JPH0654900A - Intraocular lens coated with plasma-polymerized film - Google Patents

Intraocular lens coated with plasma-polymerized film

Info

Publication number
JPH0654900A
JPH0654900A JP4232626A JP23262692A JPH0654900A JP H0654900 A JPH0654900 A JP H0654900A JP 4232626 A JP4232626 A JP 4232626A JP 23262692 A JP23262692 A JP 23262692A JP H0654900 A JPH0654900 A JP H0654900A
Authority
JP
Japan
Prior art keywords
plasma
polymerized film
hydrogen
intraocular lens
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4232626A
Other languages
Japanese (ja)
Inventor
Kenji Yasuda
健二 安田
Hajime Mita
肇 三田
Kenji Yanagihara
健児 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP4232626A priority Critical patent/JPH0654900A/en
Publication of JPH0654900A publication Critical patent/JPH0654900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

PURPOSE:To assure excellent bioaffinity and to recover sight in an early period after the operation by coating the surface of a transparent lens base body with a plasma-polymerized film which consists substantially of carbon, hydrogen, halogen and oxygen and having an average compsn. of specific atom ratios. CONSTITUTION:The surface of the transparent lens base body of the intraocular lens used in operation of cataract, etc., is so treated as to be coated with the plasma-polymerized film which consists substantially of respective atoms of carbon C, hydrogen H, halogen X and oxygen O, has the average compsn. of the atom ratios expressed by (formula) and has 0 to 0.1 ratio of the bonded hydrogen atoms to the carbon atoms having the double bonds to the number of the hydrogen atoms to be single bonded. The plasma-polymerized film is formed by arranging the lens base body into specific gas contg. respective monomer compds. of, for example, alkane halide, alkane, hydrogen or halogen and subjecting the gas to a plasma polymn. As a result, the intraocular lens which can restore the sight in the early period after the operation is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラズマ重合膜被覆眼
内レンズに関し、さらに詳しくは、実質的に炭素、水
素、ハロゲンおよび酸素からなるプラズマ重合膜で被覆
した、白内障の手術後に挿入される眼内レンズに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma polymerized film-coated intraocular lens, and more particularly, it is inserted after a cataract operation, which is coated with a plasma polymerized film consisting essentially of carbon, hydrogen, halogen and oxygen. Regarding intraocular lenses.

【0002】[0002]

【従来の技術】ヒト水晶体は、外傷、糖尿病あるいは加
齢等の種々の要因により混濁し、これが原因となって、
視力の著しい低下あるいは喪失に到る場合がある。この
ような疾病は総称して白内障といわれているが、この白
内障に対する治療法としては、混濁した水晶体を外科的
に摘出したのち、透明な基材からなる眼内レンズを挿入
する方法のほか、混濁した水晶体を外科的に摘出し、眼
内レンズを挿入しないでコンタクトレンズや眼鏡を着用
する方法等が行なわれている。これらの治療法のうち、
後者の眼内レンズを挿入しないでコンタクトレンズや眼
鏡を着用する方法では、コンタクトレンズや眼鏡の装着
位置が本来の水晶体の位置とは異なることから、矯正視
力が本来のものとはほど遠いものとなり、白内障患者の
術後の生活に非常な不都合を招くことが避けられない。
したがって、今日では、特殊な症例を除いて、水晶体の
摘出後に眼内レンズを挿入する治療法が一般に行われて
いる。これは、眼内レンズを水晶体本来の位置に挿入す
ることが可能で、網膜上の結像がほぼ正常に近いものと
なるため、術後に、良好な視力回復を患者に提供するこ
とができ、また、一旦挿入された眼内レンズは、コンタ
クトレンズ等とは異なり、基本的には日々の管理が不要
である等の理由によるものである。そして、前記眼内レ
ンズのための透明基材としては、現在のところ、ポリメ
チルメタクリレート樹脂(以下、「PMMA樹脂」とい
う。)が一般的に用いられている。この従来から用いら
れているPMMA樹脂製眼内レンズは優れた光学的特性
を有しており、概ね良好な治療効果を得ることができる
が、その反面、眼内に挿入後にレンズ表面に種々の異物
の付着が認められる場合があり、この異物の付着が、ひ
いては術後の視力回復を阻害する大きな要因ともなって
いる。このような異物の種類は多岐にわたっており、そ
の例には、眼内炎症に由来するマクロファージ、異物巨
細胞、線維芽細胞様細胞等の細胞成分や、房水中タンパ
ク質等の生体成分がある。そして、これらの異物の種類
と付着物の量については、眼内レンズの素材、形状、表
面性状等が関係するとされ、これらの要因と水晶体上皮
細胞や房水中リンパ球等の細胞との相互作用により、術
後に炎症が惹起され、前記したような細胞成分や生体成
分の付着が加速されると考えられている。これらの要因
のうち、特に眼内レンズ表面の性状が、眼内レンズ挿入
後の水晶体嚢の混濁に対する影響と同時に、細胞成分や
生体成分の付着を左右する要因として重要であり、従来
からさまざまの改良研究が試みられてきた。例えば、眼
内レンズ表面にヘパリンを被覆したヘパリン表面改質眼
内レンズや、特殊な化学反応により表面を不活性化(s
urface passivated)した眼内レンズ
が開発され、使用に供されている。また、メタン等のア
ルカンをプラズマ重合することにより、PMMA樹脂表
面にダイヤモンド状炭素膜を被覆した眼内レンズも提案
されている(例えば特開昭63−203163号公報、
NEW DIAMOND,(3),21−25参
照)。しかしながら、適用症例の増加や治療効果の向上
への要請等に伴って、眼内レンズについて、手術の簡便
性、生体適合性等について、より一層の改良が求められ
ているのが現状であり、また、前記ダイヤモンド状炭素
膜被覆眼内レンズは、炭素膜が脆いため、手術前および
手術時の取扱にかなりの注意が必要である。
2. Description of the Related Art The human lens is opaque due to various factors such as trauma, diabetes or aging, which causes
May cause significant loss or loss of vision. Such diseases are collectively referred to as cataracts, but as a treatment method for this cataract, in addition to a method of surgically removing the cloudy lens and then inserting an intraocular lens made of a transparent base material, A method of surgically removing an opaque lens and wearing contact lenses or glasses without inserting an intraocular lens has been performed. Of these treatments,
In the latter method of wearing contact lenses and eyeglasses without inserting the intraocular lens, since the wearing position of the contact lenses and eyeglasses is different from the original position of the crystalline lens, the corrected visual acuity is far from the original one. It is inevitable that it will cause great inconvenience in the postoperative life of cataract patients.
Therefore, a treatment method of inserting an intraocular lens after extraction of the lens is generally performed today, except for special cases. This is because it is possible to insert the intraocular lens into the original position of the crystalline lens, and the image on the retina is almost normal, so that it is possible to provide the patient with good visual acuity recovery after surgery. Further, the intraocular lens once inserted is basically different from contact lenses in that daily management is unnecessary. As a transparent substrate for the intraocular lens, polymethylmethacrylate resin (hereinafter referred to as "PMMA resin") is generally used at present. This conventionally used PMMA resin intraocular lens has excellent optical characteristics and can generally obtain a good therapeutic effect, but on the other hand, after being inserted into the eye, various intraocular lenses are formed. There is a case where foreign matter is adhering, and this adhering foreign matter is also a major factor that hinders the recovery of visual acuity after surgery. The types of such foreign substances are diverse, and examples thereof include cell components such as macrophages, foreign substance giant cells, and fibroblast-like cells derived from intraocular inflammation, and biological components such as proteins in the aqueous humor. Regarding the types of these foreign substances and the amount of deposits, it is said that the material, shape, surface texture, etc. of the intraocular lens are related, and the interaction between these factors and cells such as lens epithelial cells and lymphocytes in the aqueous humor. It is believed that this causes post-operative inflammation and accelerates the attachment of the above-mentioned cellular components and biological components. Of these factors, the properties of the surface of the intraocular lens are particularly important as factors affecting the adhesion of cell components and biological components at the same time as affecting the opacity of the lens capsule after insertion of the intraocular lens. Improvement studies have been attempted. For example, a heparin surface-modified intraocular lens in which the surface of the intraocular lens is coated with heparin, or the surface is inactivated by a special chemical reaction (s
A surface-passivated intraocular lens has been developed and put into use. In addition, an intraocular lens in which a PMMA resin surface is coated with a diamond-like carbon film by plasma-polymerizing an alkane such as methane has also been proposed (for example, JP-A-63-203163,
See NEW DIAMOND, 7 (3), 21-25). However, with the increase in the number of cases to be applied and a request to improve the therapeutic effect, for the intraocular lens, the present situation is that further improvement is required for the convenience of surgery, biocompatibility, etc. In addition, since the carbon film of the intraocular lens coated with the diamond-like carbon film is fragile, great care must be taken in handling before and during surgery.

【0003】[0003]

【発明が解決しようとする課題】したがって、本発明の
目的は、白内障手術後に挿入される眼内レンズにおい
て、特にレンズ基体表面の性状を改良することにより生
体適合性を著しく改善し、もって眼内レンズ表面への細
胞成分や生体成分の付着を抑制し、術後早期に良好な視
力回復をもたらすことができる眼内レンズを提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to improve the biocompatibility of an intraocular lens inserted after a cataract surgery, especially by improving the properties of the surface of the lens substrate. An object of the present invention is to provide an intraocular lens that can suppress the adhesion of cell components and biological components to the lens surface and bring about good visual acuity recovery in the early postoperative period.

【0004】[0004]

【課題を解決するための手段】即ち、本発明は、透明な
レンズ基体の表面を、実質的に炭素(C)、水素
(H)、ハロゲン(X)および酸素(O)の各原子から
なり、且つ下記に示す原子数比の平均組成を有するとと
もに、単結合のみを有する炭素原子に結合する水素原子
の数に対する二重結合を有する炭素原子に結合する水素
原子の数の比が0〜0.1であるプラズマ重合膜で被覆
したことを特徴とする眼内レンズに関する。
That is, according to the present invention, the surface of a transparent lens substrate is substantially composed of carbon (C), hydrogen (H), halogen (X) and oxygen (O) atoms. , And the ratio of the number of hydrogen atoms bonded to a carbon atom having a double bond to the number of hydrogen atoms bonded to a carbon atom having only a single bond, which has an average composition of the atomic ratios shown below, is 0 to 0. The present invention relates to an intraocular lens coated with a plasma-polymerized film of 1.

【化1】[Chemical 1]

【0005】ここで、単結合のみを有する炭素原子に結
合する水素原子とは、式
Here, a hydrogen atom bonded to a carbon atom having only a single bond is represented by the formula

【化2】 で表される水素原子を意味し、また、二重結合を有する
炭素原子に結合する水素原子とは、式
[Chemical 2] And a hydrogen atom bonded to a carbon atom having a double bond is represented by the formula:

【化3】 で表される水素原子を意味する。[Chemical 3] Means a hydrogen atom represented by.

【0006】本発明において、透明なレンズ基体の表面
を被覆するプラズマ重合膜は、例えばハロゲン化アルカ
ン(a)、アルカン(b)、水素(c)あるいはハロゲ
ン(d)の各モノマー化合物からなり、下記(1)〜
(10)のいずれかの組合せから選ばれる成分を含有す
るガスであって、ガス中の全ハロゲン原子数/全水素原
子数の比が0.1〜5であるガスのプラズマ重合帯域内
に前記レンズ基体を配置して、前記ガスをプラズマ重合
することにより形成することができる。 (1) aのみ(但し、aがパーフルオロアルカンの場
合を除く); (2) aおよびb; (3) aおよびc; (4) aおよびd; (5) a、bおよびc; (6) a、bおよびd; (7) a、cおよびd; (8) a、b、cおよびd; (9) bおよびd; (10)b、cおよびd。
In the present invention, the plasma-polymerized film coating the surface of the transparent lens substrate is composed of, for example, a halogenated alkane (a), alkane (b), hydrogen (c) or halogen (d) monomer compound. From (1) below
A gas containing a component selected from any combination of (10), wherein the ratio of the total number of halogen atoms / the total number of hydrogen atoms in the gas is 0.1 to 5 in the plasma polymerization zone. It can be formed by placing a lens substrate and plasma polymerizing the gas. (1) Only a (except when a is a perfluoroalkane); (2) a and b; (3) a and c; (4) a and d; (5) a, b and c; 6) a, b and d; (7) a, c and d; (8) a, b, c and d; (9) b and d; (10) b, c and d.

【0007】本発明においては、前記(1)〜(10)
の組合せの選定、2種以上のモノマー化合物を組み合わ
せる(2)〜(10)の場合の各モノマー化合物間の割
合等のガス組成条件は、プラズマ重合膜の所望の平均組
成に応じて決定されるものであり、適切なガス組成条件
は、実験により設定することができる。
In the present invention, the above (1) to (10)
Selection of the combination, the gas composition conditions such as the ratio between the respective monomer compounds in the case of combining two or more monomer compounds (2) to (10) are determined according to the desired average composition of the plasma polymerized film. The appropriate gas composition conditions can be set by experiments.

【0008】本発明においては、前記a〜dのモノマー
化合物としては、後述するプラズマ重合条件下で気体状
であれば、いずれも使用することができる。
In the present invention, any of the monomer compounds a to d can be used as long as they are in a gaseous state under the plasma polymerization conditions described later.

【0009】前記ハロゲン化アルカンは、アルカン即ち
飽和脂肪族炭化水素の水素原子の少なくとも1つが、フ
ッ素原子、塩素原子、臭素原子およびヨウ素原子から選
ばれる少なくとも1つのハロゲン原子により置換された
化合物であり、好ましいハロゲン化アルカンは炭素数1
〜4、さらに好ましくは炭素数1〜2のものである。
The halogenated alkane is a compound in which at least one hydrogen atom of an alkane, that is, a saturated aliphatic hydrocarbon is substituted with at least one halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. , Preferred halogenated alkane has 1 carbon atom
To 4, more preferably 1 to 2 carbon atoms.

【0010】このようなハロゲン化アルカンとしては、
例えばモノフルオロメタン、ジフルオロメタン、トリフ
ルオロメタン、テトラフルオロメタン、モノクロロメタ
ン、ジクロロメタン、トリクロロメタン、テトラクロロ
メタン、モノフルオロモノクロロメタン、モノフルオロ
ジクロロメタン、モノフルオロエタン、ジフルオロエタ
ン、トリフルオロエタン、テトラフルオロエタン、ペン
タフルオロエタン、ヘキサフルオロエタン、モノクロロ
エタン、ジクロロエタン、トリクロロエタン、テトラク
ロロエタン、ペンタクロロエタン、ヘキサクロロエタ
ン、モノフルオロモノクロロエタン、モノフルオロジク
ロロエタン、ジフルオルモノクロロエタン、ジフルオロ
ジクロロエタン、トリフルオロモノクロロエタン、トリ
フルオロジクロロエタン、トリフルオロトリクロロエタ
ン、モノフルオロプロパン、ジフルオロプロパン、トリ
フルオロプロパン、テトラフルオロプロパン、ペンタフ
ルオロプロパン、ヘキサフルオロプロパン、パーフルオ
ロプロパン、モノクロロプロパン、ジクロロプロパン、
トリクロロプロパン、テトラクロロプロパン、ペンタク
ロロプロパン、ヘキサクロロプロパン、パークロロプロ
パン、モノフルオロモノクロロプロパン、モノフルオロ
ジノクロロプロパン、ジフルオロモノクロロプロパン、
ジフルオロジクロロプロパン、トリフルオロモノクロロ
プロパン、トリフルオロジクロロプロパン、テトラフル
オロモノクロロプロパン、テトラフルオロジクロロプロ
パン、モノフルオロn−ブタン、ジフルオロn−ブタ
ン、トリフルオロn−ブタン、テトラフルオロn−ブタ
ン、ペンタフルオロn−ブタン、ヘキサフルオロn−ブ
タン、オクタフルオロn−ブタン、モノフルオロイソブ
タン、ジフルオロイソブタン、トリフルオロイソブタ
ン、テトラフルオロイソブタン、ペンタフルオロイソブ
タン、ヘキサフルオロイソブタン、オクタフルオロイソ
ブタン、モノクロロn−ブタン、ジクロロn−ブタン、
トリクロロn−ブタン、テトラクロロn−ブタン、モノ
クロロイソブタン、ジクロロイソブタン、トリクロロイ
ソブタン、テトラクロロイソブタン、モノフルオロモノ
クロロn−ブタン、モノフルオロジクロロn−ブタン、
ジフルオロモノクロロn−ブタン、ジフルオロジクロロ
n−ブタン、トリフルオロモノクロロn−ブタン、トリ
フルオロジクロロn−ブタン、テトラフルオロモノクロ
ロn−ブタン、テトラフルオロジクロロn−ブタン、モ
ノフルオロモノクロロイソブタン、モノフルオロジクロ
ロイソブタン、ジフルオロモノクロロイソブタン、ジフ
ルオロジクロロイソブタン、トリフルオロモノクロロイ
ソブタン、トリフルオロジクロロイソブタン、テトラフ
ルオロモノクロロイソブタン、テトラフルオロジクロロ
イソブタン、モノブロモメタン、ジブロモメタン、トリ
ブロモメタン、テトラブロモメタン、モノブロモエタ
ン、ジブロモエタン、トリブロモエタン、テトラブロモ
エタン、ペンタブロモエタン、モノヨードメタン、ジヨ
ードメタン等を挙げることができる。特に好ましいハロ
ゲン化アルカンは、トリフルオロメタン、テトラフルオ
ロメタン、ジフルオロエタン、トリフルオロエタン、テ
トラフルオロエタンおよびヘキサフルオロエタンであ
る。これらのハロゲン化アルカンは、単独でまたは2種
以上を混合して使用することができる。
As such a halogenated alkane,
For example, monofluoromethane, difluoromethane, trifluoromethane, tetrafluoromethane, monochloromethane, dichloromethane, trichloromethane, tetrachloromethane, monofluoromonochloromethane, monofluorodichloromethane, monofluoroethane, difluoroethane, trifluoroethane, tetrafluoroethane, Pentafluoroethane, hexafluoroethane, monochloroethane, dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane, hexachloroethane, monofluoromonochloroethane, monofluorodichloroethane, difluoromonochloroethane, difluorodichloroethane, trifluoromonochloroethane, trifluorodichloroethane, Trifluorotrichloroethane, monofluoro Bread, difluoropropane, trifluoropropane, tetrafluoropropane, pentafluoropropane, hexafluoropropane, perfluoropropane, monochloropropanediol, dichloropropane,
Trichloropropane, tetrachloropropane, pentachloropropane, hexachloropropane, perchloropropane, monofluoromonochloropropane, monofluorodinochloropropane, difluoromonochloropropane,
Difluorodichloropropane, trifluoromonochloropropane, trifluorodichloropropane, tetrafluoromonochloropropane, tetrafluorodichloropropane, monofluoro n-butane, difluoro n-butane, trifluoro n-butane, tetrafluoro n-butane, pentafluoro n- Butane, hexafluoron-butane, octafluoron-butane, monofluoroisobutane, difluoroisobutane, trifluoroisobutane, tetrafluoroisobutane, pentafluoroisobutane, hexafluoroisobutane, octafluoroisobutane, monochloron-butane, dichloron-butane ,
Trichloro n-butane, tetrachloro n-butane, monochloroisobutane, dichloroisobutane, trichloroisobutane, tetrachloroisobutane, monofluoromonochloro n-butane, monofluorodichloro n-butane,
Difluoromonochloro n-butane, difluorodichloro n-butane, trifluoromonochloro n-butane, trifluorodichloro n-butane, tetrafluoromonochloro n-butane, tetrafluorodichloro n-butane, monofluoromonochloroisobutane, monofluorodichloroisobutane, Difluoromonochloroisobutane, difluorodichloroisobutane, trifluoromonochloroisobutane, trifluorodichloroisobutane, tetrafluoromonochloroisobutane, tetrafluorodichloroisobutane, monobromomethane, dibromomethane, tribromomethane, tetrabromomethane, monobromoethane, dibromoethane, Examples include tribromoethane, tetrabromoethane, pentabromoethane, monoiodomethane, diiodomethane, etc. It is possible. Particularly preferred halogenated alkanes are trifluoromethane, tetrafluoromethane, difluoroethane, trifluoroethane, tetrafluoroethane and hexafluoroethane. These halogenated alkanes can be used alone or in admixture of two or more.

【0011】前記アルカン、即ち飽和脂肪族炭化水素
は、好ましくは炭素数1〜10、さらに好ましくは炭素
数1〜4のものであり、その例としては、メタン、エタ
ン、n−プロパン、n−ブタン、n−ペンタン、n−ヘ
キサン、n−ヘプタン、n−オクタン、n−ノナン、n
−デカンおよびこれらの異性体等を挙げることができ
る。特に好ましいアルカンは、メタン、エタン、プロパ
ン、n−ブタンおよびイソブタンである。これらのアル
カンは、単独でまたは2種以上を混合して使用すること
ができる。
The alkane, that is, saturated aliphatic hydrocarbon, preferably has 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, and examples thereof include methane, ethane, n-propane and n-. Butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n
-Decane and isomers thereof may be mentioned. Particularly preferred alkanes are methane, ethane, propane, n-butane and isobutane. These alkanes can be used alone or in admixture of two or more.

【0012】前記ハロゲンは、フッ素、塩素、臭素また
はヨウ素であり、なかでもフッ素および塩素が好まし
い。これらのハロゲンは、単独でまたは2種以上を混合
して使用することができる。
The halogen is fluorine, chlorine, bromine or iodine, with fluorine and chlorine being preferred. These halogens can be used alone or in combination of two or more.

【0013】本発明においてプラズマ重合に供されるガ
スは、前記(1)〜(10)のいずれかの組合せからな
るものである。これらの組合せにおいては、ガス中の全
ハロゲン原子数/全水素原子数の比は、0.1〜5の範
囲であり、好ましい比は0.2〜3である。前記全ハロ
ゲン原子数/全水素原子数の比が0.1未満である場
合、プラズマ重合膜は高密度、かつ高硬度となるが、逆
に靱性に乏しくなり、破損しやい傾向があり、また5を
超えると、プラズマ重合膜の形成が困難となる場合があ
る。したがって、例えばモノマー化合物として、テトラ
フルオロメタンとメタンとを使用する場合は、両者の体
積比を、標準状態で1:10〜5:1とするのが適当で
あり、また、ヘキサフルオロエタンとメタンとを使用す
る場合は、両者の体積比を、標準状態で3.3:1〜
1:15とするのが適当である。
The gas used for plasma polymerization in the present invention comprises any combination of the above (1) to (10). In these combinations, the ratio of the total number of halogen atoms / the total number of hydrogen atoms in the gas is in the range of 0.1 to 5, and the preferable ratio is 0.2 to 3. When the ratio of the total number of halogen atoms / the total number of hydrogen atoms is less than 0.1, the plasma polymerized film has high density and high hardness, but on the contrary, has poor toughness and tends to be damaged. If it exceeds 5, it may be difficult to form a plasma polymerized film. Therefore, for example, when tetrafluoromethane and methane are used as the monomer compounds, it is appropriate that the volume ratio of both is 1:10 to 5: 1 in the standard state, and hexafluoroethane and methane are used. When using and, the volume ratio of both is 3.3: 1 to 1 in the standard state.
A ratio of 1:15 is suitable.

【0014】本発明におけるプラズマ重合膜の形成に際
して、前記(2)〜(10)のように、2種以上のモノ
マー化合物を組合せて使用する場合は、混合ガスとして
プラズマ重合帯域に導入してもよく、また各モノマー化
合物を別々に導入してプラズマ重合帯域内で混合させて
もよい。
In the formation of the plasma polymerized film in the present invention, when two or more kinds of monomer compounds are used in combination as described in the above (2) to (10), they may be introduced into the plasma polymerization zone as a mixed gas. Alternatively, each monomer compound may be introduced separately and mixed in the plasma polymerization zone.

【0015】本発明において、プラズマ重合帯域におけ
るプラズマの電子温度は、例えばプラズマ重合膜を形成
させるレンズ基体表面から垂直方向に1〜3cm離れた
位置において、好ましくは6,000〜30,000°
K、特に好ましくは10,000〜28,000°Kで
ある。この電子温度が高過ぎると、形成されるプラズマ
重合膜は高密度、かつ高硬度となるが、基体との接着性
が低下して剥離しやすくなる傾向がある。また、プラズ
マの電子温度が低過ぎても、表面に凹凸のあるプラズマ
重合膜が形成されるおそれがある。ここでいう電子温度
とは、特開昭54−135574号公報に記載されたプ
ラズマ特性測定用探針を用いる方法により測定されるも
のであり、プラズマ励起のための放電電力、放電電流、
モノマー化合物を含むガス圧、該ガスの流量、電極の構
造、基体の位置等を調節することにより、所望の値に制
御することができる。
In the present invention, the electron temperature of the plasma in the plasma polymerization zone is preferably 6,000 to 30,000 °, for example, at a position 1 to 3 cm vertically away from the surface of the lens substrate on which the plasma polymerization film is formed.
K, particularly preferably 10,000 to 28,000 ° K. If the electron temperature is too high, the formed plasma polymerized film will have high density and high hardness, but the adhesiveness to the substrate will tend to decrease, and peeling will tend to occur easily. Moreover, even if the electron temperature of plasma is too low, a plasma polymerized film having irregularities on the surface may be formed. The electron temperature as used herein is measured by a method using a plasma characteristic measuring probe described in JP-A-54-135574, and includes discharge power, discharge current for plasma excitation,
It can be controlled to a desired value by adjusting the pressure of the gas containing the monomer compound, the flow rate of the gas, the structure of the electrode, the position of the substrate, and the like.

【0016】プラズマ重合における他の条件は、通常の
プラズマ重合と本質的に特に変わるものではなく、例え
ば真空度は1×10-3〜1Torr程度、反応器に流入
するモノマー化合物を含むガスの流量は、反応器の内容
積100リットル当たり0.1〜100cc(標準状
態)/分程度で十分である。
Other conditions in the plasma polymerization are essentially the same as those in the ordinary plasma polymerization. For example, the degree of vacuum is about 1 × 10 −3 to 1 Torr and the flow rate of the gas containing the monomer compound flowing into the reactor. Is about 0.1 to 100 cc (standard state) / minute per 100 liters of the internal volume of the reactor.

【0017】前記モノマー化合物のガスを反応器に導入
する際には、ヘリウム、ネオン、アルゴン、キセノン等
の不活性ガスをキャリヤーガスとして使用することもで
きる。
When the gas of the above-mentioned monomer compound is introduced into the reactor, an inert gas such as helium, neon, argon or xenon can be used as a carrier gas.

【0018】プラズマ重合時のレンズ基体の温度は、該
基体が変質しない温度であれば特に制約はなく、レンズ
基体の種類、モノマー化合物の種類、前記(1)〜(1
0)の組合せ等に応じて、例えば0〜300°Cの範囲
から適宜選定することができる。
The temperature of the lens substrate during plasma polymerization is not particularly limited as long as the substrate does not deteriorate, and the type of lens substrate, the type of monomer compound, and the above (1) to (1).
According to the combination etc. of 0), it can be appropriately selected from the range of 0 to 300 ° C, for example.

【0019】プラズマの発生に用いる放電方式および放
電装置は、特に制約されるものではなく、放電方式は、
例えば直流放電、低周波放電、高周波放電、マイクロ波
放電等のいずれでもよく、また、放電装置も内部電極方
式、外部電極方式、無電極方式等のいずれでもよい。さ
らに、電極やコイルの形状、マイクロ波放電の場合のキ
ャビティやアンテナの構造等も適宜選定することができ
る。
The discharge method and the discharge device used for generating plasma are not particularly limited, and the discharge method is
For example, any of DC discharge, low frequency discharge, high frequency discharge, microwave discharge, etc. may be used, and the discharge device may be any of internal electrode type, external electrode type, electrodeless type, etc. Further, the shapes of electrodes and coils, the structures of cavities and antennas in the case of microwave discharge, etc. can be appropriately selected.

【0020】本発明において、レンズ基体の表面を被覆
するプラズマ重合膜の厚さは、薄過ぎると、基体表面の
異物の付着を十分抑制することが困難となる場合があ
り、また、かなり厚くても、一般に性能的には問題はな
いが、工業的な生産性の観点から得策ではなく、通常、
患者の症例、モノマー化合物の種類等に応じて、10〜
10,000Åの範囲から選択される。プラズマ重合膜
の好ましい厚さは、30〜3,000Å、さらに好まし
くは100〜3,000Åである。
In the present invention, if the thickness of the plasma-polymerized film coating the surface of the lens substrate is too thin, it may be difficult to sufficiently suppress the adhesion of foreign matter on the substrate surface, and it is considerably thick. Also, although there is generally no problem in performance, it is not a good idea from the viewpoint of industrial productivity,
10 to 10 depending on the patient's case, type of monomer compound, etc.
It is selected from the range of 10,000Å. The preferred thickness of the plasma polymerized film is 30 to 3,000Å, more preferably 100 to 3,000Å.

【0021】本発明において、このようにして形成され
るプラズマ重合膜は、実質的に炭素(C)、水素
(H)、ハロゲン(X)および酸素(O)の各原子から
なり、且つ下記に示す原子数比の平均組成を有するとと
もに、単結合のみを有する炭素原子に結合する水素原子
の数に対する二重結合を有する炭素原子に結合する水素
原子の数の比が0〜0.1であり、本質的にアモルファ
ス構造を有するものである。
In the present invention, the plasma polymerized film thus formed is substantially composed of carbon (C), hydrogen (H), halogen (X) and oxygen (O) atoms, and The ratio of the number of hydrogen atoms bonded to a carbon atom having a double bond to the number of hydrogen atoms bonded to a carbon atom having only a single bond is 0 to 0.1 while having an average composition of the atomic ratios shown. , Having an essentially amorphous structure.

【化1】このプラズマ重合膜の平均密度は、通常1.6
〜3.5g/cm3 程度である。
## STR1 ## The average density of this plasma polymerized film is usually 1.6.
It is about 3.5 g / cm 3 .

【0022】前記平均組成のうち、プラズマ重合膜のレ
ンズ基体との接着性、眼内の細胞成分や生体成分の付
着、吸着等の低減等の観点から、原子数比が
From the viewpoint of the adhesion of the plasma polymerized film to the lens substrate, the adhesion of cell components and biological components in the eye, the reduction of adsorption, etc., of the average composition, the atomic number ratio is

【化4】 であることが好ましく、特に[Chemical 4] Is preferred, especially

【化5】 であることが好ましい。[Chemical 5] Is preferred.

【0023】本発明においては、プラズマ重合に際して
は、通常は、プラズマ重合帯域に酸素を積極的に導入す
る必要はなく、プラズマ重合膜中の酸素原子は、反応器
からプラズマ重合膜で被覆された基体を取り出すとき
に、該プラズマ重合膜中に残留する活性ラジカルが大気
中の酸素と反応することにより、導入されるものと推定
される。また、本発明においては、場合により、プラズ
マ重合帯域に酸素を別途導入することも可能である。本
発明において、プラズマ重合膜中に存在する酸素は、結
果的に生体適合性を高めていると考えられる。
In the present invention, in plasma polymerization, it is usually not necessary to positively introduce oxygen into the plasma polymerization zone, and oxygen atoms in the plasma polymerization film were covered with the plasma polymerization film from the reactor. It is presumed that when the substrate is taken out, the active radicals remaining in the plasma polymerized film react with oxygen in the atmosphere to be introduced. Further, in the present invention, oxygen may be separately introduced into the plasma polymerization zone in some cases. In the present invention, oxygen present in the plasma polymerized film is considered to result in enhanced biocompatibility.

【0024】本発明において、単結合のみを有する炭素
原子に結合する水素原子の数に対する二重結合を有する
炭素原子に結合する水素原子の数の比は、プラズマ重合
膜の赤外線吸収スペクトルをフーリエ変換赤外スペクト
ル(FTIS)法で測定したときの、3010〜304
0cm-1にある吸収ピーク( =C-H結合に対応)の面積と
2840〜3000cm-1にある吸収ピーク(-C-H結合
に対応)の面積との比として定義される。また、炭素
(C)に対するハロゲン(X)または酸素(O)の原子
数比(X/CまたはO/C)は、例えばX線光電子スペ
クトル(ESCA)法により測定することができ、炭素
(C)に対する水素(H)の原子数比(H/C)は、例
えば元素分析装置を用いて測定することができる。
In the present invention, the ratio of the number of hydrogen atoms bonded to carbon atoms having a double bond to the number of hydrogen atoms bonded to carbon atoms having only a single bond is determined by Fourier transforming the infrared absorption spectrum of the plasma polymerized film. 3010-304 when measured by infrared spectrum (FTIS) method
It is defined as the ratio of the area of the absorption peak at 0 cm -1 (corresponding to the CH bond) to the area of the absorption peak at 2840 to 3000 cm -1 (corresponding to the -CH bond). The atomic ratio (X / C or O / C) of halogen (X) or oxygen (O) to carbon (C) can be measured, for example, by an X-ray photoelectron spectrum (ESCA) method, and carbon (C The atomic ratio (H / C) of hydrogen (H) to () can be measured using, for example, an elemental analyzer.

【0025】本発明におけるプラズマ重合膜は、それを
構成する元素のうち、炭素が極めて多いものであるが、
水素、ハロゲンおよび酸素も共存する点に特徴があり、
また、ほとんどの炭素原子が単結合のみを有するもので
ある。このため、プラズマ重合膜は、極めて高密度で高
硬度である。しかしながら、水素、ハロゲンおよび酸素
が共存することにより、プラズマ重合膜が極めて優れた
生体適合性を有するとともに、適度の靱性を有するもの
となる。
The plasma-polymerized film in the present invention contains a large amount of carbon among the elements constituting the plasma-polymerized film.
Characteristic in that hydrogen, halogen and oxygen also coexist,
Further, most of the carbon atoms have only a single bond. Therefore, the plasma polymerized film has extremely high density and high hardness. However, the coexistence of hydrogen, halogen, and oxygen makes the plasma-polymerized film extremely excellent in biocompatibility and has appropriate toughness.

【0026】本発明において使用されるレンズ基体とし
ては、光学的に透明であり、眼内レンズに適合しうるも
のであれば、特に制約されるものではなく、硬質でも軟
質でもよく、また含水性でも非含水性でもよい。このよ
うなレンズ基体としては、プラスチック、ガラス等を問
わず、各種材質を適宜に選定することができるが、通
常、PMMA樹脂、アクリル系エラストマー、シリコー
ン樹脂、シリコーンエラストマー、フルオロアルキルア
クリレート系ポリマー等の特殊フッ素系重合体等、これ
らの構成モノマー相互の共重合体、あるいはこれらの重
合体相互の混合物等が使用される。
The lens substrate used in the present invention is not particularly limited as long as it is optically transparent and can be adapted to an intraocular lens, and it may be hard or soft. Alternatively, it may be non-hydrated. As such a lens substrate, various materials can be appropriately selected regardless of whether it is plastic, glass or the like. Usually, PMMA resin, acrylic elastomer, silicone resin, silicone elastomer, fluoroalkyl acrylate polymer and the like are used. A copolymer of these constituent monomers such as a special fluorine-based polymer, or a mixture of these polymers with each other is used.

【0027】本発明のプラズマ重合膜被覆眼内レンズの
形状、寸法等は、白内障の症例等に応じて選定される
が、プラズマ重合膜で被覆する際には、通常、光学部を
構成するレンズ基体に対して必要な周辺部材を付設した
形で処理される。これにより、プラズマ重合膜による被
覆が光学部と周辺部との双方に行われることになり、眼
内レンズ全体が十分な生体適合性を有するものとなる。
この周辺部材を付設した眼内レンズ成形物の例を挙げる
と、図1および図2に示すものがある。ここで、1は光
学部、2は周辺部である。
The shape, dimensions, etc. of the intraocular lens coated with the plasma-polymerized film of the present invention are selected according to the case of cataract, etc., but when the intraocular lens is coated with the plasma-polymerized film, the lens forming the optical part is usually used. It is processed in a form in which necessary peripheral members are attached to the base body. As a result, the plasma-polymerized film is coated on both the optical part and the peripheral part, and the entire intraocular lens has sufficient biocompatibility.
Examples of the intraocular lens molded article provided with this peripheral member are shown in FIGS. 1 and 2. Here, 1 is an optical part, and 2 is a peripheral part.

【0028】[0028]

【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明するが、本発明はこれらの実施例のみに限定され
るものではない。各実施例におけるプラズマ重合膜の厚
さは、プラズマ重合膜被覆処理後の眼内レンズ成形物を
液体窒素中で十分冷却したのち破断し、その断面を走査
型電子顕微鏡で観察して、測定した。 実施例1 眼内レンズホルダーを備えたベルジャー型プラズマ重合
反応器にPMMA樹脂から製作した眼内レンズ成形物
(光学部の直径4mm、周辺部を含む全長9mm。図1
参照)を装着し、テトラフルオロメタンとメタンとの混
合ガスを、それぞれ8cc/分(標準状態)の流量で流
しながら、ベルジャー内圧力45mTorrおよび放電
電流140mAで、重合時間を表1に示すように0.3
〜19.5分の間で変化させて、プラズマ重合膜被覆処
理(No.1〜7)を行った。形成されたプラズマ重合
膜の厚さ、および炭素に対する水素、フッ素または酸素
の原子数比、並びに単結合のみを有する炭素原子に結合
する水素原子の数に対する二重結合を有する炭素原子に
結合する水素原子の数の比を表1に示す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. The thickness of the plasma-polymerized film in each example was ruptured after sufficiently cooling the intraocular lens molded article after the plasma-polymerized film coating treatment in liquid nitrogen, and its cross section was observed with a scanning electron microscope, and measured. . Example 1 An intraocular lens molded product made of PMMA resin in a bell jar type plasma polymerization reactor equipped with an intraocular lens holder (diameter of optical part: 4 mm, total length including peripheral part: 9 mm.
As shown in Table 1, the bellows pressure was 45 mTorr and the discharge current was 140 mA, while flowing a mixed gas of tetrafluoromethane and methane at a flow rate of 8 cc / min (standard state). 0.3
The plasma polymerization film coating treatment (Nos. 1 to 7) was performed while changing the time between ˜19.5 minutes. The thickness of the formed plasma-polymerized film, and the atomic ratio of hydrogen, fluorine or oxygen to carbon, and hydrogen bonded to carbon atoms having a double bond relative to the number of hydrogen atoms bonded to carbon atoms having only a single bond. The ratio of the number of atoms is shown in Table 1.

【0029】実施例2 実施例1と同様の眼内レンズ成形物および重合反応器を
使用し、ヘキサフルオロエタンと水素との混合ガスを、
それぞれ18cc/分(標準状態)および6cc/分
(標準状態)の流量で流しながら、ベルジャー内圧力5
5mTorrおよび放電電流210mAで、重合時間を
表1に示すように0.5〜12.3分の間で変化させ
て、プラズマ重合膜被覆処理(No.8〜10)を行っ
た。形成されたプラズマ重合膜の厚さ、および炭素に対
する水素、フッ素または酸素の原子数比、並びに単結合
のみを有する炭素原子に結合する水素原子の数に対する
二重結合を有する炭素原子に結合する水素原子の数の比
を表1に示す。
Example 2 Using the same intraocular lens molding and polymerization reactor as in Example 1, a mixed gas of hexafluoroethane and hydrogen was added,
Flowing at a flow rate of 18 cc / min (standard state) and 6 cc / min (standard state), while the bell jar pressure was 5
At 5 mTorr and a discharge current of 210 mA, the plasma polymerization film coating treatment (No. 8 to 10) was performed while changing the polymerization time between 0.5 to 12.3 minutes as shown in Table 1. The thickness of the formed plasma-polymerized film, and the atomic ratio of hydrogen, fluorine or oxygen to carbon, and hydrogen bonded to carbon atoms having a double bond relative to the number of hydrogen atoms bonded to carbon atoms having only a single bond. The ratio of the number of atoms is shown in Table 1.

【0030】実施例3 実施例1と同様の眼内レンズ成形物および重合反応器を
使用し、ヘキサフルオロエタンとエタンとの混合ガス
を、それぞれ9cc/分(標準状態)および6cc/分
(標準状態)の流量で流しながら、ベルジャー内圧力9
5mTorrおよび放電電流90mAで、重合時間を表
1に示すように0.4〜6.4分の間で変化させて、プ
ラズマ重合膜被覆処理(No.11〜13)を行った。
形成されたプラズマ重合膜の厚さ、および炭素に対する
水素、フッ素または酸素の原子数比、並びに単結合のみ
を有する炭素原子に結合する水素原子の数に対する二重
結合を有する炭素原子に結合する水素原子の数の比を表
1に示す。
Example 3 Using the same intraocular lens molding and polymerization reactor as in Example 1, mixed gas of hexafluoroethane and ethane was mixed at 9 cc / min (standard condition) and 6 cc / min (standard condition), respectively. (State) while flowing at a bell jar pressure of 9
At 5 mTorr and a discharge current of 90 mA, the plasma polymerization film coating treatment (Nos. 11 to 13) was performed by changing the polymerization time between 0.4 and 6.4 minutes as shown in Table 1.
The thickness of the formed plasma-polymerized film, and the atomic ratio of hydrogen, fluorine or oxygen to carbon, and hydrogen bonded to carbon atoms having a double bond relative to the number of hydrogen atoms bonded to carbon atoms having only a single bond. The ratio of the number of atoms is shown in Table 1.

【0031】実施例4 実施例1と同様の眼内レンズ成形物および重合反応器を
使用し、ジフルオロエタンガスを、25cc/分(標準
状態)の流量で流しながら、ベルジャー内圧力50mT
orrおよび放電電流45mAで、重合時間を表1に示
すように0.5〜7.9分の間で変化させて、プラズマ
重合膜被覆処理(No.14〜16)を行った。形成さ
れたプラズマ重合膜の厚さ、および炭素に対する水素、
フッ素または酸素の原子数比、並びに単結合のみを有す
る炭素原子に結合する水素原子の数に対する二重結合を
有する炭素原子に結合する水素原子の数の比を表1に示
す。
Example 4 Using an intraocular lens molding and a polymerization reactor similar to those in Example 1, difluoroethane gas was flowed at a flow rate of 25 cc / min (standard state), and the pressure inside the bell jar was 50 mT.
The plasma polymerization film coating treatment (Nos. 14 to 16) was carried out at an orr and a discharge current of 45 mA while changing the polymerization time from 0.5 to 7.9 minutes as shown in Table 1. The thickness of the plasma polymerized film formed, and hydrogen to carbon,
Table 1 shows the atomic ratio of fluorine or oxygen and the ratio of the number of hydrogen atoms bonded to carbon atoms having a double bond to the number of hydrogen atoms bonded to carbon atoms having only a single bond.

【0032】[0032]

【表1】 [Table 1]

【0033】試験例 各実施例で得た本発明のプラズマ重合膜被覆レンズ16
種と、コントロールとしての同一形状の未処理PMMA
樹脂製眼内レンズ成形物とを、超音波乳化吸引により水
晶体を摘出したそれぞれの家兎(日本白色種、オス、ヘ
ルシー、体重約3Kg)の眼内に挿入して、2か月にわ
たり、フォトスリットカメラにより、組織反応および眼
内レンズ表面の状態を観察した。その結果、未処理PM
MA樹脂製眼内レンズ成形物を挿入した家兎では、術後
数日間で、眼内炎症に起因すると推定されるフィブリン
様物質の析出が認められ、観察を行った数週間にわたり
虹彩炎症も所見された。また挿入された未処理PMMA
樹脂製眼内レンズ成形物の光学部表面の周辺数カ所に、
術後数日から観察を行った2か月にわたり、伸展した異
物巨細胞および線維芽細胞様細胞の付着が認められ、同
時に光学部表面の数カ所にタンパク質様物質の吸着が認
められた。一方、前記プラズマ重合膜被覆レンズ16種
をそれぞれ挿入した家兎では、そのすべてについて、フ
ィブリン様物質の析出、虹彩炎症とも、コントロールに
比較して極度に軽微であった。また術後2か月にわたり
観察したところ、実験No.1、8、11の3例におい
て、実用上問題ない程度に光学部表面に極く僅かに線維
芽細胞様細胞の付着が認められた以外は、細胞の付着お
よびタンパク質様物質の吸着は全く認められなかった。
Test Example The plasma-polymerized film-coated lens 16 of the present invention obtained in each example
Untreated PMMA of the same shape as seed and control
Insert the resin intraocular lens molded product into the eye of each rabbit (Japanese white breed, male, healthy, body weight about 3 kg) from which the lens has been removed by ultrasonic emulsification suction, and photo for 2 months. The tissue reaction and the state of the intraocular lens surface were observed with a slit camera. As a result, unprocessed PM
In rabbits with intraocular lens moldings made of MA resin, fibrin-like substances presumed to be caused by intraocular inflammation were observed within several days after surgery, and iris inflammation was also observed for several weeks after observation. Was done. Untreated PMMA also inserted
In several places around the optical part surface of the resin intraocular lens molded product,
Over a period of 2 months, which was observed from several days after the operation, adherence of extended foreign body giant cells and fibroblast-like cells was observed, and at the same time adsorption of protein-like substances was observed at several places on the surface of the optical part. On the other hand, in all the rabbits into which the 16 types of plasma-polymerized film-coated lenses were inserted, the deposition of fibrin-like substances and the inflammation of the iris were extremely slight as compared with the control. Further, when observed for 2 months after the operation, the experiment No. In 3 cases of 1, 8, and 11, cell adhesion and protein-like substance adsorption were observed at all, except that the adhesion of fibroblast-like cells to the surface of the optical part was very slight to the extent that there was no practical problem. I couldn't do it.

【0034】[0034]

【発明の効果】本発明のプラズマ重合膜被覆レンズは、
レンズ基体表面の生体適合性が極めて高く、眼内挿入後
の炎症を強く抑えることができるとともに、細胞成分や
生体成分の付着、吸着も顕著に軽減することができ、術
後に、良好な視力回復が短期間に得られる。しかも、そ
のプラズマ重合膜が適度の靱性を有するため、手術前お
よび手術中の取扱も容易である。
The plasma-polymerized film-coated lens of the present invention comprises:
The biocompatibility of the lens substrate surface is extremely high, inflammation after insertion into the eye can be strongly suppressed, and adhesion and adsorption of cell components and biological components can be significantly reduced, resulting in good visual acuity after surgery. Recovery is obtained in a short time. Moreover, since the plasma-polymerized film has appropriate toughness, it can be easily handled before and during surgery.

【図面の簡単な説明】[Brief description of drawings]

【図1】眼内レンズ成形物の1例の正面図である。FIG. 1 is a front view of an example of an intraocular lens molded product.

【図2】眼内レンズ成形物の他の例の正面図である。FIG. 2 is a front view of another example of the intraocular lens molded product.

【符号の説明】[Explanation of symbols]

1 光学部 2 周辺部 1 Optical part 2 Peripheral part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透明なレンズ基体の表面を、実質的に炭
素(C)、水素(H)、ハロゲン(X)および酸素
(O)の各原子からなり、且つ下記に示す原子数比の平
均組成を有するとともに、単結合のみを有する炭素原子
に結合する水素原子の数に対する二重結合を有する炭素
原子に結合する水素原子の数の比が0〜0.1であるプ
ラズマ重合膜で被覆したことを特徴とする眼内レンズ。 【化1】
1. The surface of a transparent lens substrate is substantially composed of carbon (C), hydrogen (H), halogen (X) and oxygen (O) atoms, and the average of the atomic ratios shown below is used. Coated with a plasma polymerized film having a composition and a ratio of the number of hydrogen atoms bonded to carbon atoms having a double bond to the number of hydrogen atoms bonded to carbon atoms having only a single bond is 0 to 0.1. An intraocular lens characterized by the above. [Chemical 1]
JP4232626A 1992-08-10 1992-08-10 Intraocular lens coated with plasma-polymerized film Pending JPH0654900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4232626A JPH0654900A (en) 1992-08-10 1992-08-10 Intraocular lens coated with plasma-polymerized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4232626A JPH0654900A (en) 1992-08-10 1992-08-10 Intraocular lens coated with plasma-polymerized film

Publications (1)

Publication Number Publication Date
JPH0654900A true JPH0654900A (en) 1994-03-01

Family

ID=16942274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4232626A Pending JPH0654900A (en) 1992-08-10 1992-08-10 Intraocular lens coated with plasma-polymerized film

Country Status (1)

Country Link
JP (1) JPH0654900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618316A (en) * 1993-12-14 1997-04-08 Hoffman; Allan S. Polyethylene oxide coated intraocular lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618316A (en) * 1993-12-14 1997-04-08 Hoffman; Allan S. Polyethylene oxide coated intraocular lens

Similar Documents

Publication Publication Date Title
US4312575A (en) Soft corneal contact lens with tightly cross-linked polymer coating and method of making same
US5376400A (en) Combined plasma and gamma radiation polymerization method for modifying surfaces
US5603774A (en) Method for reducing tackiness of soft acrylic polymers
EP0551309B1 (en) Surface modified surgical instruments, devices, implants and the like
US5804263A (en) Combined plasma and gamma radiation polymerization method for modifying surfaces
US5326584A (en) Biocompatible, surface modified materials and method of making the same
US4961954A (en) Surface modified surgical instruments, devices, implants, contact lenses and the like
US5260093A (en) Method of making biocompatible, surface modified materials
US5094876A (en) Surface modified surgical instruments, devices, implants, contact lenses and the like
US5290548A (en) Surface modified ocular implants, surgical instruments, devices, prostheses, contact lenses and the like
WO1995018840A1 (en) Surface modified medical devices
US5130160A (en) Ocular implants and methods for their manufacture
US6143027A (en) Polymeric intraocular lens material having improved surface properties and intraocular lens construction
GB2107895A (en) Soft corneal contact lens with electrical glow discharge polymer coating
WO1992005694A1 (en) Improved ocular implants and methods for their manufacture
EP0648243B1 (en) Method for reducing tackiness of soft acrylic polymers
JPH0654900A (en) Intraocular lens coated with plasma-polymerized film
JPS6340293B2 (en)
JPH01503443A (en) Polymeric intraocular lens materials and intraocular lens structures with improved surface properties
Tripti et al. Materials for intraocular lenses (IOLs): Review of developments to achieve biocompatibility
JPH0357629A (en) Production of intraocular lens
JPS6294819A (en) Contact lens
JPH07507356A (en) Method for reducing stickiness of soft acrylic polymers
NL8104752A (en) Soft corneal contact lens - having glow discharge polymerised lipid-permeable, hydrophilic, ultra:thin barrier coating