウ押出
機に供給し、この混練用スクリュウ押出機の別個に穿た
れた供給孔より一定の供給速度(量)で熱可塑性重合体
と熱時に均一且つ安定な溶融体(ゾル)を形成し冷却さ
れた時固化しゲルを形成せしめる溶媒を供給し混練し
て、一定配合比を保った均一且つ安定な溶融構成体(ゾ
ル)を迅速且つ連続的定常的に形成させる方法を示し、 フローシート左列には、該熱可塑性重合体を溶融し
一定量を定常供給させる混練機能を有するスクリュウ押
出機の計量部分(メータリングゾーン)に穿った孔よ
り、該溶媒を一定速度(量)で定常的に供給し、該スク
リュウ押出機の混練ゾーンにて混練し、一定配合比を保
った安定な溶融構成体(ゾル)を迅速且つ連続的定常的
に形成させる方法を示して居り、 フローシート左列には、該熱可塑性重合体−溶媒系
の組合せの一定配合比を保った安定な溶融構成体(ゾ
ル)を迅速且つ連続的定常的に形成させる方法として、
前記の実施態様に於いて用いた混練用単軸スクリュウ
押出機に換え、2軸スクリュウ混練機を用いる例を示し
て居る。以上の例は典型的な実施態様の一例を示したも
のであり、混練機能を有するスクリュウ混練押出機に一
定配合比の熱可塑性重合体−溶媒系の組合せを連続的に
且つ定常的に供給し、安定な溶融構成体(ゾル)を迅速
且つ連続的定常的に形成させると言う本発明に開示され
る技術思想に基づく方法は、何れも本発明の範疇に属
し、何ら上記実施態様例に限定されるものでない事は勿
論である。そしてフローシートの右列には、,或い
はに示した溶融構成体供給装置(該混練機能を有する
スクリュウ押出し機構)の何れかを中空糸、フィルム、
押出しラミネート、又は所定形状の成型用装置(aない
しd)の何れかに接続し、該熱可塑性重合体−溶媒系の
組合せの一定配合比を保った安定な溶融構成体よりなり
所定形状に冷却固化成型された溶媒を包含した中空糸、
フィルム、押出しラミネート品、又は所定形状の成型品
等を押出(射出)成型する生産システムの実施態様を図
示して居る。そして図示しては居ないが本発明の製造プ
ロセスに於いては、斯くして得られる溶媒を包含し所定
形状に固化成型された重合体を、溶媒は溶かすが重合体
の非溶剤である溶剤の洗浄層に浸漬し洗浄除去するか、
溶剤の飽和蒸気中に曝し溶媒を抽出除去する事により微
細多孔質重合体を製造する事が出来る。
An outline of a manufacturing process for carrying out the present invention will be described with reference to a flow sheet in a schematic representation of a typical embodiment. A flow sheet of an exemplary embodiment is shown in Figure 1. As shown in. That is, in the left column of the flow sheet, the thermoplastic polymer was supplied to a screw extruder having a kneading function, melted and supplied at a constant extrusion speed (amount) to a screw extruder for kneading connected thereto, and this kneading was performed. A uniform and stable melt (sol) is formed with the thermoplastic polymer at a constant supply rate (amount) from the separately formed supply holes of the screw extruder for heating, and solidifies when cooled and forms a gel. The method of supplying a solvent and kneading to form a uniform and stable molten constituent (sol) rapidly and continuously steadily at a constant mixing ratio is shown. The flow sheet left column shows the thermoplastic polymer. The solvent is constantly supplied at a constant speed (quantity) through a hole formed in a metering portion (metering zone) of a screw extruder having a kneading function of melting and constantly supplying a constant amount of the screw extruder. Kneading In the left column of the flowsheet, the thermoplastic polymer-solvent is shown in the left column of the flow sheet. As a method for rapidly and continuously forming a stable molten constituent (sol) that maintains a constant compounding ratio of the combination of systems,
An example of using a twin-screw kneader instead of the single-screw extruder for kneading used in the above embodiment is shown. The above example shows an example of a typical embodiment, in which a screw kneading extruder having a kneading function is continuously and constantly fed with a constant blending ratio of a thermoplastic polymer-solvent system combination. Any method based on the technical idea disclosed in the present invention that a stable molten constituent (sol) is rapidly and continuously formed constantly belongs to the category of the present invention, and is not limited to the above-mentioned embodiment examples. Of course, it is not something that is done. Then, in the right column of the flow sheet, any of the melted component supply device (screw extrusion mechanism having the kneading function) shown in or is used as a hollow fiber, a film,
Extruded laminating, or connected to either a molding device (a to d) having a predetermined shape, and consisting of a stable melted composition that maintains a constant compounding ratio of the combination of the thermoplastic polymer-solvent system and cooled to a predetermined shape. Hollow fiber containing a solidified molded solvent,
An embodiment of a production system for extruding (injecting) a film, an extrusion laminated product, or a molded product having a predetermined shape is illustrated. Although not shown in the figure, in the production process of the present invention, the polymer obtained by solidifying and molding the solvent thus obtained into a predetermined shape is a solvent which dissolves the solvent but is a non-solvent of the polymer. By immersing it in the cleaning layer of
A fine porous polymer can be produced by exposing to a saturated vapor of a solvent and extracting and removing the solvent.

【0015】本発明に於ける熱可塑性重合体−溶媒系の
混和−溶解機構の代表的実施態様の具体例をより詳細に
図示したのが図2ないし図5である。図2.ないし図
4.に於いては混和溶解機構に続く成型装置が接続して
記載されて居るが、これ等成型装置は目的に応じて何れ
の混和溶解機構にも接続可能であり図示された組合せに
固有の物ではない。図2.はフローシートに於ける混和
−溶解機構を用い押出しラミネートにて微細多孔質体
をラミネートされた製品を製造する具体的製造装置例を
図示したものである。本製造装置に於ける混和−溶解機
構は図示される通り、熱可塑性重合体を通常の合成繊維
やフィルムの製造に用いられるスクリュウ押出機に、定
量的に所定量供給し融解し押出し、それに接続した混練
用スクリュウ押出機に供給し、この混練用スクリュウ押
出機のもう一方の供給孔より所定温度に予熱した溶媒を
プランジャーポンプ等の高圧定量ポンプを用いて定量的
に所定量供給し、定温高圧下で連続的に所定混合比率で
混練し迅速に均一な溶融溶液を形成せしめギアーポンプ
を通して定量的にTダイに供給して押出し成型する混和
−溶解装置を図示している。本装置に於いては、第一の
熱可塑性重合体のスクリュウ押出機には定量ポンプを図
示して居ないが、混和される溶媒は定量ポンプを通して
混練用押出機に供給され混練用押出機出口には定量ポン
プが設置されて居るため、熱可塑性重合体/溶媒の比率
を定常的に所定比率に保つ事が可能である。混練用押出
機は計量部と混練部よりなりスクリュウの混練ゾーンは
混練効果を与えるために、ダルメージ型、ニーダー型或
いはピン型等として用いる事が好ましい。又混練用スク
リュウ押出機への溶媒の供給孔を熱可塑性重合体融体の
供給孔より下部に設けて供給すれば、溶媒は前方に移送
されて居る粘稠な重合体融体内へ供給され混和溶解され
るため、混練用押出機軸受け部へ逆流する恐れがなくな
り、軸封装置を特別に設ける必要がなくなるため、この
ように設計する事が望ましい。又、溶媒供給ラインには
逆止弁を設けて溶融ポリマーの逆流防止策を講じて置く
事が望ましい。図3.図4.は、フローシートに於ける
混和−溶解機構を用いて微細多孔質重合体を製造する
具体的生産設備を示す図面である。この装置に於いて
は、混練用に別のスクリュウ混練機を設けずに熱可塑性
重合体を溶融し押出す混練機能を有するスクリュウ押出
機だけを用いて一気に熱可塑性重合体−溶媒系の混和−
溶解を行う方法を示して居り、図示する如く熱可塑性重
合体をスクリュウ押出機のホッパーより供給し、定量的
に該押出機の固体輸送部(ソリッドコンベンゾーン)→
圧縮部(コンプレッションゾーン)→溶融溶解部(メル
ティングゾーン)→計量部(メータリングゾーン)へと
押し込み溶融し押出すと共に、一方このスクリュウ押出
機の計量部に設けた溶媒供給孔より所定温度に加温した
溶媒をプランジャーポンプなどの高圧の定量ポンプを用
いて定量的に圧入し熱可塑性重合体と合流させ混練し、
更に混練部にて混練を完全なものとし、スクリュウ押出
機の出口部に設置したギアーポンプを経て定量的定常的
に一定配合比の熱可塑性重合体/溶媒の均一混和溶融溶
液を調製し、接続された中空糸及びフィルム製造用成型
装置に押出し供給し微細多孔質重合体を製造する様子を
示してある。この装置に於いても溶媒供給孔をスクリュ
ウ押出機の計量ゾーンの2ないし3山目に設ければ、溶
媒はスクリュウ押出機の圧縮部・溶融溶解部で圧縮され
溶融されて移送されて来る粘稠な重合体融体流中に供給
されるため、スクリュウ押出機の固体輸送部方向に逆流
する恐れがなく安定な混合混練を行う事が出来る。溶媒
供給ラインへの逆止弁の設置は溶融ポリマーの溶媒供給
ラインへの逆流防止のために有意義である。又、溶媒合
流部のスクリュウ溝深さを必要に応じ若干深くする事も
溶媒圧入を容易にし好都合である。又更に、混練ゾーン
のスクリュー形状は混練効果向上のためにダルメージ
型、ニーダー型或いはピン型等として用いる事が好まし
い。斯かる熱可塑性重合体−溶媒系の混和−溶解機構を
採用すれば、所定の混合比率を保ち定量的且つ定常的に
溶融ポリマー中に溶媒が混入され高圧下で強力な剪断力
をもって混練が行はれるため、高重合度高粘度で常圧下
での単なる攪拌操作では溶解し難い重合体−溶媒の組合
せも、迅速な溶融溶解が可能となり重合体の劣化を伴は
ずに(或いは最低限に止めて)均一な溶融溶液を作成す
る事が出来るのである。斯くして、微細多孔質重合体よ
りなるフィルム、シート、或いはチューブ状のフィルタ
ー及び分離膜や、微細多孔質重合体が補強基材上にラミ
ネートされるか、或いは補強基材が微細多孔質重合体中
に包埋され補強された、フィルター及び分離膜や合成皮
革並びに透湿性シート類を極めて高生産性にて、所望の
微細孔を均一な細孔分布と狭く整った細孔径分布を持た
しめて製造出来るのである。
2 to 5 show in more detail a concrete example of a typical embodiment of the mixing-dissolution mechanism of the thermoplastic polymer-solvent system according to the present invention. Figure 2. Through FIG. In the above description, a molding device following the admixture-dissolution mechanism is connected, but these molding devices can be connected to any admixture-dissolution mechanism according to the purpose, and are not unique to the illustrated combination. Absent. Figure 2. FIG. 3 illustrates an example of a specific manufacturing apparatus for manufacturing a product in which a fine porous body is laminated by extrusion laminating using a mixing-dissolving mechanism in a flow sheet. As shown in the figure, the mixing-dissolving mechanism in this manufacturing apparatus is such that a thermoplastic polymer is quantitatively supplied to a screw extruder used for manufacturing a synthetic fiber or film in a predetermined amount, melted and extruded, and then connected to the screw extruder. Is supplied to the kneading screw extruder, and the solvent preheated to a predetermined temperature is quantitatively supplied from the other supply hole of the kneading screw extruder using a high-pressure metering pump such as a plunger pump to a constant temperature. The kneading-dissolving apparatus for continuously kneading at a predetermined mixing ratio under high pressure to rapidly form a uniform molten solution, quantitatively supplying it to a T-die through a gear pump, and extruding it is illustrated. In this apparatus, the screw extruder for the first thermoplastic polymer does not show a metering pump, but the solvent to be mixed is supplied to the kneading extruder through the metering pump and exits from the kneading extruder. Since a metering pump is installed in this, it is possible to constantly maintain the ratio of the thermoplastic polymer / solvent at a predetermined ratio. The kneading extruder comprises a measuring section and a kneading section, and the kneading zone of the screw is preferably used as a dullage type, kneader type, pin type or the like in order to give a kneading effect. Also, if a solvent supply hole to the kneading screw extruder is provided below the supply hole of the thermoplastic polymer melt and supplied, the solvent is supplied to the viscous polymer melt that is being forwarded and mixed. Since it is melted, there is no risk of backflow to the bearing portion of the kneading extruder, and there is no need to specially provide a shaft sealing device. Therefore, such a design is desirable. Further, it is desirable to provide a check valve in the solvent supply line to prevent the molten polymer from flowing back. Figure 3. Figure 4. FIG. 4 is a drawing showing specific production equipment for producing a microporous polymer by using a mixing-dissolving mechanism in a flow sheet. In this apparatus, without using a separate screw kneading machine for kneading, only a screw extruder having a kneading function of melting and extruding a thermoplastic polymer is used at once, and the thermoplastic polymer-solvent system mixing-
A method for melting is shown, and as shown in the figure, a thermoplastic polymer is supplied from a hopper of a screw extruder, and quantitatively, a solid transport section (solid convex zone) of the extruder →
It is pressed into the compression section (compression zone) → melting and melting section (melting zone) → metering section (metering zone) to melt and extrude, while at the same time the solvent supply hole provided in the metering section of this screw extruder brings it to a predetermined temperature. Quantitatively press the warmed solvent using a high-pressure metering pump such as a plunger pump, merge with the thermoplastic polymer, and knead,
Further, the kneading is completed in the kneading section, and a homogeneously mixed and melted solution of thermoplastic polymer / solvent having a constant mixing ratio is quantitatively and constantly prepared via a gear pump installed at the exit of the screw extruder, and then connected. It shows a state in which a fine porous polymer is produced by extruding and supplying it to a hollow fiber and a molding device for producing a film. Also in this apparatus, if the solvent supply holes are provided in the second or third ridges of the metering zone of the screw extruder, the solvent is compressed and melted in the compression section / melting / melting section of the screw extruder, and is melted and transferred. Since it is supplied into the viscous polymer melt stream, stable mixing and kneading can be performed without the risk of backflow in the direction of the solid transport section of the screw extruder. The installation of the check valve in the solvent supply line is significant for preventing the backflow of the molten polymer into the solvent supply line. Further, it is also convenient to make the screw groove depth of the solvent merging portion slightly deeper as necessary to facilitate solvent press-fitting. Further, the screw shape of the kneading zone is preferably a dullage type, a kneader type, a pin type or the like in order to improve the kneading effect. By adopting such a thermoplastic polymer-solvent system mixing-dissolution mechanism, the solvent is mixed quantitatively and constantly into the molten polymer while maintaining a predetermined mixing ratio, and kneading is performed with a strong shearing force under high pressure. Therefore, even if the polymer-solvent combination, which has a high degree of polymerization and a high viscosity and is difficult to dissolve by a simple stirring operation under normal pressure, it is possible to rapidly melt and dissolve the polymer without causing deterioration of the polymer (or at a minimum level). It is possible to create a homogeneous molten solution. Thus, a film, sheet, or tube-shaped filter and separation membrane made of a fine porous polymer, a fine porous polymer is laminated on a reinforcing substrate, or a reinforcing substrate is a fine porous polymer. Filters and separation membranes, synthetic leathers, and breathable sheets that are embedded and reinforced in the united body have extremely high productivity and have desired fine pores with a uniform pore size distribution and a narrow pore size distribution. It can be manufactured.

【0016】本発明の製造プロセスを適用し微細多孔質
成型体を射出成型する代表的な具体例を以下に示す。そ
の一例は図3.図4.に示した混練・押出し機構を用い
混練用押出機の先端を射出成型用プランジャー部に接続
した製造プロセスで、所謂スクリュウプリプラ式射出成
型システムに該当する製造システムであり、フローシー
ト図1.d.に示したものである。又、図5.にはスク
リュウ・イン・ライン式射出成型装置(スクリュウ式射
出成型装置)を用いる製造システムの例を図示してあ
る。図5.に示す製造システムはサーボモーター駆動の
スクリュウ・イン・ライン射出成型機のスクリュウの計
量部に溶媒供給孔を設け、所定温度に予熱した溶媒をプ
ランジャーポンプを用いて定量的に供給可能として本発
明の製造システムに対応させた以外は何ら特別の物では
なく通常の射出成型システムである。この製造システム
に於いても射出成型機は混練用スクリュウによる混練押
出し機構を有して居り、図3.図4.に示した熱可塑性
重合体/溶媒の溶解・混練・押出し機構と基本的に何ら
変わる所はないため溶媒供給や混練溶解に対する装置設
計上・機構上の基本的な相違点はない。ただ留意すべき
点は、図3.図4.の例に於ける如き連続的押出しでな
く、スクリュウの前進後退・駆動停止を伴う材料の可塑
化・混練・計量・予圧・射出・保圧の一連の工程をサイ
クルとする断続的工程より構成されるため、製造装置の
制御機構構成は元来の射出成型の制御のみならず溶媒の
供給機構をも一体とし組み込み、一定の熱可塑性重合体
/溶媒比を確保した供給と均一な混練状態を確保するべ
くシステム制御する様プログラミングする必要があり、
斯かる観点からもサーボモーター駆動射出成型機の適用
がより好適である。斯かる方法によれば、微細多孔質重
合体よりなる図6.(a)に例示する如きフィルターエ
レメントが射出成型にて高生産性にて製造でき、更にこ
れをケーシング内に装着して(b)イン−アウト型フィ
ルターを構成せしめる事により、自動車用エンジンオイ
ルフィルターやガソリンフィルター始め多くのフィルタ
ー類を低工数且つ高生産効率で供給する生産システムを
提供した。又バッテリーに於いても微細多孔質重合体よ
りなる隔壁を射出成型にて製造し、それをケーシング内
に電極と共に装着する生産方式を工夫すれば、同様に低
工数且つ高生産効率の生産システムを提供出来る。
A typical specific example of injection molding a fine porous molded body by applying the manufacturing process of the present invention is shown below. An example of this is shown in FIG. Figure 4. A manufacturing process in which the tip of the kneading extruder is connected to the injection molding plunger part using the kneading / extruding mechanism shown in Fig. 1, which is a manufacturing system corresponding to a so-called screw pre-plastic injection molding system, and is a flow sheet Fig. 1. d. It is shown in. Also, as shown in FIG. An example of a manufacturing system using a screw-in-line type injection molding apparatus (screw type injection molding apparatus) is shown in FIG. Figure 5. In the manufacturing system shown in Fig. 1, a solvent supply hole is provided in a screw measuring portion of a screw-in-line injection molding machine driven by a servo motor, and a solvent preheated to a predetermined temperature can be quantitatively supplied using a plunger pump. It is a normal injection molding system, not a special one except that it corresponds to the manufacturing system of. Even in this manufacturing system, the injection molding machine has a kneading / extruding mechanism using a kneading screw, and FIG. Figure 4. Since there is basically no difference from the thermoplastic polymer / solvent dissolution / kneading / extrusion mechanism shown in (4), there is no fundamental difference in the device design / mechanism for solvent supply and kneading / dissolution. However, the point to be noted is Fig. 3. Figure 4. Instead of continuous extrusion as in the example of Fig. 1, it consists of an intermittent process with a cycle of a series of processes of plasticizing, kneading, measuring, preloading, injecting, and holding pressure of the material accompanied by forward and backward movement of the screw and stop of driving. Therefore, the control mechanism configuration of the manufacturing equipment incorporates not only the original injection molding control but also the solvent supply mechanism, which ensures a constant thermoplastic polymer / solvent ratio and a uniform kneading state. It is necessary to program to control the system as much as possible,
From this point of view, it is more preferable to apply the servo motor driven injection molding machine. According to such a method, as shown in FIG. A filter element as exemplified in (a) can be manufactured by injection molding with high productivity, and by further mounting it in a casing to form an (b) in-out type filter, an engine oil filter for automobiles. We provided a production system that supplies a lot of filters such as a gasoline filter and a gasoline filter with low man-hours and high production efficiency. Also in the case of batteries, if a partition that is made of a fine porous polymer is manufactured by injection molding, and if it is devised in a production system that installs it together with the electrodes in the casing, a production system with low man-hours and high production efficiency can be obtained. Can be provided.

【0017】所定の形状の成型体を製造するための成型
装置並びに成型工程関連の設備は何ら特別の仕様の物を
必要とせず、従来より用いられる公知の設備をそのまま
本発明の熱可塑性重合体−溶媒混練混和機構に接続して
用いる事ができる。即ち、フィルム・シート状物の製造
に於いては、従来より用いられるTダイ或いはインフレ
ーション法フィルム押出し口金を付した、フィルム・シ
ートの製造ラインがそのまま適用可能であり、製造され
るフィルム・シート状成型物をそのまま直ちに、或いは
一旦巻き取った後溶媒抽出装置に供給し包含される溶媒
を抽出除去して微細多孔質フィルム・シートが製造で
き、押出しラミネート法による補強体にフィルム・シー
ト状物をラミネートした物或いは、補強材をフィルム・
シート状物内に包埋した微細多孔質シートも同様に、既
存の押出しラミネート製造プロセスに適用して製造する
事が出来る。又、中空糸状物の製造に於いては周知の中
空糸製造用紡糸口金(例えば英国特許第843179号
等に示されるC型ノズルや、特許公報昭和39−166
886号公報等に示されるガス導入用毛細管を中央部に
挿入された紡糸ノズル等)を付して常法通り紡糸し巻き
取るか、数千メーター/分の紡速で高速紡糸し細化延伸
・配向結晶化も同時に行い巻き取り、次ぎなる抽出工程
で紡出糸中に包含される溶媒を抽出除去して微細多孔質
中空糸を製造する事が出来る。射出成型物の製造に於い
ても通常の射出成型物を製造する場合と同様の成型金型
並びに成型装置を該混練融解押出し機構に接続して成型
物を得、抽出工程で包含される溶媒を抽出除去する事に
より成型金型に忠実な形状の微細多孔質成型物が製造で
きる。本発明の方法に於いては、混練溶解機構にて混練
混和され均一な熱可塑性重合体−溶媒の溶融融体として
成型装置(工程)に供給されて冷却され固化される成型
物は、もはや流動したり溶媒の蒸発除去に伴う形態変化
は一切受ける事がないため、付与された形状の再現性は
極めて高く所望の微細多孔質成型体を精度よく容易に製
造する事が出来る特徴を有する。
The molding apparatus for manufacturing a molded product having a predetermined shape and the equipment related to the molding process do not require any special specifications, and the known equipment conventionally used can be used as it is for the thermoplastic polymer of the present invention. -Can be used by connecting to a solvent kneading and mixing mechanism. That is, in the production of the film / sheet-like product, the production line of the film / sheet having the T die or the inflation method film extrusion die which has been conventionally used can be applied as it is, and the film / sheet-like product to be produced can be applied. Immediately as it is, or after it is once wound up, it is supplied to a solvent extraction device and the contained solvent is extracted and removed to produce a microporous film / sheet, which can be extruded and laminated to form a film / sheet-like material on a reinforcement. Laminated product or reinforcing material in film
Similarly, a microporous sheet embedded in a sheet-like material can be manufactured by applying it to an existing extrusion laminate manufacturing process. Further, in the production of hollow fibers, a well-known spinneret for producing hollow fibers (for example, a C-type nozzle shown in British Patent No. 843179 or the like, and Japanese Patent Publication No. Showa 39-166).
A gas-introducing capillary tube shown in Japanese Patent No. 886, etc. is attached and spun in a usual manner with a spinning nozzle or the like), or it is spun at a high spinning speed at a spinning speed of several thousand meters / minute and finely stretched. -Oriented crystallization can be performed at the same time and wound up, and the solvent contained in the spun yarn can be extracted and removed in the next extraction step to produce a fine porous hollow fiber. Also in the production of injection-molded products, the same molding die and molding device as those used in the production of ordinary injection-molded products are connected to the kneading / melting / extruding mechanism to obtain a molded product, and the solvent included in the extraction step is added. By extracting and removing, it is possible to manufacture a fine porous molded article having a shape faithful to the molding die. In the method of the present invention, a molded product that is kneaded and kneaded by the kneading and dissolution mechanism and is supplied as a molten melt of a uniform thermoplastic polymer-solvent to a molding device (step) to be cooled and solidified is no longer flowable. Since it does not undergo any morphological change due to evaporation or removal of the solvent, the reproducibility of the imparted shape is extremely high and the desired fine porous molded article can be manufactured accurately and easily.

【0018】溶媒抽出装置も何ら特別なものを必要とせ
ず従来より用いられる抽出装置を用い成型体中に包含さ
れる溶媒の除去を行えばよい。最も単純な普遍的代表例
としては向流連続式抽出槽の適用がある。ただ、精密濾
過分離膜の製造に於いては洗浄工程中の微細塵等による
汚染も避ける事が必要であるので、図7.に示した如き
溶剤の飽和蒸気中に被抽出物を曝し抽出する方法を採用
する事がより望ましい。
The solvent extraction device does not need any special one, and the solvent contained in the molded body may be removed by using the extraction device conventionally used. The simplest universal example is the application of a countercurrent continuous extraction tank. However, in the production of the microfiltration separation membrane, it is necessary to avoid contamination by fine dust during the washing process, so Fig. 7. It is more preferable to adopt the method of exposing the substance to be extracted to the saturated vapor of the solvent as shown in (3) above for extraction.

【0019】以下に本発明による微細多孔質重合体より
なる分離膜・濾過材製品の製造方法を具体的実施例をも
って説明する。
The method for producing a separation membrane / filtration material product comprising the fine porous polymer according to the present invention will be described below with reference to specific examples.

【実施例1】図4.に示す混練機能を有するスクリュウ
押出機のホッパーよりポリエチレンテレフタレート(フ
ェノール/テトラクロールエタン=3/2の混合溶媒に
溶解し30℃で測定した固有粘度:0.650)を供給
し押出し、該スクリュウ押出機の計量部に設けた溶媒供
給孔から160℃に加熱したポリエチレングリコール
(PEG1000)を、プランジャーポンプを用い圧入
し混練ゾーンで混練し徐々に融体温度を230℃に下
げ、プレフィルター部を通しギアーポンプを介してポリ
エチレンテレフタレート/PEG1000の重量混合比
率が65/35よりなる均一混合融体を定常的に、ノズ
ル中空率65%のC型スリット状オリフィス(オリフィ
ス外径1.6mm)50ホールを穿ったノズルを有する
紡糸ヘッドに送り、紡糸温度210℃、単孔当たりの吐
出量10g/分で押出し、5,000m/min.の引
取り速度で高速紡糸し一旦ボビンに巻き取る。この中空
糸をメタノール蒸気還流抽出塔(図7.)に通し、包含
されるPEG1000を抽出除去して微細多孔質ポリエ
チレンテレフタレートよりなる中空糸を得た。この中空
ポリエチレンテレフタレート繊維の微細孔径と孔径分布
状態を測定するため[CARLO ERBA社製水銀圧
入細孔測定装置:ポロシメーター]を用い所謂水銀圧入
法により測定を行ったところ、細孔径:円換算直径0.
1ないし0.4μの範囲に孔径分布し、空孔容積率は4
5%である事がわかった。又顕微鏡観察の結果この繊維
は繊維軸に沿い繊維中央に貫通する空洞を有する中空糸
である事が確認され、微細孔は中空糸を形成する周壁を
貫通してあいて居る事が確認できた。又得られた微細多
孔質中空ポリエチレンテレフタレート糸の破断強度は
2.5g/d,破断伸度は20%,沸水収縮率は3%で
あった。
Example 1 FIG. The polyethylene terephthalate (intrinsic viscosity: 0.650 measured at 30 ° C. dissolved in a mixed solvent of phenol / tetrachloroethane = 3/2, which is dissolved in a mixed solvent of a screw extruder having a kneading function shown in FIG. Polyethylene glycol (PEG1000) heated to 160 ° C from the solvent supply hole provided in the metering section of the machine was press-in using a plunger pump and kneaded in the kneading zone to gradually lower the melt temperature to 230 ° C and set the pre-filter section. Through a through gear pump, a uniform mixed melt having a weight mixing ratio of polyethylene terephthalate / PEG1000 of 65/35 was constantly provided, and 50 holes of C-shaped slit-shaped orifice (orifice outer diameter 1.6 mm) with a hollow ratio of 65% were provided. It is sent to a spinning head with a nozzle that has been drilled, and the spinning temperature is 210 ° C. Discharge rate 10 g / min in extrusion per, 5,000 m / min. At high take-up speed, high-speed spinning is performed and the bobbin is once wound. This hollow fiber was passed through a methanol vapor reflux extraction column (FIG. 7) to extract and remove the contained PEG1000 to obtain a hollow fiber made of fine porous polyethylene terephthalate. In order to measure the fine pore diameter and the pore diameter distribution state of this hollow polyethylene terephthalate fiber, the measurement was carried out by a so-called mercury penetration method using a [CARLO ERBA mercury intrusion porosimetry device: porosimeter]. .
Pore size distribution in the range of 1 to 0.4μ and pore volume ratio is 4
It turned out to be 5%. In addition, as a result of microscopic observation, it was confirmed that this fiber was a hollow fiber having a cavity penetrating in the center of the fiber along the fiber axis, and it was confirmed that the micropores were open through the peripheral wall forming the hollow fiber. . The breaking strength of the obtained microporous hollow polyethylene terephthalate yarn was 2.5 g / d, the breaking elongation was 20%, and the boiling water shrinkage ratio was 3%.

【実施例2】図.3に示すフィルム製造装置の混練機能
を有するスクリュウ押出機のホッパーよりナイロン6
(相対粘度:2.40)を供給し、該スクリュウ押出機
の計量部に設けた溶媒供給孔から120℃に加熱し溶融
状態にしたε−カプロラクタムを、プランジャーポンプ
を用い圧入し混練ゾーンで混練し徐々に融体温度を23
0℃に下げプレフィルター部を通し、ギアーポンプを介
してナイロン6/ε−カプロラクタムの混合比率が70
/30,60/40,50/50重量%の均一溶融体を
定常的にTダイより押出し厚み30μのフィルムを得、
図7.に示す如きメタノール蒸気還流抽出塔に通し包含
されるε−カプロラクタムをを抽出除去し乾燥して巻き
取り微細多孔質重合体膜を得た。得られた微細多孔性ナ
イロン6フィルムの微細孔径と孔径分布状態を水銀圧入
法にて測定した結果は、混合比70/30の場合: 円換算細孔径:0.03ないし0.3μに分布し、平均
円換算孔径0.1μ空孔容積率は30% 混合比60/40の場合: 円換算細孔径:0.1ないし0.6μに分布し、平均円
換算孔径0.4μ空孔容積率は40% 混合比50/50の場合: 円換算細孔径:0.4ないし1.0μに分布し、平均円
換算孔径0.7μ空孔容積率は50% 又微細多孔質膜の主要物性は 混合比70/30の場合:破断強度;18Kg/mm,
破断伸度:40%,沸水収縮率;1.5% 混合比60/40の場合:破断強度;14Kg/mm,
破断伸度:40%,沸水収縮率;1.5% 混合比50/50の場合:破断強度;10Kg/mm,
破断伸度:30%,沸水収縮率;1.5%であった。
Second Embodiment FIG. Nylon 6 from the hopper of the screw extruder having the kneading function of the film manufacturing apparatus shown in 3
(Relative viscosity: 2.40) was supplied, and ε-caprolactam that had been melted by heating at 120 ° C. through a solvent supply hole provided in the measuring section of the screw extruder was pressed into the kneading zone using a plunger pump. Knead and gradually raise the melt temperature to 23
The mixture ratio of nylon 6 / ε-caprolactam is 70 through the gear pump.
/ 30, 60/40, 50/50% by weight of a uniform melt is constantly extruded through a T-die to obtain a film having a thickness of 30μ,
Figure 7. The ε-caprolactam contained in the methanol vapor reflux extraction column as shown in (3) was extracted and removed and dried to obtain a fine porous polymer film. The fine pore size and the pore size distribution state of the obtained fine porous nylon 6 film were measured by the mercury porosimetry method, and when the mixing ratio was 70/30: circle equivalent pore size: 0.03 to 0.3μ The average circle-converted pore diameter is 0.1μ, and the pore volume ratio is 30%. When the mixing ratio is 60/40: The circle-converted pore diameter is distributed from 0.1 to 0.6μ, and the average circle-converted pore diameter is 0.4μ. Is 40% When the mixing ratio is 50/50: Pore diameter converted to circle: 0.4 to 1.0μ distributed, mean pore diameter converted to circle 0.7μ Pore volume ratio is 50%, and the main physical properties of the microporous membrane are When the mixing ratio is 70/30: breaking strength; 18 kg / mm,
Breaking elongation: 40%, boiling water shrinkage rate: 1.5% Mixing ratio 60/40: Breaking strength; 14 Kg / mm,
Breaking elongation: 40%, boiling water shrinkage rate: 1.5% When mixing ratio is 50/50: Breaking strength; 10 Kg / mm,
Breaking elongation: 30%, boiling water shrinkage: 1.5%.

【実施例3】図2.に示す押出しラミネート装置のホッ
パーよりスクリュウ押出機に顔料にてベージュ色に着色
された弾性ポリエステル樹脂(東洋紡ペルプレン R)を
供給して、それに接続された混練用スクリュウ押出機に
押出し、更に該混練用スクリュウ押出機に設けられたも
う一方の溶媒供給孔よりプランジャーポンプを用いて1
50℃に余熱したポリエチレングリコール(PEG60
0)を供給し両者を合し混練し、ギアーポンプを介して
弾性ポリエステル/PEG600の混合比50/50重
量%の均一な融体となしT−ダイより押出し、ポリエチ
レンテレフタレート−ポリスチレンよりなる海島型複合
繊維からなる非織性ウエッブをニードルパンチ機で交絡
し、ポリスチレンを抽出除去して得た微細繊維よりなる
不織性ウエッブをポバールで仮接着し、ポリウレタン樹
脂を含浸し湿式凝固法を適用して製造した人工皮革基布
上(目付け:550g/m 2)に60μの厚みに押出し
ラミネートし、向流連続式抽出槽に通して60℃の温水
で包含されるPEG600を抽出除去し、エンボスカレ
ンダーにて所定の表層模様を付与し微細多孔質の透気性
銀面を持った人工皮革を製造した。斯くして得た人工皮
革代表的性状は、 引張り強さ : 35(タテ) × 25(ヨコ)(K
g/in.) 伸び : 50(タテ) × 65(ヨコ) % 表皮層剥離強さ(T−peel試験剥離強度):5.0
(Kg/in.) ガーレ剛軟度 : 3,000 (mg) 透湿度 : 1,250 (g/m 2/24hr.) と優れた湿度透過性を有する皮革を与えた
Third Embodiment FIG. The beige colored elastic polyester resin (Toyobo Perprene R) is supplied to the screw extruder from the hopper of the extrusion laminating device shown in Fig. 1 and extruded to the kneading screw extruder connected to it, and further for the kneading. Using a plunger pump from the other solvent supply hole provided in the screw extruder
Polyethylene glycol (PEG60) preheated to 50 ° C
0) is supplied, both are mixed and kneaded, and a uniform melt of elastic polyester / PEG600 is mixed at a mixing ratio of 50/50 wt% through a gear pump and extruded from a T-die to form a sea-island composite of polyethylene terephthalate-polystyrene. Non-woven web made of fibers is entangled with a needle punch machine, non-woven web made of fine fibers obtained by extracting and removing polystyrene is temporarily adhered with Povar, impregnated with polyurethane resin, and a wet coagulation method is applied. On the manufactured artificial leather base cloth (Basis weight: 550 g / m 2) is extruded and laminated to a thickness of 60 μ, and passed through a countercurrent continuous extraction tank to extract and remove PEG600 contained in warm water at 60 ° C. Then, a predetermined surface layer pattern was applied to produce an artificial leather having a fine porous air-permeable silver surface. Typical properties of the artificial leather thus obtained are as follows: Tensile strength: 35 (vertical) x 25 (horizontal) (K
g / in. ) Elongation: 50 (vertical) x 65 (horizontal)% Skin layer peel strength (T-peel test peel strength): 5.0
(Kg / in.) Gurley stiffness: 3,000 (mg) Moisture vapor transmission rate: 1,250 (g / m 2/24 hr.) And leather having excellent moisture permeability was provided.

【実施例4】図7.に示めすスクリュウ式射出成型装置
のポリマー供給用ホッパーにポリエチレンテレフタレー
ト(フェノール/テトラクロールエタン=3/2の混合
溶媒に溶解し30℃で測定した固有粘度:0.650)
を供給し290℃で溶融し押出し、該スクリュウ式射出
成型装置の計量部に設けた溶媒供給孔から160℃に加
熱したポリエチレングリコール(PEG1000)を、
プランジャーポンプを用いて圧入し、ポリエチレンテレ
フタレート/PEG1000の重量混合比率が45/5
5よりなる均一混合融体を混練ゾーンで定常的にて混練
し、230℃の均一な融体となる如く温度設定し、金型
内に射出しに図6.(a)に示す形状の次記寸法のフィ
ルターエレメントを製作した。 即ち、フィルターエレメントチューブ本数 : 4
5本 フィルターエレメントチューブ管径 : 10mm
φ フィルターエレメントチューブ管長 : 100mm 最外フィルターエレメントチューブ配置外周(R 3):
100mmφ フィルターエレメントフランジ内周(R 4):105m
mφ フィルターエレメントフランジ外周(R 5):120m
mφ フィルターエレメントチューブ厚み : 0.5mm フィルター有効面積 : 1,450cm 2 又このフィルターエレメントの水銀圧入法により測定し
た 円換算細孔径分布 : 0.6ないし1.4μに分布
し、 平均円換算孔径 : 1.0μ 空孔容積率 : 55% で、これをケーシングンに装着する事により図6.
(b)に示す濾過面積が大きく濾過性能の優秀で且つ濾
過性能が一定均質の耐油・耐熱性優秀なフィルターを極
めて低工数で供給できる。(必要ならこの寸法でフィル
ターエレメントチューブ本数をふやし、フィルター有効
面積2,000cm 2のフィルターエレメントを得る事
が可能である)
Fourth Embodiment FIG. 7. Polyethylene terephthalate (dissolved in a mixed solvent of phenol / tetrachloroethane = 3/2 and measured at 30 ° C. in the polymer supply hopper of the screw type injection molding device shown in FIG.
Of polyethylene glycol (PEG1000) heated to 160 ° C. from a solvent supply hole provided in the measuring section of the screw type injection molding device.
Press-fit using a plunger pump, and the polyethylene terephthalate / PEG1000 weight mixing ratio is 45/5.
6. The uniform mixed melt of No. 5 was constantly kneaded in the kneading zone, the temperature was set so as to obtain a uniform melt of 230 ° C., and the mixture was injected into the mold. A filter element having the shape shown in FIG. That is, the number of filter element tubes: 4
5 filter element tube tube diameter: 10mm
φ Filter element tube tube length: 100 mm Outermost filter element tube arrangement outer circumference (R 3):
Inner circumference of 100 mmφ filter element flange (R 4): 105 m
mφ Filter element flange outer circumference (R 5): 120 m
mφ Filter element tube thickness: 0.5 mm Filter effective area: 1,450 cm 2 Also, the circle equivalent pore size distribution measured by mercury porosimetry of this filter element: distributed in 0.6 to 1.4 μ, and the average circle equivalent pore size: 1.0μ Porosity volume ratio: 55%, and by mounting this on the casing, Fig. 6.
It is possible to supply a filter having a large filtration area as shown in (b), excellent filtration performance, uniform filtration performance, and excellent oil resistance and heat resistance with extremely low man-hours. (If necessary, it is possible to increase the number of filter element tubes with this size and obtain a filter element with a filter effective area of 2,000 cm 2.)

【実施例5】Example 5

【実施例4】に於けるフィルターエレメント用微細多孔
質重合体製造原料のポリエチレンテレフタレート−PE
G1000の組合せのみを、エチレン−ヴィニールアル
コール共重合体(日本合成化学工業〓製ソアライトM
R)−ジエチレングリコールの組合せに置き換えてフィ
ルターエレメントを製作した。フィルター寸法並びにフ
ィルターエレメント微細孔径及び微細孔径分布などフィ
ルター性能は「実施例4」と同一であるが、本フィルタ
ーは構成素材の耐薬品性及び耐溶剤性が極めて優秀であ
るため、特に強アルカリ溶液や強酸性溶液用フィルター
として最適であった。
Example 4 Polyethylene terephthalate-PE as a raw material for producing a microporous polymer for a filter element in Example 4
Only the combination of G1000 is ethylene-vinyl alcohol copolymer (Solarite M manufactured by Nippon Synthetic Chemical Industry Co., Ltd.).
The filter element was manufactured by substituting the combination of R) -diethylene glycol. The filter performance such as the filter size and the filter element fine pore size and fine pore size distribution is the same as that of "Example 4", but since this filter has extremely excellent chemical resistance and solvent resistance of the constituent materials, it is particularly strong alkaline solution. It was most suitable as a filter for strong acid solutions.

【0020】[0020]

【発明の効果】本発明は以上説明した如く「高温時に熱
可塑性重合体と相溶し、均一且つ安定な溶融溶液又はゾ
ルを形成し成型過程で冷却された時固化し安定なゲルを
形成せしめる、熱可塑性重合体−溶媒系の熱可塑性重合
体と溶媒の混合比が[熱可塑性重合体75ないし20
部]/[溶媒25ないし80部]となる如く、混練機能
を有するスクリュウ混練押出機又はスクリュウ式射出成
型機に定常的に供給して溶融混練し、該配合組成の均一
な溶融構成物を迅速に形成せしめ、該スクリュウ混練押
出機に接続した中空糸紡出用口金又はフィルム形成用口
金を通して押出し、中空し又はフィルム・シート状に成
型冷却固化せしめたる後、又はスクリュウ式射出成型機
に接続した金型内に射出成型冷却固化後、これら成型物
に包含される溶媒を重合体の非溶剤で且つ該溶媒の溶剤
により抽出して製造する事を特徴とする微細多孔質重合
体」の製造方法並びに微細多孔質重合体分離膜・フィル
ター及びフィルム・シートである故、以下に記載する如
き特徴と効果を有する。
INDUSTRIAL APPLICABILITY As described above, the present invention "forms a molten solution or sol that is compatible with a thermoplastic polymer at a high temperature and solidifies and solidifies when cooled in a molding process to form a stable gel. , The mixing ratio of the thermoplastic polymer-solvent type thermoplastic polymer and the solvent is [thermoplastic polymer 75 to 20].
Parts] / [solvent 25 to 80 parts] so that a uniform melt composition of the blended composition can be rapidly obtained by constantly supplying to a screw kneading extruder or screw type injection molding machine having a kneading function and melt kneading. And then extruded through a hollow fiber spinning die or a film-forming die connected to the screw kneading extruder, hollowed or molded into a film / sheet, cooled and solidified, or connected to a screw-type injection molding machine. A method for producing a "fine porous polymer, characterized in that the solvent contained in these molded articles is produced by extracting with a solvent of the polymer and a solvent of the solvent after solidification by injection molding in a mold. Since it is a fine porous polymer separation membrane / filter and a film / sheet, it has the following characteristics and effects.

【0021】微細多孔質体に於ける微細孔分布は極め
て均等であり、微細孔孔径分布も狭くシャープである。 微細孔径は、熱可塑性重合体−溶媒の組合せの組成・
配合比を選定する事により容易に任意に調整し決定出来
る。又斯かる微細孔形成機構に基づき微細孔が形成され
るため、逆浸透法分離膜を対称とした分離膜から精密フ
ィルター等を対称とする多孔質体まで、連続的に任意に
製造できる。 スクリュウ混練押出(射出)機構により、所定の熱可
塑性重合体−溶媒系の所定の配合組成の均一な溶融構成
物を定常的且つ迅速に形成せしめるため、熱可塑性重合
体−溶媒間の相互作用により生じる重合体の解重合反応
・エステル交換反応・エステルアマイド交換反応・酸化
劣化・加水分解などの劣化反応が、極限的に抑制できる
のみならず、劣化反応進行度の差異による品質変動のな
い品質一定の優秀な物性を有する微細多孔質重合体を定
常的に得ることが出来る。 強力な混練機構により高温高圧下で熱可塑性重合体−
溶媒系の均一な溶融構成物を形成せしめるため、溶媒に
重合体を加え攪拌する操作程度では溶解し難い熱可塑性
重合体−溶媒の組合せや、製品物性を確保するために必
要な高重合度重合体の溶解も迅速に容易に行え、必要な
所望の熱可塑性重合体−溶媒組合せの選定が障害なく容
易に行える。 又、強力な混練機構により高温高圧下で熱可塑性重合
体−溶媒系の均一な溶融構成物を形成せしめるため、熱
可塑性重合体−溶媒系溶融構成物中に泡を巻き込む事が
ないため脱泡操作に悩まされる事なく、又包含する泡に
よる製品品質に於ける欠陥の心配が不要である。 所定の熱可塑性重合体−溶媒系溶融構成物を構成せし
める混練溶解機構に、所望成型体製造用口金や成型金型
が接続された製造プロセスから構成されるため、所望の
中空糸・フィルム・シート状微細多孔質重合体や、所望
形状の微細多孔質成型物を連続的に高生産性にて製造す
る事が出来る。等、従来の方法で得られなかった品質と
卓越した生産性を提供すると共に、微細多孔質体分離膜
・フィルターの生産システム自体の改革を実施可能とし
た。
The fine pore distribution in the fine porous body is extremely uniform, and the fine pore size distribution is narrow and sharp. The micropore size depends on the composition of the thermoplastic polymer-solvent combination.
It can be easily adjusted arbitrarily by selecting the blending ratio. Further, since fine pores are formed based on such a fine pore forming mechanism, it is possible to continuously and arbitrarily manufacture from a separation membrane having a reverse osmosis separation membrane as a symmetry to a porous body having a precision filter and the like as a symmetry. By the screw kneading extrusion (injection) mechanism, in order to consistently and rapidly form a uniform molten constituent of a given blending composition of a given thermoplastic polymer-solvent system, the interaction between the thermoplastic polymer and the solvent Degradation reactions such as depolymerization reaction, transesterification reaction, ester amide exchange reaction, oxidative deterioration, and hydrolysis of the resulting polymer can be suppressed to a minimum, and quality does not fluctuate due to differences in the progress of deterioration reaction. It is possible to constantly obtain a microporous polymer having excellent physical properties of Thermoplastic polymer under high temperature and high pressure due to strong kneading mechanism
In order to form a uniform molten composition of the solvent system, a thermoplastic polymer-solvent combination that is difficult to dissolve by the operation of adding the polymer to the solvent and stirring and a high polymerization degree required to secure the physical properties of the product. Dissolution of the coalesced product can be carried out quickly and easily, and the desired desired thermoplastic polymer-solvent combination can be easily selected without any trouble. Further, since a strong kneading mechanism forms a uniform molten composition of the thermoplastic polymer-solvent system under high temperature and high pressure, defoaming does not occur because bubbles are not involved in the thermoplastic polymer-solvent system molten composition. It is not annoying to operate, and there is no need to worry about defects in the product quality due to the foam contained. A desired hollow fiber / film / sheet because it is composed of a manufacturing process in which a die for manufacturing a desired molded body or a molding die is connected to a kneading / dissolving mechanism that constitutes a predetermined thermoplastic polymer-solvent system molten composition. The microporous polymer and the microporous molded product having a desired shape can be continuously produced with high productivity. In addition to providing quality and outstanding productivity that cannot be obtained by conventional methods, it has made it possible to reform the production system for microporous separation membranes and filters.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施態様例のフローシート 本図は本発明のプロセスがフローシート左列と右列の組
合せより構成される事を図示する。 フローシート左列:熱可塑性重合体−溶媒混練溶解機構
例 :熱可塑性重合体用スクリュウ押出機+熱可塑性重合
体−溶媒混練用スクリュウ押出機による混練溶解機構
(詳細は図2参照のこと) :単独のスクリュウ混練押出機を用いて混練する機構
例 ホッパー部より熱可塑性重合体を供給し、溶媒を計量部
より圧入し混練する方式例(詳細は図3.図4.参照の
こと) :2軸混練押出機を用いる混練方式例 フローシート右列:混練押出機構に接続される成型装置
例 a:中空糸紡出装置想定図 b:フィルム製膜装置想定図 c:押出しラミネート設備想定図 d:射出成型設備想定図
1 is a flow sheet of an exemplary embodiment of the present invention. This figure illustrates that the process of the present invention is composed of a combination of left and right rows of flow sheets. Flow sheet left column: Thermoplastic polymer-solvent kneading dissolution mechanism example: Kneading dissolution mechanism by screw extruder for thermoplastic polymer + screw extruder for thermoplastic polymer-solvent kneading (see FIG. 2 for details): Example of mechanism in which kneading is performed using a single screw kneading extruder An example of a method in which a thermoplastic polymer is supplied from a hopper, and a solvent is press-fitted from a metering unit (see FIGS. 3 and 4 for details): 2 Example of kneading method using axial kneading extruder Flow sheet right column: Example of molding device connected to kneading and extruding mechanism a: Hollow fiber spinning device assumption diagram b: Film forming device assumption diagram c: Extrusion laminating equipment assumption diagram d: Injection molding facility assumption diagram

【図2】熱可塑性重合体用スクリュウ押出機+熱可塑性
重合体−溶媒混練用スクリュウ押出機による混練溶解機
構を用いた微細多孔質重合体押出シラミネート製造装置
図例 :熱可塑性重合体押出用スクリュウ押出機 :熱可塑性重合体−溶媒混練用スクリュウ押出機 :熱可塑性重合体用ホッパー :溶媒用タンク :溶媒供給用ポンプ :熱可塑性重合体−溶媒混練融体吐出用ギアーポンプ :T−ダイ :フィルム状吐出物 :補強布 A:スクリュウ押出機固体輸送部(ソリッドコンベンゾ
ーン) B:スクリュウ押出機圧縮溶解部(コンプレッション−
メルティングゾーン) C:スクリュウ押出機計量部(メタリングゾーン) D:プレフィルター E:紡出ヘッド部 F:ラミネート装置 G:補強布供給装置
[Fig. 2] Screw extruder for thermoplastic polymer + thermoplastic polymer-screw extruder for solvent kneading Extruding machine for fine porous polymer extrusion using kneading dissolution mechanism Figure Example: For thermoplastic polymer extrusion Screw extruder: Thermoplastic polymer-solvent kneading screw extruder: Thermoplastic polymer hopper: Solvent tank: Solvent supply pump: Thermoplastic polymer-solvent kneading melt discharge gear pump: T-die: Film Discharge: Reinforcement cloth A: Screw extruder solid transport section (solid-convection zone) B: Screw extruder compression melting section (compression-
Melting zone) C: Screw extruder weighing section (metering zone) D: Pre-filter E: Spinning head F: Laminating device G: Reinforcing cloth feeding device

【図3】単独のスクリュウ混練押出機を用いて微細多孔
質中空糸を混練押出し製造する装置図例 :熱可塑性重合体用ホッパー :溶媒用タンク :スクリュウ式混練押出機 :溶媒供給用ポンプ :熱可塑性重合体−溶媒混練融体吐出用ギアーポンプ :中空糸紡出ノズル :サーキュラークエンチ装置 :吐出糸条 :引き取り装置 A:スクリュウ押出機固体輸送部(ソリッドコンベンゾ
ーン) B:スクリュウ押出機圧縮溶解部(コンプレッション−
メルティングゾーン) C:スクリュウ押出機計量部(メタリングゾーン) D:プレフィルター E:紡糸ヘッド部
[Fig. 3] Device for kneading and extruding fine porous hollow fibers by using a single screw kneading extruder Ex. Example: Hopper for thermoplastic polymer: Tank for solvent: Screw type kneading extruder: Solvent supply pump: Heat Gear pump for discharging plastic polymer-solvent kneaded melt: Hollow fiber spinning nozzle: Circular quench device: Discharge yarn: Take-off device A: Screw extruder solid transport section (solid convection zone) B: Screw extruder compression dissolution section ( Compression-
Melting zone) C: Screw extruder weighing section (Metalling zone) D: Prefilter E: Spinning head section

【図4】単独のスクリュウ混練押出機を用いて微細多孔
質フィルムを混練押出し製造する装置図例 :熱可塑性重合体用ホッパー :溶媒用タンク :スクリュウ式混練押出機 :溶媒供給用ポンプ :熱可塑性重合体−溶媒混練融体吐出用ギアーポンプ :T−ダイ :フィルム状吐出物 :洗浄装置(洗浄槽) A:スクリュウ押出機固体輸
送部(ソリッドコンベンゾーン) B:スクリュウ押出機圧縮溶解部(コンプレッション−
メルティングゾーン) C:スクリュウ押出機計量部(メタリングゾーン) D:プレフィルター E:紡出ヘッド部
[Fig. 4] Device for kneading and extruding a fine porous film by using a single screw kneading extruder Ex .: Hopper for thermoplastic polymer: Tank for solvent: Screw type kneading extruder: Pump for solvent supply: Thermoplastic Gear pump for polymer-solvent kneading melt discharge: T-die: Film discharge: Cleaning device (cleaning tank) A: Screw extruder solid transportation part (solid convection zone) B: Screw extruder compression dissolution part (compression-
Melting zone) C: Screw extruder weighing section (Metalling zone) D: Prefilter E: Spinning head section

【図5】スクリュウインライン式射出成型機を用いて微
細多孔質成型体を製造する装置図例 :熱可塑性重合体用ホッパー :溶媒用タンク :スクリュウ式混練押出機 :溶媒供給用ポンプ :金型 :逆止弁 A:スクリュウ押出機固体輸送部(ソリッドコンベンゾ
ーン) B:スクリュウ押出機圧縮溶解部(コンプレッション−
メルティングゾーン) C:スクリュウ押出機計量部(メタリングゾーン) D:サーボモーター E:金型締付け用駆動装置部
[Fig. 5] Apparatus for producing a microporous molded product using a screw in-line injection molding machine Example: Hopper for thermoplastic polymer: Tank for solvent: Screw-type kneading extruder: Pump for solvent supply: Mold: Check valve A: Screw extruder solid transport section (solid-convection zone) B: Screw extruder compression melting section (compression-
Melting zone) C: Screw extruder weighing unit (metering zone) D: Servo motor E: Mold clamping drive unit

【図6】(a)微細多孔質フィルターエレメント(X−
X’断面図) (b)フィルター(上記エレメントをケーシングに組み
付けた状態図)
FIG. 6 (a) Microporous filter element (X-
X'cross section) (b) Filter (state diagram with the above element assembled in the casing)

【図7】熱可塑性重合体−溶媒混練吐出体より溶媒を抽
出し微細多孔質体を製造する溶剤蒸気による抽出装置図
例 :熱可塑性重合体−溶媒混練吐出体 :微細多孔
質体 :抽出用溶剤 :抽出塔 ,:冷却機
FIG. 7: Extraction device using solvent vapor for producing solvent by extracting solvent from thermoplastic polymer-solvent kneading discharge body Illustration Example: Thermoplastic polymer-solvent kneading discharge body: Microporous body: For extraction Solvent: Extraction tower ,: Cooler

【表1】 [Table 1]

【表1】 [Table 1]

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】高温時に熱可塑性重合体と相溶し、均一且
つ安定な溶融溶液又はゾルを形成し成型過程で冷却され
た時固化し安定なゲルを形成する、熱可塑性重合体−溶
媒系の熱可塑性重合体と溶媒との混合比が[熱可塑性重
合体75ないし20部]/[溶媒25ないし80部]と
なる如く、混練機能を有するスクリュウ混練押出機構に
定常的に供給して溶融混練し、熱可塑性重合体75ない
し20部と溶媒25ないし80部からなる均一な溶融構
成物を迅速に形成せしめ、該スクリュウ混練押出機構に
接続した成型用金型内に射出するか、中空糸紡出用紡糸
口金又はフィルム形成用のT−ダイ或いはインレーショ
ンフィルム押出し口金を通して押出し、所定形状に成型
し冷却固化した後、該成型物に包含される該溶媒を重合
体の非溶剤で且つ該溶媒の溶剤にて抽出して製造する事
を特徴とする微細多孔質成型体及び中空糸状又はフィル
ム・シート状微細多孔質重合体の製造方法
1. A thermoplastic polymer-solvent system which is compatible with a thermoplastic polymer at high temperatures to form a uniform and stable molten solution or sol which solidifies when cooled in the molding process to form a stable gel. So that the mixing ratio of the thermoplastic polymer and the solvent is [thermoplastic polymer 75 to 20 parts] / [solvent 25 to 80 parts], the screw is constantly fed to the screw kneading and extruding mechanism having a kneading function and melted. Kneading is carried out to rapidly form a uniform molten composition consisting of 75 to 20 parts of a thermoplastic polymer and 25 to 80 parts of a solvent, and the mixture is injected into a molding die connected to the screw kneading and extruding mechanism or hollow fiber. After being extruded through a spinning spinneret for spinning or a T-die for film formation or an extrusion film extrusion spinner, molded into a predetermined shape and cooled and solidified, the solvent contained in the molded product is a non-solvent for the polymer and Method for producing it microporous molded and hollow fiber or film sheet-like microporous polymers characterized be prepared by extraction with a solvent of the solvent
【請求項2】高温時に熱可塑性重合体と相溶し、均一且
つ安定な溶融溶液又はゾルを形成し成型過程で冷却され
た時固化し安定なゲルを形成せしめる熱可塑性重合体−
溶媒系の組合せに於ける、熱可塑性重合体75ないし2
0部と溶媒25ないし80部からなる均一な溶融構成物
を形成させるため、、該熱可塑性重合体を混練機能を有
する加熱されたスクリュウ混練押出機に連続的且つ定量
的に供給して溶融し、該スクリュウ混練押出機の計量部
分に儲けられた供給孔より該溶媒を連続的且つ定量的に
供給するか、或いは又該溶媒の供給を該スクリュウ押出
機に接続した混練用スクリュウ押出機の別の供給孔より
連続的且つ定量的に行い両者を混練し均一に溶解し所定
混合比の溶融溶液を定常的に形成せしめ、中空糸紡出用
紡糸口金又はフィルム形成用のT−ダイ或いはインレー
ションフィルム押出し口金を通して押出し、中空糸又は
フィルム・シート状に成型し冷却固化した後、該成型物
に包含される該溶媒を、重合体の非溶剤で且つ該溶媒の
溶剤にて抽出して製造する事を特徴とする中空糸状又は
フィルム・シート状微細多孔質重合体の製造方法
2. A thermoplastic polymer which is compatible with a thermoplastic polymer at a high temperature, forms a uniform and stable molten solution or sol, and solidifies when cooled in the molding process to form a stable gel.
Thermoplastic polymers 75 to 2 in solvent system combinations
In order to form a uniform molten composition consisting of 0 parts and 25 to 80 parts of solvent, the thermoplastic polymer is continuously and quantitatively supplied to a heated screw kneading extruder having a kneading function and melted. , The solvent is continuously and quantitatively supplied from a supply hole provided in a metering portion of the screw kneading extruder, or alternatively, the solvent is supplied separately from the kneading screw extruder connected to the screw extruder. Continuously and quantitatively through the supply holes of the two to knead them and uniformly dissolve them to form a molten solution with a predetermined mixing ratio constantly, and spinneret for hollow fiber spinning or T-die for film formation or insulation. After being extruded through a film extrusion die, molded into a hollow fiber or a film / sheet and cooled and solidified, the solvent contained in the molded product is extracted with a non-solvent of the polymer and a solvent of the solvent. Method for producing a hollow fiber or film sheet-like microporous polymers characterized in that it granulation
【請求項3】「請求項1」に記載した方法により形成せ
しめた、高温時に熱可塑性重合体と相溶し均一且つ安定
な溶融溶液又はゾルを形成し成型過程程で冷却された時
固化し安定なゲルを形成する溶媒との熱可塑性重合体−
溶媒系の組合せよりなる均一且つ安定な溶融混合物をT
−ダイから押出し、織編物或いは不織布よりなる補強体
上にラミネートするか、或いはT−ダイから押出される
溶融物中に該補強体を包埋せしめて得たフィルム・シー
ト状成型物を冷却固化した後、該フィルム・シート状成
型物に包含される該溶媒を、重合体の非溶剤で且つ該溶
媒の溶剤にて抽出して製造する事を特徴とする補強され
た微細多孔質フィルム・シート状物の製造方法
3. A homogeneous and stable molten solution or sol, which is formed by the method described in claim 1 and which is compatible with the thermoplastic polymer at high temperature and solidifies when cooled in the molding process. Thermoplastic polymer with solvent that forms stable gel-
A homogeneous and stable molten mixture consisting of a combination of solvent systems
Extruded from a die and laminated on a reinforcement made of a woven or knitted fabric or a non-woven fabric, or embedding the reinforcement in a melt extruded from a T-die to solidify by cooling. And then the solvent contained in the film / sheet-shaped molded product is extracted by a non-solvent of the polymer and a solvent of the solvent to produce a reinforced microporous film / sheet. Method of manufacturing objects
【請求項4】高温時に熱可塑性重合体と相溶し、均一且
つ安定な溶融溶液又はゾルを形成し成型過程で冷却され
た時固化し安定なゲルを形成せしめる、熱可塑性重合体
−溶媒系の組合せに於いて、熱可塑性重合体75ないし
20部と該溶媒25ないし80部からなる均一な溶融構
成物を形成させるため、該熱可塑性重合体を混練機能を
有する加熱されたスクリュウ式射出成型機に連続的且つ
定量的に供給して溶融し、該スクリュウ式射出成型機の
計量部分に儲けられた供給孔より該溶媒を連続的且つ定
量的に供給し両者を均一に混合し溶解し所定混合比の溶
融溶液を定常的に形成せしめ金型内に射出成型するか、
又は「請求項1」記載の混練溶解機構を射出成型用プラ
ンジャー部に接続し、両者を均一に混練溶解した所定混
合比の溶融溶液を供給し該射出成型機構により金型内に
射出成型し冷却固化した後、該射出成型物に包含される
該溶媒を重合体の非溶剤で且つ該溶媒の溶剤にて抽出し
て製造する事を特徴とする微細多孔質成型体製造方法
4. A thermoplastic polymer-solvent system which is compatible with a thermoplastic polymer at a high temperature, forms a uniform and stable molten solution or sol, and solidifies when cooled in the molding process to form a stable gel. Heated thermoplastic screw injection molding having the function of kneading the thermoplastic polymer in order to form a uniform molten composition of 75 to 20 parts of the thermoplastic polymer and 25 to 80 parts of the solvent. It is continuously and quantitatively supplied to the machine to melt, and the solvent is continuously and quantitatively supplied from a supply hole provided in a measuring portion of the screw type injection molding machine to uniformly mix and dissolve both of them, and a predetermined amount is obtained. Injection molding in the mold, which causes the molten solution of the mixing ratio to be constantly formed,
Alternatively, the kneading and dissolving mechanism described in "claim 1" is connected to an injection molding plunger part, and a molten solution having a predetermined mixing ratio in which both are uniformly kneaded and melted is supplied, and injection molding is performed in a mold by the injection molding mechanism. After cooling and solidifying, the solvent contained in the injection-molded product is extracted by a non-solvent of the polymer and a solvent of the solvent to produce a fine porous molded product.
【請求項5】「請求項1」ないし「請求項4」の方法に
基づき製造される微細多孔質分離膜及び濾材
5. A fine porous separation membrane and a filter medium produced according to the method of "claim 1" to "claim 4".
【請求項6】「請求項5」に記載される微細多孔質重合
体を用いて作製された分離装置又は濾過装置
6. A separation device or a filtration device produced by using the fine porous polymer according to claim 5.
【請求項7】「請求項1」ないし「請求項3」の方法に
基づき製造されるシートを用いて製造される透気性被覆
物質及び合成皮革製品
7. A permeable coating material and a synthetic leather product manufactured using a sheet manufactured according to the method of "claim 1" to "claim 3".
JP4235197A 1992-08-12 1992-08-12 Microporous polymer and method for producing the same Expired - Fee Related JP2652599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4235197A JP2652599B2 (en) 1992-08-12 1992-08-12 Microporous polymer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4235197A JP2652599B2 (en) 1992-08-12 1992-08-12 Microporous polymer and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0657519A true JPH0657519A (en) 1994-03-01
JP2652599B2 JP2652599B2 (en) 1997-09-10

Family

ID=16982519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4235197A Expired - Fee Related JP2652599B2 (en) 1992-08-12 1992-08-12 Microporous polymer and method for producing the same

Country Status (1)

Country Link
JP (1) JP2652599B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150504A (en) * 1999-12-01 2001-06-05 Japan Steel Works Ltd:The Method and apparatus for forming cellular plastic resin
KR20150078595A (en) * 2013-12-31 2015-07-08 코오롱인더스트리 주식회사 Composite Hollow Fiber Membrane and Method for Manufacturing The Same
CN108221064A (en) * 2018-04-10 2018-06-29 江苏柯能新材料有限公司 A kind of apparatus for melt spinning for realizing masterbatch injection
CN115787112A (en) * 2022-11-04 2023-03-14 江苏嘉通能源有限公司 Production method and production equipment of superfine-denier orange petal type polyester-nylon composite fiber
CN116716674A (en) * 2023-07-21 2023-09-08 广东秋盛资源股份有限公司 Skin-friendly degradable polyester fiber and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001150504A (en) * 1999-12-01 2001-06-05 Japan Steel Works Ltd:The Method and apparatus for forming cellular plastic resin
KR20150078595A (en) * 2013-12-31 2015-07-08 코오롱인더스트리 주식회사 Composite Hollow Fiber Membrane and Method for Manufacturing The Same
CN108221064A (en) * 2018-04-10 2018-06-29 江苏柯能新材料有限公司 A kind of apparatus for melt spinning for realizing masterbatch injection
CN115787112A (en) * 2022-11-04 2023-03-14 江苏嘉通能源有限公司 Production method and production equipment of superfine-denier orange petal type polyester-nylon composite fiber
CN115787112B (en) * 2022-11-04 2024-01-30 江苏嘉通能源有限公司 Production method and production equipment of superfine denier orange-petal polyester-nylon composite fiber
CN116716674A (en) * 2023-07-21 2023-09-08 广东秋盛资源股份有限公司 Skin-friendly degradable polyester fiber and manufacturing method thereof
CN116716674B (en) * 2023-07-21 2024-01-23 广东秋盛资源股份有限公司 Skin-friendly degradable polyester fiber and manufacturing method thereof

Also Published As

Publication number Publication date
JP2652599B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
EP1051236B1 (en) Expanded porous thermoplastic polymer membranes and method and device for the production thereof
KR100654083B1 (en) A process for producing an integrally asymmetrical hydrophobic membrane, an integrally asymmetrical hydrophobic membrane obtained from the process, and a process for the gas transfer using the membrane
KR100654592B1 (en) Method for producing an integrally asymmetrical polyolefin membrane
DE69122754T3 (en) METHOD FOR PRODUCING PVDF HOLLOW FIBER MEMBRANES
US6074718A (en) Self supporting hollow fiber membrane and method of construction
US4564488A (en) Methods for the preparation of porous fibers and membranes
JP2562932B2 (en) Microporous membrane from polypropylene
DE68914156T2 (en) EXTRUSION OF HOLLOW FIBER MEMBRANES.
DE69214226T2 (en) Hollow bevel membranes
JPH0791688B2 (en) Method for producing molded body and apparatus therefor
DE2833493C2 (en) Hollow filaments
JPS5925602B2 (en) Manufacturing method of polyamide microporous membrane
JP5546992B2 (en) Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
CN101439269A (en) Method for preparing thermoplastic polyurethane elastic hollow fiber membrane
JP4404964B2 (en) Method for producing polymer hollow fiber membrane
CH644789A5 (en) MEMBRANE WITH POROESE SURFACE.
JPH0649708A (en) Method for continuous spinning of hollow fiber membrane by using solvent mixture as precipitant
EP0487779A1 (en) Compositions useful for preparing cellulose ester membranes for liquid separations
JP2652599B2 (en) Microporous polymer and method for producing the same
US5089187A (en) Process for producing a semi-permeable membrane by extrusion
US4830796A (en) Process for preparing a polyester-amide hollow fiber membrane
KR101347042B1 (en) Manufacturing method of asymmetric pvdf membrane and asymmetric pvdf membrane with improved properties manufactured thereby
JP2010082509A (en) Porous membrane
US6960616B2 (en) Expanded porous thermoplastic polymer membranes
US4409162A (en) Process for producing acrylonitrile separation membranes in fibrous form

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees