JPH0656139B2 - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve

Info

Publication number
JPH0656139B2
JPH0656139B2 JP59112300A JP11230084A JPH0656139B2 JP H0656139 B2 JPH0656139 B2 JP H0656139B2 JP 59112300 A JP59112300 A JP 59112300A JP 11230084 A JP11230084 A JP 11230084A JP H0656139 B2 JPH0656139 B2 JP H0656139B2
Authority
JP
Japan
Prior art keywords
armature
stator
magnetic
magnetic flux
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59112300A
Other languages
Japanese (ja)
Other versions
JPS60256550A (en
Inventor
英雄 木内
Original Assignee
日本電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電装株式会社 filed Critical 日本電装株式会社
Priority to JP59112300A priority Critical patent/JPH0656139B2/en
Publication of JPS60256550A publication Critical patent/JPS60256550A/en
Publication of JPH0656139B2 publication Critical patent/JPH0656139B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • F02M51/0678Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages all portions having fuel passages, e.g. flats, grooves, diameter reductions

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば自動車用の内燃機関に使用される電磁
式燃料噴射弁に関するものである。
TECHNICAL FIELD The present invention relates to an electromagnetic fuel injection valve used in, for example, an internal combustion engine for automobiles.

〔従来の技術〕[Conventional technology]

従来周知のこの種の電磁式燃料噴射弁を第3図に示す。
すなわち1は弁ケースであり、ケース本体2およびボデ
ィ3をケース本体2の端部を折曲げ加工によって一体に
連結して構成している。またボディ3にはケースカバー
4が圧入により取り付けられている。ケース本体2内の
電磁コイル5には端子6を介してコンピュータ(CP
U)7から電気信号が与えられ、電磁力を発生する。こ
の電磁力によりステータ8とアーマチュア9との間に吸
引力が発生し、アーマチュア9は復帰用コイルばね10
の押圧力に抗して図示上方に移動される。上記アーマチ
ュア9にはニードル弁11が一体的に結合されており、
該ニードル弁11もアーマチュア9と一体的に図示上方
へ移動される。
A conventionally known electromagnetic fuel injection valve of this type is shown in FIG.
That is, 1 is a valve case, and the case body 2 and the body 3 are integrally connected by bending the ends of the case body 2. A case cover 4 is attached to the body 3 by press fitting. The electromagnetic coil 5 in the case body 2 is connected to the computer (CP
U) 7 gives an electric signal to generate an electromagnetic force. Due to this electromagnetic force, a suction force is generated between the stator 8 and the armature 9, and the armature 9 is returned to the coil spring 10 for return.
It is moved upward in the figure against the pressing force of. A needle valve 11 is integrally connected to the armature 9,
The needle valve 11 is also moved integrally with the armature 9 upward in the drawing.

アーマチュア9は、第3図に図示される如く、筒状のス
テータ8の一端面と対向する端面と、該アーマチュア9
の移動方向に沿って延びる円筒状の外周面とを有してお
り、外周面はケース本体2に対向している。
As shown in FIG. 3, the armature 9 includes an end surface facing the one end surface of the cylindrical stator 8 and the armature 9
And a cylindrical outer peripheral surface extending along the moving direction of the outer peripheral surface, and the outer peripheral surface faces the case body 2.

一方、燃料タンク12から電磁ポンプ13によって圧送
された燃料はフィルター14を通り本燃料噴射弁および
圧力制御弁15に送られる。圧力制御弁15は電磁ポン
プ13から圧力制御弁15の間に亘る供給路の燃料圧力
を一定に保ち、この結果燃料噴射弁には上記圧力制御弁
15によって調圧された一定圧力の燃料が送り込まれて
いる。本燃料噴射弁に加えられている一定圧力の燃料は
継手部16およびフィルタ17を介して、ステータ8の
内部、アーマチュア9の内部および外周部、ニードル弁
11の外周部に形成された燃料通路18を通って弁座部
19に至っている。通常はニードル弁11の下端が弁座
部19に当接して燃料噴射孔20を閉止しているが、上
述のごとく電磁コイル5へ通電した場合の通電作用によ
りアーマチュア9およびニードル弁11が上方へ移動さ
れるとニードル弁11は弁座部19を開放し、燃料通路
18内の燃料を噴射孔20から噴出させる。コンピュー
タ7からの信号が停止されると、アーマチュア9および
ニードル弁11はコイルばね10の押圧力により復帰下
動され、ニードル弁11が弁座部19に着座して噴射孔
20を閉じる。よって燃料の噴射を停止する。尚、コン
ピュータ7からの信号により、電磁コイル5に電流が流
れた際発生する磁気の流れ経路(以下、「磁気通路」と
言う)を図中矢印で示す。そしてこの磁気通路中、磁気
の流れと直角方向の横断面が最も小さい部分はステータ
8とアーマチュア9の対向面積である。
On the other hand, the fuel pumped from the fuel tank 12 by the electromagnetic pump 13 passes through the filter 14 and is sent to the main fuel injection valve and the pressure control valve 15. The pressure control valve 15 keeps the fuel pressure in the supply passage extending from the electromagnetic pump 13 to the pressure control valve 15 constant, and as a result, the fuel having a constant pressure regulated by the pressure control valve 15 is sent to the fuel injection valve. Has been. The fuel having a constant pressure applied to the present fuel injection valve is passed through the joint portion 16 and the filter 17 to a fuel passage 18 formed inside the stator 8, inside and the outer peripheral portion of the armature 9 and the outer peripheral portion of the needle valve 11. Through to the valve seat portion 19. Normally, the lower end of the needle valve 11 abuts the valve seat portion 19 to close the fuel injection hole 20, but as described above, the armature 9 and the needle valve 11 move upward due to the energizing action when the electromagnetic coil 5 is energized. When moved, the needle valve 11 opens the valve seat portion 19 and causes the fuel in the fuel passage 18 to be ejected from the injection hole 20. When the signal from the computer 7 is stopped, the armature 9 and the needle valve 11 are moved downward and downward by the pressing force of the coil spring 10, the needle valve 11 is seated on the valve seat portion 19 and the injection hole 20 is closed. Therefore, the fuel injection is stopped. A magnetic flow path (hereinafter referred to as “magnetic path”) generated when a current flows through the electromagnetic coil 5 by a signal from the computer 7 is indicated by an arrow in the figure. In this magnetic path, the portion having the smallest transverse cross section in the direction perpendicular to the flow of magnetism is the facing area of the stator 8 and the armature 9.

上記のごとき動作特性は第4図実線に示されており、時
間経過tに対して下記のごとき特性をなす。つまり第4
図においてToはコンピュータ7から信号が与えられた
瞬間から、ニードル弁11に一体的に設けられた可動側
ストッパ21がケース本体2に固定した固定側ストッパ
22に当たるまでに要する時間(以下開弁動作時間と称
す)を示し、またTcはコンピュータ7からの信号が停
止した瞬間からニードル弁11が弁座部19に着座する
までに要する時間(以下閉弁動作時間と称す)を示す。
コンピュータ7から電磁コイル5に信号が与えられてい
る時間Tをパルスと称す。ここで電磁コイル5に流れ
る電流は実線で示され、パルスtに対しほぼ一定遅れ
の応答を示す。
The above operating characteristics are shown by the solid line in FIG. 4, and have the following characteristics with respect to the elapsed time t. That is, the fourth
In the figure, To is the time required from the moment when a signal is given from the computer 7 until the movable side stopper 21 provided integrally with the needle valve 11 hits the fixed side stopper 22 fixed to the case body 2 (hereinafter referred to as the valve opening operation. And Tc represents the time required from the moment the signal from the computer 7 stops until the needle valve 11 is seated on the valve seat portion 19 (hereinafter referred to as the valve closing operation time).
The time T 1 during which a signal is applied from the computer 7 to the electromagnetic coil 5 is called a pulse. Here, the current flowing through the electromagnetic coil 5 is shown by a solid line, and shows a response with a substantially constant delay with respect to the pulse t 1 .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

常、第3図に示すこの種の電磁式燃料噴射弁は高速作動
が要求されるため、小さな電流で大きな吸引力を得る様
に設計する。よって、この様な電磁式燃料噴射弁に矩形
的な電圧パルスが印加されると、小さな磁束でニードル
弁11は開弁動作し、開弁動作時間後も磁束が上昇し不
要な吸引力が高まる。さらにコイル5に流れる電流も一
次遅れの応答を示すため、一定値の電流及び磁束に達す
る時間も長くかかる。続いてパルス除去後は、高い磁束
状態から消磁するため、閉弁動作時間が長くなる。又、
第4図に示すような電流、磁束が一定値に達しない様な
短いパルスになると、パルス除去時の電流、磁束の値が
パルスの長い場合と異なる為、閉弁動作時間が異なる値
となりパルスtに対する噴射量の直接関係がくずれる
と言う欠点がある。また特開昭57−159955号公
報においては、高速応答性を考慮した構成としているが
その電磁コイルに流れる電流の挙動は、第4図実線に示
すものと同じであり、パルスの短い場合は上述の問題を
充分に改善したもとは言えない。
Since this type of electromagnetic fuel injection valve shown in FIG. 3 is usually required to operate at high speed, it is designed to obtain a large suction force with a small current. Therefore, when a rectangular voltage pulse is applied to such an electromagnetic fuel injection valve, the needle valve 11 opens with a small magnetic flux, and the magnetic flux rises even after the valve-opening operation time, increasing unnecessary suction force. . Furthermore, since the current flowing through the coil 5 also exhibits a first-order lag response, it takes a long time to reach a constant current and magnetic flux. Subsequently, after the pulse is removed, the high magnetic flux state is demagnetized, so that the valve closing operation time becomes long. or,
If the current and magnetic flux have short pulses as shown in Fig. 4 so that they do not reach a certain value, the values of the current and magnetic flux at the time of pulse removal are different from those when the pulse is long. There is a drawback that the direct relationship of the injection amount with respect to t 1 is broken. Further, in Japanese Patent Laid-Open No. 57-159955, a structure in which high-speed response is taken into consideration is taken into consideration, but the behavior of the current flowing through the electromagnetic coil is the same as that shown by the solid line in FIG. It cannot be said that the problem of was improved sufficiently.

また、実開昭56−162371号公報の技術において
は、有限要素法による磁場解析を行って電磁弁の高速化
を図っているが、この技術は磁束を有効に通過させるた
めに磁束の方向に沿って適切な断面積を確保しようとす
るものであり、上述の従来技術と同様に、アーマチュア
を移動させるのに必要とされる磁束以上への過剰な上昇
を抑えることができない。
Further, in the technology of Japanese Utility Model Laid-Open No. 56-162371, the magnetic field is analyzed by the finite element method to increase the speed of the solenoid valve. However, in this technology, in order to effectively pass the magnetic flux, the magnetic flux is directed in the direction of the magnetic flux. Along with the above-mentioned prior art, it is impossible to suppress an excessive rise above the magnetic flux required to move the armature.

また、特開昭53−10129号公報の技術においては
弁体の移動初期には強い吸引力を発揮させ、その後は吸
引力の増加を抑制しているが、この技術は磁束線の方向
を可動鉄心の移動量に応じて変化させるために固定鉄心
と可動鉄心との対向面に複雑な形状が必要になるばかり
か、上述の従来技術と同様に磁束の過剰な上昇を抑える
ことができないという問題点があった。
Further, in the technique disclosed in Japanese Patent Laid-Open No. 53-10129, a strong suction force is exerted in the initial stage of movement of the valve body, and thereafter the increase of the suction force is suppressed, but this technique can move the direction of the magnetic flux lines. In addition to requiring a complicated shape for the facing surfaces of the fixed iron core and the movable iron core to change according to the amount of movement of the iron core, the problem that an excessive rise in magnetic flux cannot be suppressed as in the above-mentioned conventional technique There was a point.

また、特開昭51−137648号公報の技術において
は、吸引初期に磁束が通る部材に磁気飽和しやすい部材
を採用することで、電源電圧変動に伴う初期の吸引力変
化を防止しているが、低電圧でも飽和するため有効な磁
束が少なくなり高速な応答性が得られないばかりか、吸
引後には対向面積が増加する構造であるため磁束の過剰
な上昇と抑えることができないという問題点があった。
Further, in the technique of Japanese Patent Laid-Open No. 51-137648, a member that easily causes magnetic saturation is adopted as a member through which a magnetic flux passes in the initial stage of suction to prevent a change in initial suction force due to a change in power supply voltage. However, even if the voltage is low, the effective magnetic flux is reduced and high-speed response cannot be obtained, and the structure is such that the facing area increases after suction, and the excessive increase in magnetic flux cannot be suppressed. there were.

さらに、実開昭55−135416号公報には残留磁気
力によって電磁石の復帰時間が長くなることを防止する
ために、磁気回路の抵抗を大にして残留磁気力を低減す
る技術が開示されているが、この技術では動作コイルを
放磁した後に残る残留磁束密度を低減しており、動作コ
イルへの通電中の全磁束を制限することは開示されな
い。特に、同公報第3図に図示されるようにこの公報の
技術はB−Hカーブをなだらかな傾きにすること、磁気
抵抗を増加させるとともに起磁力(アンペアターン)も
増加させることを特徴として述べており、飽和特性を変
化させる意図はない。このため、磁気回路の磁気抵抗を
増加させる技術ではあるものの、磁気回路を磁束が飽和
する領域で使用することは開示がなく、通電中に磁束が
過剰に上昇するという問題点があった。さらにこの技術
ではB−Hカーブをなだらかに傾きになる結果、起磁力
が小さいときには充分な磁束を発生させることができな
くなり、電磁コイルへの通電開始時の応答性を損ねるこ
とになる。
Further, Japanese Utility Model Laid-Open No. 55-135416 discloses a technique of increasing the resistance of a magnetic circuit to reduce the residual magnetic force in order to prevent the recovery time of the electromagnet from being prolonged due to the residual magnetic force. However, this technique reduces the residual magnetic flux density remaining after demagnetizing the operating coil, and does not disclose limiting the total magnetic flux during energization of the operating coil. In particular, as shown in FIG. 3 of the publication, the technology of this publication is characterized in that the BH curve is made to have a gentle slope, and that the magnetoresistance and the magnetomotive force (ampere turn) are increased. However, there is no intention to change the saturation characteristics. Therefore, although it is a technique for increasing the magnetic resistance of the magnetic circuit, there is no disclosure that the magnetic circuit is used in a region where the magnetic flux is saturated, and there is a problem that the magnetic flux excessively rises during energization. Further, in this technique, as a result of the BH curve being gently inclined, it becomes impossible to generate a sufficient magnetic flux when the magnetomotive force is small, and the responsiveness at the start of energization of the electromagnetic coil is impaired.

本発明は上記従来技術の問題点に鑑み、ステータとアー
マチュアとが離れている状態から電磁コイルへ通電開始
されたときには小さい電流による起磁力であってもアー
マチュアを高速に吸引できるとともに、電磁コイルへの
通電停止時には通電時の磁束状態から通電停止時の残留
磁束状態へすばやく消磁してアーマチュアを高速に復帰
させることができる電磁式燃料噴射弁を提供することを
目的とする。
In view of the above-mentioned problems of the prior art, the present invention can quickly attract the armature even with a magnetomotive force due to a small current when the electromagnetic coil is energized when the stator and the armature are separated from each other, and the electromagnetic coil It is an object of the present invention to provide an electromagnetic fuel injection valve capable of quickly demagnetizing the magnetic flux state upon energization to a residual magnetic flux state upon energization stop and returning the armature at high speed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、 内燃機関への燃料供給量を噴射孔からの燃料噴射時間に
より調節する電磁式燃料噴射弁において、 磁性材料で形成されたステータと、 前記ステータの周囲に設けられる電磁コイルと、 磁性材料で形成され、前記ステータの一端面と対向して
移動可能に設けられ、前記ステータの一端面と対向する
端面と、移動方向に沿って延びる外周面とを有し、前記
電磁コイルへの通電時に前記ステータの方向に吸引され
て移動するアーマチュアと、 磁性材料で形成され、前記ステータの他端側から前記電
磁コイルの外側を通り、前記アーマチュアの前記外周面
に至る磁気通路を構成する磁路形成部材と、 前記アーマチュアの移動により開閉操作され、前記噴射
孔からの燃料噴射を断続する弁体と、 前記アーマチュアおよび前記弁体を前記ステータから離
す方向に付勢するスプリングと、 前記ステータまたは前記アーマチュアの一部に、前記電
磁コイルへの通電時の磁束の方向と直交する断面積を前
記ステータと前記アーマチュアとの対向面積より小さく
して形成され、前記電磁コイルへの通電時であって前記
アーマチュアが吸引移動する前には磁束が非飽和状態に
あり、前記電磁コイルへの通電時であって前記アーマチ
ュアが吸引移動した直後には磁束が飽和状態となって、
前記弁体の開弁状態における磁束の上昇を制限する磁気
絞りと を備えることを特徴とする電磁式燃料噴射弁という技術
的手段を採用する。
In order to achieve the above object, the present invention relates to an electromagnetic fuel injection valve for adjusting a fuel supply amount to an internal combustion engine by a fuel injection time from an injection hole, including: a stator formed of a magnetic material; and a stator formed around the stator. An electromagnetic coil provided, an end face formed of a magnetic material and movably facing the one end face of the stator, facing the one end face of the stator, and an outer peripheral surface extending in the moving direction. An armature that is attracted and moves in the direction of the stator when the electromagnetic coil is energized, and is made of a magnetic material, passes from the other end of the stator to the outside of the electromagnetic coil, and reaches the outer peripheral surface of the armature. A magnetic path forming member that constitutes a magnetic path; a valve body that is opened and closed by the movement of the armature to intermittently inject fuel from the injection hole; and the armature. And a spring for urging the valve body in a direction away from the stator, and a cross-sectional area orthogonal to the direction of the magnetic flux at the time of energizing the electromagnetic coil in a part of the stator or the armature, the stator and the armature. The magnetic flux is in a non-saturated state when the electromagnetic coil is energized and before the armature is attracted and moved, and when the electromagnetic coil is energized and the armature is energized. The magnetic flux is saturated immediately after the suction movement of
And a magnetic diaphragm that restricts an increase in magnetic flux when the valve body is in a valve open state. Technical means called an electromagnetic fuel injection valve is adopted.

〔作用〕[Action]

上記の本発明の構成による作用を説明する。 The operation of the above-described configuration of the present invention will be described.

電磁コイルに通電されると磁束が発生する。この磁束は
磁気通路を通り、この磁気通路を構成する部材のうち、
対向面を介して対向するステータまたはアーマチュアの
一部には磁気絞りが形成される。特にその磁気絞りは、
電磁コイルへの通電時に発生する磁束に対して直交する
方向の断面積を、ステータとアーマチュアとの対向面面
積より小さくして形成されている。
A magnetic flux is generated when the electromagnetic coil is energized. This magnetic flux passes through the magnetic path, and among the members that make up this magnetic path,
A magnetic diaphragm is formed in a part of the stator or the armature facing each other through the facing surface. Especially the magnetic diaphragm
The cross-sectional area in the direction orthogonal to the magnetic flux generated when the electromagnetic coil is energized is smaller than the facing surface area between the stator and the armature.

ここで、通電開始時の磁気回路は、ステータとアーマチ
ュアとの対向面にエアギャップを有する磁気回路とみる
ことができ、電磁コイルの起磁力のほとんどはこのエア
ギャップに磁束を通過させるために消費される。しか
し、エアギャップの磁気抵抗は対向面積が大きくなれば
低下するため、対向面積を大きくとれば小さな起磁力で
大きな磁束を発生させることができる。本発明では、ス
テータとアーマチュアとの対向面積より磁気絞りの断面
積を小さく、すなわち対向面積を確保したまま磁気絞り
を形成しているため、電磁コイルへの通電初期の小さい
電流で発生する小さい起磁力であっても、大きな磁束を
発生させることができ、アーマチュアがスプリングの付
勢力に抗して高速に吸引される。これによりアーマチュ
アに接続された弁体が開弁し、噴射孔から燃料が噴射さ
れる。
Here, the magnetic circuit at the start of energization can be regarded as a magnetic circuit having an air gap on the opposing surface of the stator and the armature, and most of the magnetomotive force of the electromagnetic coil is consumed because the magnetic flux passes through this air gap. To be done. However, since the magnetic resistance of the air gap decreases as the facing area increases, a large magnetic flux can be generated with a small magnetomotive force by increasing the facing area. In the present invention, since the cross-sectional area of the magnetic diaphragm is smaller than the facing area of the stator and the armature, that is, the magnetic diaphragm is formed with the facing area secured, a small current generated at a small current in the initial stage of energization of the electromagnetic coil is generated. Even with a magnetic force, a large magnetic flux can be generated, and the armature is attracted at high speed against the biasing force of the spring. As a result, the valve element connected to the armature opens, and fuel is injected from the injection hole.

そして、電磁コイルへの通電によりアーマチュアが吸引
されるとともに電流が徐々に増加し磁束が上昇する。こ
こで、磁性材料で形成されたステータおよびアーマチュ
アは磁束の飽和特性を有しており、起磁力が増加しつづ
けたとしても磁束は飽和磁束密度で制限される。このた
め、断面積が小さく形成され磁束が集中する磁気絞りは
飽和磁束状態となり磁気回路を通る全磁束の上昇を抑え
る。
Then, by energizing the electromagnetic coil, the armature is attracted and the current gradually increases and the magnetic flux rises. Here, the stator and the armature made of a magnetic material have magnetic flux saturation characteristics, and even if the magnetomotive force continues to increase, the magnetic flux is limited by the saturation magnetic flux density. Therefore, the magnetic diaphragm having a small cross-sectional area and in which the magnetic flux is concentrated is in a saturated magnetic flux state and suppresses the rise of the total magnetic flux passing through the magnetic circuit.

さらに、電磁コイルへの通電が停止されると、起磁力が
消失し、磁束は急激に低下する。ここで、磁性材料の磁
束は起磁力が完全に消失しても残留磁束までしか低下し
ないが、本発明では通電中の全磁束が制限されているた
め、残留磁束までの低下が急速になされ、アーマチュア
はスプリングの付勢力によって高速に戻される。これに
より弁体は閉弁し、噴射孔からの燃料噴射が停止され
る。
Furthermore, when the energization of the electromagnetic coil is stopped, the magnetomotive force disappears and the magnetic flux drops sharply. Here, the magnetic flux of the magnetic material is reduced only to the residual magnetic flux even if the magnetomotive force is completely disappeared, but since the total magnetic flux during energization is limited in the present invention, the residual magnetic flux is rapidly reduced, The armature is returned at high speed by the biasing force of the spring. As a result, the valve body is closed and fuel injection from the injection hole is stopped.

〔実施例〕〔Example〕

以下、本発明の第1実施例を第1図に基づき説明する。 The first embodiment of the present invention will be described below with reference to FIG.

第1図において、ステータ8の一部にステータ8とアー
マチュア9との対抗面積よりも小さな断面積部分、磁気
絞り23が設けられている。この断面積はニードル弁1
1が開弁動作するに必要な磁束までは磁気に対して抵抗
なく、開弁動作終了直後に流れる磁束に対しては、ステ
ータ8の飽和磁束密度になる様に設定してある。なお他
の構成は第3図に示した電磁式燃料噴射弁と同じであ
る。
In FIG. 1, a part of the stator 8 is provided with a cross-sectional area portion smaller than the opposing area of the stator 8 and the armature 9, and a magnetic diaphragm 23. This cross-sectional area is needle valve 1
It is set so that there is no resistance to magnetism up to the magnetic flux required for the valve opening operation of No. 1 and the saturation magnetic flux density of the stator 8 is reached for the magnetic flux flowing immediately after the valve opening operation is completed. The other structure is the same as that of the electromagnetic fuel injection valve shown in FIG.

上記構成によれば、第4図に示すごとく、コンピュータ
7からの信号の立上りに応じて、電磁コイル5に通電が
なされる。この時の電磁コイル5に流れる電流の挙動
は、破線に示すごとく開弁動作時間Toにおいては電磁
コイル5のインダクタンス成分による逆起電力により従
来と同様な挙動を示すが、開弁動作終了直後ではステー
タ8が磁気絞り23により飽和磁束密度状態となって磁
束の上昇がなくなるので、電磁コイル5のインダクタン
ス成分は零となり、電磁コイル5の内部抵抗により決定
される所定値に直ちに落ち着く。これにより従来の噴射
弁に見られる開弁動作後の磁束上昇に伴なう不要な吸引
力上昇が無くなる。そして閉弁動作においては、磁気絞
り23で決められた磁束状態からの消磁されるまでの時
間で閉弁動作時間Tcが決定されるので、この閉弁動作
時間Tcは短いものとなり、高速の弁作動が得られるよ
うになる。ステータ8の磁束密度が開弁動作終了後すぐ
に飽和しているので、パルスtの長短に関係なく、そ
の閉弁動作時間Tcは一定値となり、パルスtに対す
る噴射量の直線関係が短いパルスにおいても充分に確保
できる。
According to the above configuration, as shown in FIG. 4, the electromagnetic coil 5 is energized in response to the rise of the signal from the computer 7. The behavior of the current flowing through the electromagnetic coil 5 at this time is similar to the conventional behavior due to the counter electromotive force due to the inductance component of the electromagnetic coil 5 at the valve opening operation time To as shown by the broken line, but immediately after the valve opening operation is completed. Since the stator 8 is brought into the saturated magnetic flux density state by the magnetic diaphragm 23 and the rise of the magnetic flux is eliminated, the inductance component of the electromagnetic coil 5 becomes zero and the value immediately settles to a predetermined value determined by the internal resistance of the electromagnetic coil 5. This eliminates the unnecessary increase in the suction force that accompanies the increase in the magnetic flux after the valve opening operation that is seen in the conventional injection valve. In the valve closing operation, the valve closing operation time Tc is determined by the time until the demagnetization from the magnetic flux state determined by the magnetic diaphragm 23. Therefore, the valve closing operation time Tc becomes short, and the high speed valve is operated. Operation will be obtained. Since the magnetic flux density of the stator 8 is saturated immediately after the opening operation is completed, regardless of the length of the pulse t 1, the closing operation time Tc becomes constant value, the linear relationship between the injection quantity with respect to the pulse t 1 is short It can be sufficiently secured even in the pulse.

次に本発明の第2実施例を第2図を用いて説明する。Next, a second embodiment of the present invention will be described with reference to FIG.

本実施例では、アーマチュア9の内部に空洞部分91を
設け、この空洞部分91によりアーマチュア9の磁気通
路の一部がステータ8とアーマチュア9との対向面積よ
り小さな断面積の部分、つまり磁気絞り23になってい
る。なおこの断面積は前記第1実施例のステータ8に設
けた磁気絞り23と同一の条件を有している。またアー
マチュア9の変動に対しアーマチュア9自体、及びアー
マチュア9とニードル弁11との連結部分の強度、耐久
性も考慮して空洞91、磁気絞り23の断面積が決めら
れる。
In this embodiment, a hollow portion 91 is provided inside the armature 9, and a portion of the magnetic path of the armature 9 has a cross-sectional area smaller than the facing area between the stator 8 and the armature 9, that is, the magnetic diaphragm 23 by the hollow portion 91. It has become. This cross-sectional area has the same conditions as the magnetic diaphragm 23 provided in the stator 8 of the first embodiment. Further, the cross-sectional areas of the cavity 91 and the magnetic diaphragm 23 are determined in consideration of the strength and durability of the armature 9 itself and the connecting portion of the armature 9 and the needle valve 11 with respect to the fluctuation of the armature 9.

上記のような構成においては、前記第1実施例と同様コ
ンピュータ7からの信号に応じて電磁コイル5に通電が
なされ、第4図破線に示すごとく電流が流れるが、開弁
動作終了直後ではアーマチュア9が磁気絞り23により
飽和磁束密度状態となって磁束の上昇がなくなるので、
電磁コイル5のインダクタンス成分が零となり電磁コイ
ル5の内部抵抗により決定される所定値に電流は落ち着
く。従って前記第1実施例と同様に不要な吸引力が無く
なる。また閉弁動作時間Tcも短縮化され、高速応答性
が得られ、かつ短パルスでも、パルスtと噴射量との
直線関係は充分に確保される。
In the above construction, the electromagnetic coil 5 is energized in response to a signal from the computer 7 as in the first embodiment, and a current flows as shown by the broken line in FIG. 4, but immediately after the valve opening operation is completed, the armature is closed. 9 becomes a saturated magnetic flux density state by the magnetic diaphragm 23, and the rise of the magnetic flux disappears.
The inductance component of the electromagnetic coil 5 becomes zero and the current settles at a predetermined value determined by the internal resistance of the electromagnetic coil 5. Therefore, as in the first embodiment, unnecessary suction force is eliminated. Further, the valve closing operation time Tc is also shortened, high-speed response is obtained, and even with a short pulse, the linear relationship between the pulse t 1 and the injection amount is sufficiently secured.

従って上述の各実施例においては、コンピュータ7のパ
ルスに応じてアーマチュア9が移動し、ニードル弁11
がこれに応じて弁座部19を離着座し、所望量の燃料が
燃料噴射孔20より噴射されるようになる。
Therefore, in each of the above-described embodiments, the armature 9 moves in response to the pulse from the computer 7, and the needle valve 11 moves.
Accordingly, the valve seat portion 19 is seated on and off, and a desired amount of fuel is injected from the fuel injection hole 20.

〔発明の効果〕〔The invention's effect〕

以上説明した本発明の電磁式燃料噴射弁によると、ステ
ータとアーマチュアとの対向面積より小さい断面積を有
する磁気絞りをステータまたはアーマチュアに形成した
から、ステータとアーマチュアとの対向面積を確保して
電磁コイルへの通電開始時に少ない電流でも多くの磁束
を通すことができアーマチュアの移動を高速に行うこと
ができるとともに、アーマチュアの移動直後には磁気絞
りが飽和磁束状態となって磁束の過剰な上昇が抑えられ
るので電磁コイルへの通電停止後の消磁が速やかになさ
れアーマチュアの復帰移動を高速に行うことができる。
従って本発明によると、電磁コイルへの通電の断続に対
して高速な応答性を有する電磁式燃料噴射弁を提供する
ことができる。
According to the electromagnetic fuel injection valve of the present invention described above, since the stator or the armature is formed with the magnetic throttle having the cross-sectional area smaller than the facing area of the stator and the armature, the facing area of the stator and the armature is ensured. At the start of energization of the coil, a large amount of magnetic flux can be passed even with a small amount of current, and the armature can be moved at high speed. Since it is suppressed, demagnetization is promptly performed after the energization of the electromagnetic coil is stopped, and the armature can be returned and moved at high speed.
Therefore, according to the present invention, it is possible to provide an electromagnetic fuel injection valve having a high-speed responsiveness to intermittent energization of an electromagnetic coil.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の第1実施例を示す部分断面図、第2
図は、本発明の第2実施例を示す部分断面図、第3図
は、従来の電磁式燃料噴射弁を示す部分断面図、第4図
は、従来及び本発明の作動状態を示すシグナルタイムチ
ャートである。 1……弁ケース、2……ケース本体、5……電磁コイ
ル、8……ステータ、9……アーマチュア、11……ニ
ードル弁、20……燃料噴射孔、23……磁気絞り。
FIG. 1 is a partial sectional view showing a first embodiment of the present invention, and FIG.
FIG. 4 is a partial sectional view showing a second embodiment of the present invention, FIG. 3 is a partial sectional view showing a conventional electromagnetic fuel injection valve, and FIG. 4 is a signal time showing an operating state of the conventional and the present invention. It is a chart. 1 ... Valve case, 2 ... Case body, 5 ... Electromagnetic coil, 8 ... Stator, 9 ... Armature, 11 ... Needle valve, 20 ... Fuel injection hole, 23 ... Magnetic throttle.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内燃機関への燃料供給量を噴射孔からの燃
料噴射時間により調節する電磁式燃料噴射弁において、 磁性材料で形成されたステータと、 前記ステータの周囲に設けられる電磁コイルと、 磁性材料で形成され、前記ステータの一端面と対向して
移動可能に設けられ、前記ステータの一端面と対向する
端面と、移動方向に沿って延びる外周面とを有し、前記
電磁コイルへの通電時に前記ステータの方向に吸引され
て移動するアーマチュアと、 磁性材料で形成され、前記ステータの他端側から前記電
磁コイルの外側を通り、前記アーマチュアの前記外周面
に至る磁気通路を構成する磁路形成部材と、 前記アーマチュアの移動により開閉操作され、前記噴射
孔からの燃料噴射を断続する弁体と、 前記アーマチュアおよび前記弁体を前記ステータから離
す方向に付勢するスプリングと、 前記ステータまたは前記アーマチュアの一部に、前記電
磁コイルへの通電時の磁束の方向と直交する断面積を前
記ステータと前記アーマチュアとの対向面積より小さく
して形成され、前記電磁コイルへの通電時であって前記
アーマチュアが吸引移動する前には磁束が非飽和状態に
あり、前記電磁コイルへの通電時であって前記アーマチ
ュアが吸引移動した直後には磁束が飽和状態となって、
前記弁体の開弁状態における磁束の上昇を制限する磁気
絞りと を備えることを特徴とする電磁式燃料噴射弁。
1. An electromagnetic fuel injection valve for adjusting the amount of fuel supplied to an internal combustion engine according to a fuel injection time from an injection hole, a stator made of a magnetic material, and an electromagnetic coil provided around the stator. A magnetic material is provided so as to be movable opposite to one end surface of the stator, and has an end surface facing the one end surface of the stator and an outer peripheral surface extending in the moving direction. An armature that is attracted and moves in the direction of the stator when energized, and a magnetic path that is formed of a magnetic material and that passes through the outside of the electromagnetic coil from the other end side of the stator to the outer peripheral surface of the armature. A path forming member, a valve body that is opened and closed by movement of the armature, and connects and disconnects fuel injection from the injection hole; and the armature and the valve body. A spring urging in a direction away from the theta and a part of the stator or the armature that has a cross-sectional area orthogonal to the direction of the magnetic flux when the electromagnetic coil is energized is smaller than the facing area of the stator and the armature. The magnetic flux is in a non-saturated state when the armature is attracted and moved when the electromagnetic coil is energized, and immediately after the armature is attracted and moved when the electromagnetic coil is energized. The magnetic flux is saturated,
An electromagnetic fuel injection valve, comprising: a magnetic throttle that limits an increase in magnetic flux when the valve body is open.
【請求項2】前記磁気絞りは、前記ステータに形成され
ることを特徴とする特許請求の範囲第1項に記載の電磁
式燃料噴射弁。
2. The electromagnetic fuel injection valve according to claim 1, wherein the magnetic throttle is formed in the stator.
【請求項3】前記磁気絞りは、前記アーマチュアに形成
されることを特徴とする特許請求の範囲第1項に記載の
電磁式燃料噴射弁。
3. The electromagnetic fuel injection valve according to claim 1, wherein the magnetic throttle is formed in the armature.
JP59112300A 1984-05-31 1984-05-31 Electromagnetic fuel injection valve Expired - Lifetime JPH0656139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59112300A JPH0656139B2 (en) 1984-05-31 1984-05-31 Electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59112300A JPH0656139B2 (en) 1984-05-31 1984-05-31 Electromagnetic fuel injection valve

Publications (2)

Publication Number Publication Date
JPS60256550A JPS60256550A (en) 1985-12-18
JPH0656139B2 true JPH0656139B2 (en) 1994-07-27

Family

ID=14583229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59112300A Expired - Lifetime JPH0656139B2 (en) 1984-05-31 1984-05-31 Electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JPH0656139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344093B2 (en) 2003-12-26 2008-03-18 Denso Corporation Fuel injection valve having stationary core and movable core

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656140B2 (en) * 1984-12-26 1994-07-27 日本電装株式会社 Electromagnetic fuel injection valve
DE102013206959A1 (en) 2013-04-17 2014-10-23 Robert Bosch Gmbh Solenoid valve with improved opening and closing behavior

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310129A (en) * 1976-07-16 1978-01-30 Toyooki Kogyo Kk Direct current solenoid valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51137648U (en) * 1975-04-30 1976-11-06
JPS55135416U (en) * 1979-03-16 1980-09-26
JPS56162371U (en) * 1980-05-06 1981-12-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310129A (en) * 1976-07-16 1978-01-30 Toyooki Kogyo Kk Direct current solenoid valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344093B2 (en) 2003-12-26 2008-03-18 Denso Corporation Fuel injection valve having stationary core and movable core

Also Published As

Publication number Publication date
JPS60256550A (en) 1985-12-18

Similar Documents

Publication Publication Date Title
JPH0656140B2 (en) Electromagnetic fuel injection valve
US6510841B1 (en) Fuel injection valve
JP4503711B2 (en) Fuel injection valve
JP4637931B2 (en) Fuel injection valve
JPH0121342B2 (en)
JP2003521635A (en) Fuel injection valve and method of operating the same
JP2003511602A (en) Fuel injection valve
CZ20002743A3 (en) Electromagnetically controlled valve
JP4272356B2 (en) Fuel injector slotted housing
US6412713B2 (en) Fuel injection apparatus
JPS61261655A (en) Electromagnetic type fuel injection valve
JP2003521634A (en) Fuel injection valve and method of operating fuel injection valve
JP3945357B2 (en) Fuel injection device
JPH0656139B2 (en) Electromagnetic fuel injection valve
JP2002048031A (en) Fuel injector
JP2522630Y2 (en) solenoid valve
US6892966B2 (en) Fuel injection and method for operating a fuel injection valve
JPH08326620A (en) Electromagnetic fuel injection valve for internal combustion engine
JP2002310029A (en) Fuel injection valve
JP2001342928A (en) Solenoid fuel injection device
JP4389140B2 (en) Fuel injection apparatus and fuel injection valve control method
JPS6270655A (en) Fuel jet valve electromagnetically operated
US6682046B2 (en) Fuel injection valve
JPH09273457A (en) Injector for high-pressure fuel injection device
JP2001165014A (en) Fuel injection device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term