JPH0656481A - Method for implanting ion into optical glass - Google Patents

Method for implanting ion into optical glass

Info

Publication number
JPH0656481A
JPH0656481A JP22526892A JP22526892A JPH0656481A JP H0656481 A JPH0656481 A JP H0656481A JP 22526892 A JP22526892 A JP 22526892A JP 22526892 A JP22526892 A JP 22526892A JP H0656481 A JPH0656481 A JP H0656481A
Authority
JP
Japan
Prior art keywords
ions
glass
mesh
optical glass
net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22526892A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayashi
俊明 林
Toshiaki Suzuki
稔明 鈴木
Takeshi Kawamata
健 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP22526892A priority Critical patent/JPH0656481A/en
Publication of JPH0656481A publication Critical patent/JPH0656481A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain uniform optical characteristics and a high accuracy with good formability by implanting ions through a net into the surface of optical glass. CONSTITUTION:A net capable of changing the mesh is prepared from an electrically conductive material such as carbon or tungsten ion implantation to afford a net 2. The resultant net 2 is then placed on the surface of optical glass 3 to make the mesh of a part (b) located in the central part of the optical glass 3 fine and the mesh of parts (a) located in the outer peripheral parts is simultaneously coarsened. Ions 1 are subsequently implanted from an ion gun and the amount of the implanted ions in the central part is limited while regulating the amount of the ion beam passed therethrough to uniformly implant the ions over the whole area of the optical glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学ガラスへのイオン注
入方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for implanting ions into optical glass.

【0002】[0002]

【従来の技術】従来、ガラス表面を改質する方法として
は、ガラス表面に他の物質を蒸着等によりコートする方
法が知られている。この方法は光学ガラスの反射防止に
は適しているが、ガラスの表面特性の改質としては不十
分である。そこで、例えば特開昭63−222046号
公報では、ガラス表面に窒化珪素イオンを注入すること
により電子基板にガラスのアルカリイオンが拡散するの
を防止する方法が提案されている。この方法によればガ
ラス表面から内部にイオンを注入するので、ガラス自体
が改質されて高い効果が得られるものである。近年、こ
のようなイオン注入によるガラスの改質を光学ガラスに
応用すべくカーボンを注入することが試みられている。
これは、ガラスを加熱軟化して一対の型にて押圧成形す
る際に、予めガラス表面にカーボンを注入しておけば、
型とガラスとの融着を防止する効果が得られるものであ
る。
2. Description of the Related Art Conventionally, as a method of modifying the glass surface, a method of coating the glass surface with another substance by vapor deposition or the like is known. Although this method is suitable for preventing reflection of optical glass, it is insufficient for modifying the surface characteristics of glass. Therefore, for example, Japanese Patent Application Laid-Open No. 63-222046 proposes a method of injecting silicon nitride ions into the glass surface to prevent alkali ions of the glass from diffusing into the electronic substrate. According to this method, since ions are injected from the glass surface to the inside, the glass itself is modified and a high effect is obtained. In recent years, it has been attempted to inject carbon in order to apply such glass modification by ion implantation to optical glass.
This is because when the glass is heated and softened and press-molded with a pair of molds, if carbon is injected into the glass surface in advance,
The effect of preventing fusion between the mold and the glass is obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
ように光学ガラスへイオン注入を行う場合には、次のよ
うな問題点がある。すなわち、ガラス表面が平面であれ
ば表面から均一にイオンが注入されるため注入層は一定
の厚さとなるが、レンズ面のような凹凸を有する面にイ
オン注入を行うと、凸部には注入量が多くなる一方、影
となる凹部では注入量が凸部に比べて少なくなって注入
量の不均一が生ずるという問題があった。光学ガラスレ
ンズの表面は曲率を有しているので、イオン注入量が表
面から均一になっていないと外周部と中心部とで光学特
性が異なってしまう。実際、前記公報による方法では、
曲率を有するガラス表面にイオンを注入すると、外周部
と中心部とで注入量が異なっていた。そのため、イオン
注入によりガラスと型との融着は防止できるが、注入量
が不均一のため外周部と中心部との光学特性がばらつい
て、高性能の光学素子が得られないという問題点があっ
た。
However, when the ion implantation is performed on the optical glass as described above, there are the following problems. That is, if the glass surface is flat, the implantation layer has a constant thickness because ions are uniformly implanted from the surface, but when ion implantation is performed on a surface having irregularities such as a lens surface, the implantation is performed on the convex portion. On the other hand, there is a problem that the injection amount becomes smaller in the shadowed concave portion than in the convex portion, and the injection amount becomes non-uniform while the amount increases. Since the surface of the optical glass lens has a curvature, if the ion implantation amount is not uniform from the surface, the optical characteristics differ between the outer peripheral portion and the central portion. In fact, in the method according to the above publication,
When ions were implanted into a glass surface having a curvature, the amount of implantation was different between the outer peripheral portion and the central portion. Therefore, although fusion of the glass and the mold can be prevented by ion implantation, there is a problem that a high performance optical element cannot be obtained because the optical characteristics of the outer peripheral portion and the central portion vary due to the non-uniform implantation amount. there were.

【0004】本発明は上記問題点に鑑みてなされたもの
で、凹凸を有する光学ガラス表面に均一な厚さにイオン
を注入することのできる光学ガラスへのイオン注入方法
を提供することを目的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an ion implantation method for optical glass capable of implanting ions to the surface of the optical glass having irregularities to a uniform thickness. There is.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の光学ガラスへのイオン注入方法では、網を介
してイオン注入を行うこととした。
In order to achieve the above object, in the method of implanting ions into the optical glass of the present invention, the ions are implanted through a net.

【0006】[0006]

【作用】上記構成からなる本発明の光学ガラスへのイオ
ン注入方法では、図1に示すように、イオンガンとイオ
ンを注入する光学ガラス3との間に部分的にメッシュの
異なる網2を設置する。網2は、イオン注入によりチャ
ージアップが生じてイオンビームが曲げられることのな
いように、導電性の材料を用いるのがよい。特にカーボ
ン又はタングステン等が好ましい。網2のメッシュを変
化させれば、イオン注入量を変化させることができる。
すなわち、図1の光学ガラス3は凸面のため従来技術に
よりイオン注入を行うと中心部の注入量が外周部よりも
多くなる。そこで、光学ガラス3の中心部に位置する
(b)部のメッシュを細かくするとともに、外周部に位
置する(a)部のメッシュを粗くする。これによりイオ
ンビームの通過量を調整して、中心部のイオン注入量を
制限し、表面全域に均一にイオン注入を行う。
In the method of implanting ions into the optical glass of the present invention having the above structure, as shown in FIG. 1, a mesh 2 having a partially different mesh is installed between the ion gun and the optical glass 3 into which ions are implanted. . The net 2 is preferably made of a conductive material so that the ion beam is not bent and the ion beam is not bent. Carbon or tungsten is particularly preferable. The amount of ion implantation can be changed by changing the mesh of the net 2.
That is, since the optical glass 3 of FIG. 1 has a convex surface, the amount of implantation in the central portion is larger than that in the outer peripheral portion when ion implantation is performed by the conventional technique. Therefore, the mesh of the part (b) located in the central part of the optical glass 3 is made fine and the mesh of the part (a) located in the outer peripheral part is made coarse. This adjusts the passing amount of the ion beam to limit the amount of ion implantation in the central portion, so that ion implantation is performed uniformly over the entire surface.

【0007】以下、添付図面を参照して本発明に係る光
学ガラスへのイオン注入方法のいくつかの実施例を説明
する。
Hereinafter, some embodiments of a method for implanting ions into an optical glass according to the present invention will be described with reference to the accompanying drawings.

【0008】[0008]

【実施例1】まず、本発明の実施例1を説明する。図2
はイオンを注入するガラス素材の形状を示す断面図、図
3はイオン注入を実現するための装置全体の基本構成
図、図4は使用する網を説明するための正面図及び平面
図である。本実施例では、図2に示す如く、両面とも曲
率R16.9mmの凸面形状で、直径25mmのガラス
素材にイオンを注入する。硝種はSF系であり転移点が
467℃、軟化点が568℃となっている。また表面粗
さはRmax0.04μmまで研磨加工されている。
First Embodiment First, a first embodiment of the present invention will be described. Figure 2
Is a sectional view showing the shape of a glass material into which ions are implanted, FIG. 3 is a basic configuration diagram of the entire apparatus for realizing ion implantation, and FIG. 4 is a front view and a plan view for explaining a net to be used. In this embodiment, as shown in FIG. 2, ions are implanted into a glass material having a curvature of R16.9 mm on both sides and a diameter of 25 mm. The glass type is SF type and has a transition point of 467 ° C and a softening point of 568 ° C. The surface roughness is polished to Rmax 0.04 μm.

【0009】このガラス素材に対して、図3に示す装置
にて、カーボンイオンを注入した。前記ガラス素材4を
保持台17の上にセットし、CH4 ガスをガス導入口5
から導入し、圧力3×10-5Torrとなるように調整
した。続いて、装置ガス導入口6からN2 ガスを導入
し、フィラメント7、コイル8、引出電極9から構成さ
れるイオン発生部10にてイオン化し、マグネット1
1、スリット12等から構成される質量分析部13及び
加速管14、XY走査電極15から構成される加速部1
6にて加速し、カーボン網18を経て、Nイオンを加速
電圧110keV、注入量1×1015ion/cm2
注入した。その際、Nイオンが衝突したCH4 ガスは解
離して、その内のカーボンはNイオンと共に光学ガラス
素材4に注入される。この操作をガラス素材4の両面に
ついて行った。
Carbon ions were injected into this glass material by the apparatus shown in FIG. The glass material 4 is set on the holder 17 and CH 4 gas is introduced into the gas inlet 5
The pressure was adjusted to 3 × 10 −5 Torr. Then, N 2 gas is introduced from the apparatus gas introduction port 6 and ionized in the ion generation unit 10 including the filament 7, the coil 8 and the extraction electrode 9, and the magnet 1
1, a mass spectrometric section 13 including a slit 12 and the like, an accelerating tube 14, and an accelerating section 1 including an XY scanning electrode 15.
6 was accelerated, and N ions were injected through the carbon net 18 at an acceleration voltage of 110 keV and an injection amount of 1 × 10 15 ions / cm 2 . At that time, the CH 4 gas with which the N ions collide is dissociated, and the carbon therein is injected into the optical glass material 4 together with the N ions. This operation was performed on both sides of the glass material 4.

【0010】ここで網18は、図4に示すように、光学
ガラス4の中心部と外周部とでメッシュが異なってい
る。即ち、線径20μmのカーボン繊維にて、粗いメッ
シュ部19の目開きを50μm、細かいメッシュ部20
の目開きを30μmとした。また、細かいメッシュ部2
0の直径は12.5mmであり、この外周が粗いメッシ
ュ部19となっている。
Here, as shown in FIG. 4, the mesh 18 has different meshes in the central portion and the outer peripheral portion of the optical glass 4. That is, with a carbon fiber having a wire diameter of 20 μm, the coarse mesh portion 19 has an opening of 50 μm and a fine mesh portion 20.
The mesh size was 30 μm. Also, the fine mesh part 2
The diameter of 0 is 12.5 mm, and the outer periphery thereof is a coarse mesh portion 19.

【0011】以上の方法によりイオンを注入したガラス
素材4をX線光電子分光法(XPS)にて分析した結
果、約120nmの深さまでカーボンが存在することが
確認された。また、中心部と外周部ではカーボンの存在
する深さの差はほとんど見られなかった。
As a result of the X-ray photoelectron spectroscopy (XPS) analysis of the glass material 4 into which the ions were implanted by the above method, it was confirmed that carbon was present up to a depth of about 120 nm. Further, there was almost no difference in the depth at which carbon existed between the central portion and the outer peripheral portion.

【0012】次に、前記方法にてカーボンイオンを注入
したガラス素材4を押圧成形した。ガラス素材4を約8
50℃に加熱軟化させ、460℃に加熱した一対の型に
より圧力300kg/cm2 で15sec押圧成形し
た。この光学素子の光学特性を測定したところ中心部と
外周部にて差は認められなかった。従来のガラス素材に
て同様の条件で押圧成形したところ、ガラスと型とが融
着した。融着しない型の温度は420℃であった。また
カーボンの網18を設置しないでイオン注入したガラス
素材で押圧成形したところ、型との融着は生じなかった
が、イオン注入量が不均一のため中心部と外周部とで光
学特性のばらつきが見られた。
Next, the glass material 4 into which carbon ions were injected by the above method was press-molded. Glass material 4 about 8
It was softened by heating to 50 ° C. and press-molded for 15 seconds at a pressure of 300 kg / cm 2 by a pair of molds heated to 460 ° C. When the optical characteristics of this optical element were measured, no difference was recognized between the central portion and the outer peripheral portion. When pressure molding was performed using a conventional glass material under the same conditions, the glass and the mold were fused. The temperature of the mold which was not fused was 420 ° C. Further, when the ion-implanted glass material was press-molded without installing the carbon net 18, fusion with the mold did not occur, but since the ion implantation amount was uneven, the optical characteristics varied between the central portion and the outer peripheral portion. It was observed.

【0013】本実施例では、カーボンイオンを注入した
が、フッ素、ボロンイオンでもガラスとの融着を防止す
ることができた。また網の材料としては、導電性を有
し、かつ真空中でアウトガスを放出しない物質であれば
いずれのものを網材として使用してもよく、例えばタン
グステン、モリブデン、チタン等の網でも同様にイオン
注入量を変化させる効果が得られる。ガラス素材が凹レ
ンズ形状の場合は網の中心部のメッシュを粗くし外周部
を細かくすれば、均一なイオン注入が可能となる。ま
た、前述のような一定曲率半径の凹凸面以外でも、凸部
の網のメッシュを細かくし、凹部のメッシュを粗くする
ことで均一なイオン注入が可能となる。なお、本実施例
では網のメッシュを、粗いメッシュ部と細かいメッシュ
部との2段階に分けたが、イオンを注入するガラス素材
の形状に応じて3段階以上に分割してもよい。
In the present embodiment, carbon ions were implanted, but it was possible to prevent fusion with glass even with fluorine and boron ions. As the material of the mesh, any material may be used as long as it is a substance which has conductivity and does not release outgas in a vacuum. The effect of changing the amount of ion implantation is obtained. If the glass material has a concave lens shape, uniform ion implantation can be performed by roughening the mesh at the center of the net and making the outer periphery fine. Further, even in the case of an uneven surface having a constant radius of curvature as described above, uniform ion implantation can be performed by making the mesh of the convex portion fine and the mesh of the concave portion rough. In the present embodiment, the mesh of the net is divided into two stages, that is, the coarse mesh part and the fine mesh part, but it may be divided into three or more stages depending on the shape of the glass material into which the ions are implanted.

【0014】[0014]

【実施例2】次に、本発明の実施例2を説明する。この
実施例でも実施例1と同様に、図2に示す形状のガラス
素材に、図3に示す装置にてイオン注入を行った。ただ
し、注入したのはフッ素イオンである。また、ガラス素
材の硝種はBK系であり転移点が565℃、軟化点が7
15℃となっている。また表面粗さはRmax0.03
5μmまで研磨加工されている。
Second Embodiment Next, a second embodiment of the present invention will be described. In this example, as in Example 1, ion implantation was performed on the glass material having the shape shown in FIG. 2 by the apparatus shown in FIG. However, it was fluorine ions that were injected. In addition, the glass type of the glass material is BK system, which has a transition point of 565 ° C and a softening point of 7
It is 15 degrees Celsius. The surface roughness is Rmax 0.03
Polished to 5 μm.

【0015】実施例1と同様に、ガラス素材4を保持台
17の上にセットし、CF4 ガスをガス導入口6から導
入する。そして、フィラメント7、コイル8、引出電極
9から構成されるイオン発生部10にてイオン化し、マ
グネット11、スリット12等から構成される質量分析
部13にてフッ素イオンのみ選別し、加速管14、XY
走査電極15から構成される加速部16にて加速し、カ
ーボン網18を経て、フッ素イオンを加速電圧130k
eV、注入量5×1015ion/cm2 で注入した。こ
の操作をガラス素材4の両面について行った。
Similar to the first embodiment, the glass material 4 is set on the holding table 17 and CF 4 gas is introduced through the gas introduction port 6. Then, the ion generator 10 including the filament 7, the coil 8 and the extraction electrode 9 ionizes the ion, and the mass spectrometric unit 13 including the magnet 11, the slit 12 and the like selects only fluorine ions, and the acceleration tube 14, XY
It is accelerated by an accelerating unit 16 composed of a scanning electrode 15, and fluorine ions are accelerated through a carbon net 18 at an accelerating voltage of 130 k.
eV was injected at an injection amount of 5 × 10 15 ions / cm 2 . This operation was performed on both sides of the glass material 4.

【0016】ここで網18は、図5に示すように、光学
ガラス4の中心部では1重で外周部では2重になってい
る。そして、線径20μmのカーボン繊維にて、メッシ
ュ部の目開きを25μmとした。また、1重のメッシュ
部の直径は12.5mmであり、この外周が2重のメッ
シュ部となっている。
As shown in FIG. 5, the net 18 has a single layer at the center of the optical glass 4 and a double layer at the outer periphery. The mesh size of the carbon fiber having a wire diameter of 20 μm was set to 25 μm. The diameter of the single mesh portion is 12.5 mm, and the outer periphery of the single mesh portion is the double mesh portion.

【0017】以上の方法によりイオンを注入したガラス
素材4をX線光電子分光法(XPS)にて分析した結
果、約100nmの深さまでフッ素が存在することが確
認された。また、中心部と外周部ではフッ素の存在する
深さの差はほとんど見られなかった。
As a result of X-ray photoelectron spectroscopy (XPS) analysis of the glass material 4 into which ions were implanted by the above method, it was confirmed that fluorine was present up to a depth of about 100 nm. Further, there was almost no difference in the depth at which fluorine existed between the central portion and the outer peripheral portion.

【0018】次に、前記方法にてフッ素イオンを注入し
たガラス素材4を押圧成形した。ガラス素材4を約93
0℃に加熱軟化させ、540℃に加熱した一対の型によ
り圧力250kg/cm2 で20sec押圧成形した。
この光学素子の光学特性を測定したところ中心部と外周
部にて差は認められなかった。従来のガラス素材にて同
様の条件で押圧成形したところ、ガラスと型とが融着し
た。融着しない型の温度は510℃であった。またカー
ボンの網18を設置しないでイオン注入したガラス素材
で押圧成形したところ、型との融着は生じなかったが、
イオン注入量が不均一のため中心部と外周部とで光学特
性のばらつきが見られた。
Next, the glass material 4 into which fluorine ions were injected by the above method was press-molded. About 93 glass material 4
It was softened by heating to 0 ° C. and pressure-molded at a pressure of 250 kg / cm 2 for 20 seconds by a pair of molds heated to 540 ° C.
When the optical characteristics of this optical element were measured, no difference was recognized between the central portion and the outer peripheral portion. When pressure molding was performed using a conventional glass material under the same conditions, the glass and the mold were fused. The temperature of the mold which was not fused was 510 ° C. Further, when the ion-implanted glass material was press-molded without installing the carbon net 18, no fusion with the mold occurred,
Due to the non-uniform ion implantation amount, variations in optical characteristics were observed between the central portion and the outer peripheral portion.

【0019】本実施例では、フッ素イオンを注入した
が、カーボン、ボロンイオンでもガラスとの融着を防止
することができた。また網の材料としては、導電性を有
し、かつ真空中でアウトガスを放出しない物質であれば
いずれのものを網材として使用してもよく、例えばタン
グステン、モリブデン、チタン等の網でも同様にイオン
注入量を変化させる効果が得られる。ガラス素材が凹レ
ンズ形状の場合は網の中心部のメッシュを粗くし外周部
を細かくすれば、均一なイオン注入が可能となる。ま
た、前述のような一定曲率半径の凹凸面以外でも、凸部
の網のメッシュを細かくし、凹部のメッシュを粗くする
ことで均一なイオン注入が可能となる。なお、本実施例
では網を2重に備えたが、イオンを注入するガラス素材
の形状に応じて3重以上に備えてもよい。
In this embodiment, fluorine ions were implanted, but carbon and boron ions could also be prevented from fusion with glass. As the material of the mesh, any material may be used as long as it is a substance which has conductivity and does not release outgas in a vacuum. The effect of changing the amount of ion implantation is obtained. If the glass material has a concave lens shape, uniform ion implantation can be performed by roughening the mesh at the center of the net and making the outer periphery fine. Further, even in the case of an uneven surface having a constant radius of curvature as described above, uniform ion implantation can be performed by making the mesh of the convex portion fine and the mesh of the concave portion rough. Although the net is provided in double in this embodiment, it may be provided in triple or more depending on the shape of the glass material into which the ions are implanted.

【0020】[0020]

【発明の効果】以上説明したように、本発明の光学ガラ
スへのイオン注入方法によれば、光学ガラス表面に均一
にイオンを注入することが可能となり、光学特性が均一
で、しかも型との融着を生じない成形が可能となり、高
精度の光学素子を得ることができるようになる。
As described above, according to the ion implantation method for optical glass of the present invention, it becomes possible to uniformly implant ions on the surface of the optical glass, the optical characteristics are uniform, and the mold It becomes possible to perform molding without causing fusion, and it becomes possible to obtain a highly accurate optical element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学ガラスへのイオン注入方法の原理
を説明する概念図である。
FIG. 1 is a conceptual diagram illustrating the principle of an ion implantation method for optical glass of the present invention.

【図2】本発明によりイオンを注入するガラス素材の形
状を示す断面図である。
FIG. 2 is a cross-sectional view showing the shape of a glass material into which ions are implanted according to the present invention.

【図3】本発明の光学ガラスへのイオン注入方法を実現
するための装置全体の基本構成図である。
FIG. 3 is a basic configuration diagram of an entire apparatus for realizing the method of implanting ions into the optical glass of the present invention.

【図4】実施例1に使用する網を説明するための正面図
及び平面図である。
4A and 4B are a front view and a plan view for explaining a net used in the first embodiment.

【図5】実施例2に使用する網を説明するための正面図
である。
FIG. 5 is a front view for explaining a net used in a second embodiment.

【符号の説明】[Explanation of symbols]

1 イオン 2 網 3 光学ガラス 4 光学ガラス素材 5,6 ガス導入口 7 フィラメント 8 コイル 9 引出電極 10 イオン発生部 11 マグネット 12 スリット 13 質量分析部 14 加速管 15 走査電極 16 加速部 17 保持台 18,22,23 網 19 粗いメッシュ部 20 細かいメッシュ部 21 網支持体 1 Ion 2 Net 3 Optical glass 4 Optical glass material 5,6 Gas inlet 7 Filament 8 Coil 9 Extraction electrode 10 Ion generation part 11 Magnet 12 Slit 13 Mass spectrometric part 14 Accelerating tube 15 Scan electrode 16 Accelerating part 17 Holding stand 18, 22, 23 Net 19 Coarse mesh part 20 Fine mesh part 21 Net support

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光学ガラス表面にイオンを注入する方法
において、網を介してイオン注入を行うことを特徴とす
る光学ガラスへのイオン注入方法。
1. A method of implanting ions into the surface of an optical glass, which comprises implanting ions through a net.
JP22526892A 1992-07-31 1992-07-31 Method for implanting ion into optical glass Withdrawn JPH0656481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22526892A JPH0656481A (en) 1992-07-31 1992-07-31 Method for implanting ion into optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22526892A JPH0656481A (en) 1992-07-31 1992-07-31 Method for implanting ion into optical glass

Publications (1)

Publication Number Publication Date
JPH0656481A true JPH0656481A (en) 1994-03-01

Family

ID=16826664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22526892A Withdrawn JPH0656481A (en) 1992-07-31 1992-07-31 Method for implanting ion into optical glass

Country Status (1)

Country Link
JP (1) JPH0656481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269931B2 (en) 2009-09-14 2012-09-18 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US8946864B2 (en) 2011-03-16 2015-02-03 The Aerospace Corporation Systems and methods for preparing films comprising metal using sequential ion implantation, and films formed using same
US9324579B2 (en) 2013-03-14 2016-04-26 The Aerospace Corporation Metal structures and methods of using same for transporting or gettering materials disposed within semiconductor substrates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269931B2 (en) 2009-09-14 2012-09-18 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US9048179B2 (en) 2009-09-14 2015-06-02 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US8946864B2 (en) 2011-03-16 2015-02-03 The Aerospace Corporation Systems and methods for preparing films comprising metal using sequential ion implantation, and films formed using same
US9324579B2 (en) 2013-03-14 2016-04-26 The Aerospace Corporation Metal structures and methods of using same for transporting or gettering materials disposed within semiconductor substrates

Similar Documents

Publication Publication Date Title
US20020005676A1 (en) System and method for adjusting the properties of a device by GCIB processing
JP2001267266A (en) Method for implanting plasma immersion ion
EP1088332A2 (en) Focus ring arrangement for substantially eliminating unconfined plasma in a plasma processing chamber
KR20100072046A (en) Single wafer implanter for silicon-on-insulator wafer fabrication
US10670960B2 (en) Enhanced high aspect ratio etch performance using accelerated neutral beams derived from gas-cluster ion beams
US20020017454A1 (en) Method and system for improving the effectiveness of intraocular lenses by the application of gas cluster ion beam technology
JPH0656481A (en) Method for implanting ion into optical glass
US6652763B1 (en) Method and apparatus for large-scale diamond polishing
KR20030033879A (en) Ultra surface smoothing device of ito thin film and method thereof using gas cluster ion beam
US11424097B2 (en) Ion source with tubular cathode
US4975617A (en) Electric discharge tube
JPH01500942A (en) Method and device for keeping incident angle constant in ion beam device
US6103318A (en) Method for making an optical waveguide component using a low-stress silicon photomask
JP4093955B2 (en) Ion beam generator and vapor deposition method
JP3249013B2 (en) Plasma CVD equipment
JP3582885B2 (en) Method and apparatus for smoothing diamond
JP3436608B2 (en) Manufacturing method of optical waveguide chip
JPH08111453A (en) Method to form embedding oxidizing zone in silicon wafer andsemiconductor component
KR950009992B1 (en) Method for coating of lenses
JPH0818372A (en) Frequency adjustment device for piezoelectric element, and piezoelectric frequency adjusting method
JP2654769B2 (en) Ion implanter
JPH08186075A (en) Method and device for manufacturing semiconductor device
JPH06329444A (en) Surface treatment of glass using ion beam and class member
JPH0762539A (en) Formation of diamond-like film
JP2000294515A (en) Ion implanting apparatus and ion implanting method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005