JPH0654895B2 - Multi-station transmission phase synchronization method - Google Patents

Multi-station transmission phase synchronization method

Info

Publication number
JPH0654895B2
JPH0654895B2 JP61169828A JP16982886A JPH0654895B2 JP H0654895 B2 JPH0654895 B2 JP H0654895B2 JP 61169828 A JP61169828 A JP 61169828A JP 16982886 A JP16982886 A JP 16982886A JP H0654895 B2 JPH0654895 B2 JP H0654895B2
Authority
JP
Japan
Prior art keywords
station
phase synchronization
base station
adjustment
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61169828A
Other languages
Japanese (ja)
Other versions
JPS6327133A (en
Inventor
淳 村瀬
泉 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61169828A priority Critical patent/JPH0654895B2/en
Publication of JPS6327133A publication Critical patent/JPS6327133A/en
Publication of JPH0654895B2 publication Critical patent/JPH0654895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数の無線ゾーンでサービスエリアを構成し
て、各無線ゾーンに基地局を配置し、該各基地局からサ
ービスエリア内で共通の無線チャネルによって同一信号
を同時送信する移動通信方式において、各基地局から送
信される信号間の位相ずれを測定し、位相ずれが存在す
る基地局は信号の送信タイミングの遅延量を調整するこ
とにより位相同期を確立する複局送信位相同期方式に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention configures a service area with a plurality of wireless zones, arranges a base station in each wireless zone, and shares a common area within the service area from each base station. In a mobile communication system in which the same signal is simultaneously transmitted by the wireless channel of, the phase shift between the signals transmitted from each base station should be measured, and the base station with the phase shift should adjust the delay amount of the signal transmission timing. The present invention relates to a multi-station transmission phase synchronization method that establishes phase synchronization by.

〔従来の技術〕[Conventional technology]

自動車電話等の複数の無線ゾーンによりサービスエリア
を構成する移動通信方式において移動局を呼び出す場合
には、各基地局から同じ周波数を用いて同一の呼出信号
を同時送信する方法が有利である。この場合、移動局は
無線ゾーンの重複している場所では複数の基地局の送信
信号を同時に受信するため、各基地局の送信タイミング
がずれていると移動局の受信する信号は位相のずれた波
形が重なったものとなり受信誤りの発生が多くなる。
When calling a mobile station in a mobile communication system in which a service area is constituted by a plurality of wireless zones such as a car phone, a method of simultaneously transmitting the same call signal using the same frequency from each base station is advantageous. In this case, the mobile station receives the transmission signals of multiple base stations at the same time in a location where the wireless zones overlap. Therefore, if the transmission timing of each base station is shifted, the signal received by the mobile station is out of phase. The waveforms are overlapped, and reception errors occur more often.

従来、この送信信号の位相を一致させる方法としては、
第1図に示すように、回線制御局1から各下り回線5、
6により基地局2、3に同時に信号を送信し、基地局
2、3では異なる周波数の無線チャネル7、8を用いて
該信号を送信し、受信周波数を変えることのできる位相
同期用受信機4によって周波数を変えて順次受信し、上
り回線9を使って前記送信元の回線制御局1に送信し、
回線制御局1では各基地局2、3ごとに送信信号と受信
信号の遅延量を測定し、例えば基地局2の遅延量を基準
として基地局3の下り回線6の可変遅延回路11を調整
して、基地局2と3の位相を同期させる方法が行なわれ
ている。
Conventionally, as a method of matching the phases of the transmission signals,
As shown in FIG. 1, each downlink 5 from the line control station 1,
6, the base station 2 and 3 simultaneously transmit signals, and the base stations 2 and 3 transmit the signals using radio channels 7 and 8 having different frequencies, and the phase synchronization receiver 4 is capable of changing the reception frequency. The frequency is changed, and the signals are sequentially received, and transmitted to the line control station 1 of the transmission source by using the uplink 9.
The line control station 1 measures the delay amounts of the transmission signal and the reception signal for each of the base stations 2 and 3, and adjusts the variable delay circuit 11 of the downlink 6 of the base station 3 based on the delay amount of the base station 2, for example. Then, a method of synchronizing the phases of the base stations 2 and 3 is performed.

また、サービス中の位相同期の監視は回線制御局1から
送信した信号を各基地局で折り返して回線制御局1で受
信し、その送信から受信までの折り返し時間の変化を監
視することによって行なわれている。
Further, the monitoring of the phase synchronization during service is performed by returning the signal transmitted from the line control station 1 at each base station, receiving it at the line control station 1, and monitoring the change in the return time from the transmission to the reception. ing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述したような従来の技術では、サービス中の位相同期
の監視は回線制御局と基地局の間の折り返し時間に対し
てのみ行なわれるため、回線制御局と基地局の間の回線
が原因となる位相ずれに関しては有効な監視が行なわれ
るが、他の原因による位相ずれを検出できないという欠
点があった。
In the conventional technique as described above, the monitoring of the phase synchronization during service is performed only for the loopback time between the line control station and the base station, and therefore the line between the line control station and the base station causes the problem. Although effective monitoring is performed for the phase shift, there is a drawback that the phase shift due to other causes cannot be detected.

また、上記の監視によって位相ずれを検出し、無線区間
を含めた信号の送信タイミングを調整する場合には、各
基地局でサービスに用いている無線チャネルとは別に調
整用のチャネルを必要とするという欠点があった。
Further, when the phase shift is detected by the above-mentioned monitoring and the transmission timing of the signal including the wireless section is adjusted, a channel for adjustment is required in addition to the wireless channel used for service at each base station. There was a drawback.

本発明はこのような従来の欠点に鑑み、位相同期調整の
ための特別な無線チャネルを設けることなく常時正確な
位相同期の監視と調整が可能な方式を提供することを目
的としている。
The present invention has been made in view of such conventional drawbacks, and an object thereof is to provide a system capable of always accurately monitoring and adjusting the phase synchronization without providing a special radio channel for adjusting the phase synchronization.

〔問題点を解決するための手段〕 本発明によれば、上述の目的は、前記特許請求の範囲に
記載した手段により達成される。
[Means for Solving the Problems] According to the present invention, the above-mentioned object is achieved by the means described in the claims.

すなわち、本発明は複数の無線ゾーンによりサービスエ
リアを構成し、各基地局から共通の無線チャネルを用い
て同一の信号を複局同時送信する移動通信方式におい
て、無線チャネルに各基地局個別のタイムスロットを設
けて、各基地局は基準となる基地局と自局のタイムスロ
ット内の識別符号の時間差を測定し、該時間差から位相
ずれを算出することによって、送信信号の位相同期の監
視および調整を行なうことを特徴としている。
That is, according to the present invention, in a mobile communication system in which a service area is configured by a plurality of radio zones and the same signal is simultaneously transmitted from multiple base stations using a common radio channel, the time of each base station is individually assigned to the radio channel. By providing slots, each base station measures the time difference between the reference base station and the identification code in its own time slot, and calculates the phase shift from the time difference to monitor and adjust the phase synchronization of the transmission signal. It is characterized by performing.

〔実施例〕〔Example〕

第2図は本発明の1実施例の構成を示す図であって、1
2は回線制御局、13は位相同期をとる際の基準となる
基地局(基準局)、14は位相同期をとる際に位相を調
整する基地局(調整局)、15位相同期用受信機(以下
受信機という)、16、17は下り信号回線、18は可
変遅延回路、19、20はそれぞれ基準局13および調
整局14から送信される同一周波数の無線チャネル、2
1は受信機15で受信した信号を調整局14へ転送する
回線、22は無線ゾーンを表わしている。
FIG. 2 is a diagram showing the configuration of one embodiment of the present invention.
Reference numeral 2 is a line control station, 13 is a base station (reference station) that serves as a reference when phase synchronization is performed, 14 is a base station (adjustment station) that adjusts the phase when phase synchronization is achieved, and 15 phase synchronization receiver (hereinafter Receivers), 16 and 17 are downlink signal lines, 18 is a variable delay circuit, 19 and 20 are radio channels of the same frequency transmitted from the reference station 13 and the adjustment station 14, respectively.
Reference numeral 1 represents a line for transferring a signal received by the receiver 15 to the adjustment station 14, and 22 represents a wireless zone.

第2図において、回線制御局12から基地局13、14
に対し下り回線16、17によって送信された信号は、
基地局13(基準局)、14(調整局)から同一周波数
の無線チャネル19、20によって送信され、受信機1
5によって受信されて、回線21により調整を行なう基
地局14(調整局)に送信される。
In FIG. 2, from the line control station 12 to the base stations 13 and 14
On the other hand, the signals transmitted by the downlinks 16 and 17 are
The base station 13 (reference station), 14 (coordination station) transmits by the radio channels 19 and 20 of the same frequency, and the receiver 1
5, and is transmitted to the base station 14 (coordinating station) which performs adjustment through the line 21.

このときの送信信号のタイムチャートの例を第3図に示
す。
An example of the time chart of the transmission signal at this time is shown in FIG.

第3図において(a1)〜(an)は基地局13、14を始めと
するn個の基地局から同一周波数の無線チャネル19、
20によって送信される信号、(b)は受信機15により
受信した信号を示しており、23、26は基地局13、
14から同時に同一信号を送信するタイムスロットであ
り、23は例えばフレーム同期信号、26は情報として
送信すべき有用な情報(例:着呼信号)である。また2
4−1〜24−nは各基地局からのみ送信するタイムス
ロットであり、24−1は基準となる基地局(基準局)
13からのみ信号を送信するタイムスロット、24−2
は調整を行なう基地局(調整局)14からのみ信号を送
信するタイムスロットである。
In FIG. 3, (a 1 ) to (a n ) are radio channels 19 of the same frequency from n base stations including base stations 13 and 14,
20 shows a signal transmitted by the receiver 20, (b) shows a signal received by the receiver 15, 23 and 26 are base stations 13,
It is a time slot for transmitting the same signal from 14 at the same time, 23 is, for example, a frame synchronization signal, and 26 is useful information to be transmitted as information (for example, incoming call signal). Again 2
4-1 to 24-n are time slots transmitted only from each base station, and 24-1 is a reference base station (reference station).
Time slot for transmitting signal from 13 only, 24-2
Is a time slot in which a signal is transmitted only from the base station (adjustment station) 14 that performs adjustment.

ここでタイムスロット24−1〜24−nの長さは第3
図に示すようにそれぞれTである。また、各タイムスロ
ットの中に示してある矩形波はそれぞれ各基地局13、
14の識別符号を仮想的に表現したもので、これによ
り、識別符号の受信タイミングを示すことにする。
Here, the length of the time slots 24-1 to 24-n is the third length.
As shown in the figure, each is T. In addition, the rectangular waves shown in the respective time slots are the respective base stations 13,
The identification code of 14 is virtually expressed, and the reception timing of the identification code is shown by this.

なお、第3図(b)のハッチングで示した部分は、各基地
局のタイムスロットの重畳する部分である。
The hatched portion in FIG. 3 (b) is the portion where the time slots of the base stations overlap.

回線制御局12において、同時に送信された信号は基地
局13(基準局)および14(調整局)から送信する際
には、各基地局にいたるまでの回線遅延が異なるため
に、第3図(a1)、(a2)に示すような送信タイミングの差
Dを生じている。これらを受信機15で受信すると第3
図(b)のように、複局同時送信されているタイムスロッ
ト部分は位相ずれのある信号が重畳され、波形歪によっ
て受信誤りを生ずる場合がある。しかし、各基地局が個
別に送信するタイムスロット24−1〜24−nはこの
ような位相ずれの影響を受けることなく受信でき、ま
た、タイムスロット24−1〜24−nは、このような
位相ずれの影響を受けることなく受信でき、また、タイ
ムスロット24−1〜24−n内の識別符号の受信タイ
ミングの差Hを求めることにより、次式により位相ずれ
Dを求めることが可能である。
In the line control station 12, when signals transmitted at the same time are transmitted from the base stations 13 (reference station) and 14 (coordination station), the line delay up to each base station is different. 1 ), there is a difference D in the transmission timing as shown in (a 2 ). When these are received by the receiver 15, the third
As shown in Figure (b), signals with phase shifts are superimposed on the time slot portion that is simultaneously transmitted by multiple stations, and reception error may occur due to waveform distortion. However, the time slots 24-1 to 24-n individually transmitted by each base station can be received without being affected by such a phase shift, and the time slots 24-1 to 24-n have such a time slot. The signal can be received without being affected by the phase shift, and the phase shift D can be obtained by the following equation by obtaining the difference H between the reception timings of the identification codes in the time slots 24-1 to 24-n. .

D=T−H………………(1) このときDがプラスであれば、調整局14の位相がDだ
け進んでいる場合である。逆にDがマイナスであれば、
調整局14の位相がDだけ遅れている場合である。
D = TH ... (1) If D is positive at this time, it means that the phase of the adjustment station 14 is advanced by D. On the contrary, if D is negative,
This is the case where the phase of the adjustment station 14 is delayed by D.

また、各基地局からの信号の位相ずれがあると、有用な
情報26が受信できないが、位相ずれをなくせばダイバ
ーシチ効果によって却って良好な特性で受信できる。
Also, if there is a phase shift of the signal from each base station, the useful information 26 cannot be received, but if the phase shift is eliminated, it is possible to receive with good characteristics due to the diversity effect.

第4図は、調整局14における位相同期監視・調整部の
構成の例を示すブロック図であって、27は回線制御局
からの受信信号入力端子、28は受信機15からの受信
信号入力端子、29は回線制御局から受信した信号に自
局の個別信号を加えた信号と送信機のON/OFF信号
を生成する信号発生部、30は基地局13、14の識別
符号の受信タイミングの差Hを測定する時間差測定部、
31は送信信号とON/OFF信号を遅延させる可変遅
延回路、32は位相同期制御部、33は送信機への送信
信号出力端子である。34は送信機へのON/OFF信
号出力端子を表わしている。
FIG. 4 is a block diagram showing an example of the configuration of the phase synchronization monitoring / adjustment unit in the adjustment station 14, where 27 is a reception signal input terminal from the line control station, and 28 is a reception signal input terminal from the receiver 15. , 29 is a signal generator that generates a signal obtained by adding an individual signal of the own station to a signal received from the line control station and an ON / OFF signal of the transmitter, and 30 is a difference in reception timing of the identification codes of the base stations 13 and 14. Time difference measuring unit for measuring H,
Reference numeral 31 is a variable delay circuit that delays the transmission signal and the ON / OFF signal, 32 is a phase synchronization control unit, and 33 is a transmission signal output terminal to the transmitter. Reference numeral 34 represents an ON / OFF signal output terminal to the transmitter.

第5図は第4図に示した時間差測定部30の構成の例を
示すブロック図であって、28は位相同期用受信機15
から受信信号入力端子、35は基地局13(基準局)の
識別符号の検出回路、36は基地局14(調整局)の識
別符号の検出回路、37は35の検出出力から36の検
出出力までの時間を測定するタイマ、38は位相同期制
御部32への出力端子を表わしている。
FIG. 5 is a block diagram showing an example of the configuration of the time difference measuring unit 30 shown in FIG. 4, and 28 is the phase synchronization receiver 15
To a reception signal input terminal, 35 is an identification code detection circuit of the base station 13 (reference station), 36 is an identification code detection circuit of the base station 14 (adjusting station), and 37 is from the detection output of 35 to the detection output of 36. A timer 38 for measuring time indicates an output terminal to the phase synchronization control unit 32.

以下に第3、4、5図によって調整局14の位相同期監
視・調整部の動作を説明する。
The operation of the phase synchronization monitor / adjustment unit of the adjustment station 14 will be described below with reference to FIGS.

第4図に示すように、回線制御局1から受信した信号は
端子27より入力され、信号発生部29で自局固有の信
号が付加されて第3図(a2)のような信号が生成される。
また同時に送信機のON/OFF信号も生成し、例え
ば、第3図(a2)においてはタイムスロット23、25、
26ではON、タイムスロット24ではOFFというよ
うな信号として出力する。
As shown in FIG. 4, the signal received from the line control station 1 is input from the terminal 27, and the signal generator 29 adds a signal peculiar to itself to generate a signal as shown in FIG. 3 (a 2 ). To be done.
At the same time, an ON / OFF signal of the transmitter is also generated. For example, in FIG. 3 (a 2 ), the time slots 23, 25,
The signal is turned on at 26 and turned off at the time slot 24.

これらの信号は可変遅延回路31を経て、端子33、3
4から送信機へ出力され、送信機からは第3図(a2)のよ
うな信号が送信されることになる。また基準局13にお
いては信号発生部にて生成された信号とON/OFF信
号が遅延調整されることなく、そのまま送信機に出力さ
れる。
These signals are passed through the variable delay circuit 31 and the terminals 33, 3
4 is output to the transmitter, and the transmitter transmits a signal as shown in FIG. 3 (a 2 ). In the reference station 13, the signal generated by the signal generator and the ON / OFF signal are output to the transmitter as they are without delay adjustment.

一方、前述したように基準局13および自局14から送
信された第3図(a1)、(a2)に示す信号は、受信機15で
受信され第3図(b)のような信号として、第4図の端子
28から入力される。第5図に示すように、時間差測定
部30は、端子28から入力された信号から検出回路3
5によって基準局13の識別符号を検出するとタイマ3
7をスタートし、次に検出回路36によって自局14の
識別符号を検出するとタイマ37をストップして出力端
子38に時間差Hを出力する。この基地局13、14の
識別符号の受信タイミングの差Hは、時間差測定部30
によって繰り返し測定され、位相同期制御部32に出力
される。位相同期制御部32では前述の式(1)によ
り、HとTから位相ずれDを求め、位相ずれがある場合
は可変遅延回路31をDだけ調整する。
On the other hand, the signals shown in FIGS. 3 (a 1 ) and (a 2 ) transmitted from the reference station 13 and the own station 14 as described above are received by the receiver 15 and are converted into signals as shown in FIG. 3 (b). , Is input from the terminal 28 in FIG. As shown in FIG. 5, the time difference measuring unit 30 detects the detection circuit 3 from the signal input from the terminal 28.
When the identification code of the reference station 13 is detected by 5, the timer 3
7 is started, and when the detection circuit 36 detects the identification code of the local station 14, the timer 37 is stopped and the time difference H is output to the output terminal 38. The difference H between the reception timings of the identification codes of the base stations 13 and 14 is determined by the time difference measuring unit 30.
Is repeatedly measured by and is output to the phase synchronization control unit 32. The phase synchronization control unit 32 obtains the phase shift D from H and T by the above equation (1), and adjusts the variable delay circuit 31 by D when there is a phase shift.

従って、基準局13と調整局14から送信される信号に
位相ずれがあった場合、調整局14の位相同期監視・調
整部によって検出され、位相ずれを修正して、位相同期
が維持される。
Therefore, when there is a phase shift between the signals transmitted from the reference station 13 and the adjustment station 14, it is detected by the phase synchronization monitoring / adjustment unit of the adjustment station 14, the phase shift is corrected, and the phase synchronization is maintained.

以上の説明においては、第3図の(a1)と(a2)の関係によ
って2基地局の場合について述べたが、3以上の基地局
によりサービスする場合においても、基準局の周辺に位
置する調整局が直接基準局の無線チャネルを受信できれ
ば、個々の調整局が上述の動作を行なうことにより、基
準局と位相同期がとれ、調整局相互の間でも位相の同期
が確立できる。
In the above description, the case of two base stations was described based on the relationship between (a 1 ) and (a 2 ) in FIG. 3, but even when service is provided by three or more base stations, they are located around the reference station. If the coordinating station can directly receive the radio channel of the reference station, the individual coordinating stations perform the above-described operation to establish phase synchronization with the reference station, and the phase synchronization can be established between the coordinating stations.

また、識別符号の受信タイミングの差Hを複数回測定
し、位相同期制御部32ではそれらを平均した値av
(H)により、位相ずれDを算出してもよい。
Further, the difference H between the reception timings of the identification codes is measured a plurality of times, and the phase synchronization control unit 32 averages them to obtain a value av.
The phase shift D may be calculated from (H).

すなわち、 D=T−av(H)………………(2) これによって、Hに含まれる受信波形のジッタによる誤
差を小さくすることができ、より正確な位相同期の監視
・調整が可能になる。
That is, D = T-av (H) (2) By this, the error due to the jitter of the received waveform included in H can be reduced, and more accurate monitoring and adjustment of the phase synchronization is possible. become.

また、位相ずれの他の測定法として識別符号の受信タイ
ミングの差Hを複数回測定し、位相同期制御部32では
それらの測定値をビット長単位に量子化してから処理す
る方法を採っても良い。
Further, as another method of measuring the phase shift, a method may be used in which the difference H in the reception timing of the identification code is measured a plurality of times, and the phase synchronization control unit 32 quantizes the measured values in bit length units and then processes. good.

第6図に量子化した測定値の度数分布例を示す。同図に
おいては、真の位相ずれが0の場合について示してい
る。大多数の測定値は受信波形のジッタによる誤差があ
ったとしても±180°(±0.5ビット)の範囲に分布
する。少数の測定値が離れて分布しているのは他の基地
局の識別符号を誤受信したものであり、量子化した値の
間で多数決をとることにより、これらを区別して棄却す
ることができる。さらに誤受信の測定値を取り除いた後
でも平均化を行なうことにより、ジッタ成分の除去も可
能となる。
FIG. 6 shows an example of frequency distribution of quantized measurement values. The figure shows the case where the true phase shift is zero. Most of the measured values are distributed in the range of ± 180 ° (± 0.5 bit) even if there is an error due to the jitter of the received waveform. A small number of measured values are distantly distributed because the identification codes of other base stations are erroneously received, and by taking a majority decision among the quantized values, these can be discriminated and rejected. . Furthermore, the jitter component can be removed by averaging even after removing the erroneous reception measurement value.

第7図は本発明の応用例を示す図であって、39〜42
は無線ゾーン、43〜46は基地局、47は回線制御局
を表わしている。
FIG. 7 is a diagram showing an application example of the present invention.
Represents a wireless zone, 43 to 46 represent base stations, and 47 represents a line control station.

ここでは、各基地局の位相同期用受信機が隣接する基地
局の送信する無線チャネルしか受信できないものとす
る。このとき基地局43を基準局とし、他の44〜46
を調整局とすると、45、46は基準局43の無線チャ
ネルを直接受信できない。
Here, it is assumed that the phase synchronization receiver of each base station can only receive the radio channel transmitted by the adjacent base station. At this time, the base station 43 is used as a reference station, and the other 44 to 46
Is a coordinating station, 45 and 46 cannot directly receive the radio channel of the reference station 43.

そこで、まず制御局47の指示によって基準局43に対
して調整局44が前記実施例と同様に位相同期の調整を
行ない、基地局43と44の位相が一致した後、制御局
47は基地局44を基準局として、調整局45を調整す
るように指示する。更に、基地局44と45の位相が一
致した後、制御局47は基地局45を基準局として、調
整局45を調整するように指示する。
Therefore, first, the adjusting station 44 adjusts the phase synchronization with respect to the reference station 43 in accordance with an instruction from the control station 47 in the same manner as in the above-described embodiment, and after the phases of the base stations 43 and 44 match, the control station 47 causes the base station 44 Is used as a reference station to instruct adjustment station 45 to be adjusted. Further, after the phases of the base stations 44 and 45 match, the control station 47 gives an instruction to adjust the adjusting station 45 with the base station 45 as the reference station.

このようにして、本来の基準局の無線チャネルを直接受
信できない調整局に関しても、位相同期が確立した基地
局を順次基準局とみなすことによって、位相同期をとる
ことができる。
In this way, even for the coordinating station that cannot directly receive the radio channel of the original reference station, the phase synchronization can be achieved by sequentially considering the base stations whose phase synchronization has been established as the reference station.

第8図は本発明のさらに別の応用例を示す図であって、
48〜50は無線ゾーン、51〜53は基地局を表わし
ている。
FIG. 8 is a diagram showing still another application example of the present invention,
48 to 50 represent wireless zones and 51 to 53 represent base stations.

同図で基地局51は基準局、基地局52、53は基地局
51を基準局とする調整局である。また、基地局52は
基地局53の無線チャネルも受信可能とする。
In the figure, a base station 51 is a reference station, and base stations 52 and 53 are coordination stations having the base station 51 as a reference station. Further, the base station 52 can also receive the radio channel of the base station 53.

このように基地局51を基準とした位相同期がとられて
いる時に、基準局51が故障して無線チャネルの送信が
停止したり、基地局51から52の間に新たに建築物が
できるなど、伝搬条件が変化して、基地局52で51の
無線チャネルが受信できなくなった場合について以下に
述べる。
In this way, when the phase synchronization with the base station 51 as a reference is taken, the reference station 51 breaks down and the transmission of the wireless channel is stopped, or a new building is formed between the base stations 51 and 52. A case will be described below in which the propagation condition changes and the base station 52 cannot receive the radio channel 51.

上記の場合のように基地局52において基準局51の無
線チャネルが受信できなくなった場合には、識別符号が
検出できなくなることにより分かるので、基地局52は
基準局を基地局53に切り替える。これは検出する識別
符号を53のものに設定しなおすことにより、容易に実
現可能である。
When the base station 52 cannot receive the radio channel of the reference station 51 as in the above case, the identification code cannot be detected, so the base station 52 switches the reference station to the base station 53. This can be easily realized by resetting the detected identification code to 53.

また、基地局51が送信をとめた場合は、基地局53も
基準局を受信できなくなり、基地局53は自走状態にな
るが、基地局52が基地局53に対して位相を一致させ
るために、基地局52と53の位相同期は維持される。
Further, when the base station 51 stops transmitting, the base station 53 cannot receive the reference station, and the base station 53 is in the free-running state. However, since the base station 52 matches the phase with the base station 53. , The phase synchronization of the base stations 52 and 53 is maintained.

このようにして、調整局において基準局の切り替えをす
ることにより、基準局の無線チャネルが調整局で受信で
きなくなった場合においても、各基地局間の位相同期を
保持することが可能である。
By thus switching the reference station in the coordinating station, it is possible to maintain the phase synchronization between the base stations even when the radio channel of the reference station cannot be received by the coordinating station.

次に位相同期の調整ごさが大きい場合について述べる。
基準局に対して調整局が位相同期をとった時の誤差が±
σであるとする。
Next, the case where the adjustment amount of phase synchronization is large will be described.
The error when the adjustment station is in phase synchronization with the reference station is ±
Let σ.

第8図において基地局51を基準局とし、基地局52、
53をそれぞれ基準局51に対する調整局とすると、最
悪の場合、基地局52と53の間の位相のずれは2σと
なる。
In FIG. 8, the base station 51 is used as a reference station, and the base station 52,
If 53 is each an adjustment station for the reference station 51, in the worst case, the phase shift between the base stations 52 and 53 is 2σ.

また、基地局51に対して基地局53を調整局とし、基
地局53に対して基地局52を調整局とした場合にも、
基地局51と52の間の位相のずれはやはり最悪2σで
ある。
Further, when the base station 53 is the coordinating station for the base station 51 and the base station 52 is the coordinating station for the base station 53,
The phase shift between the base stations 51 and 52 is still 2σ at worst.

ところが、基地局52において基地局51と53の両方
を基準局とした場合、即ち、両基地局に対する位相ずれ
を測定して、それらの平均によって位相同期の調整を行
なう場合には、基地局51と53の間における位相ずれ
が最大σあった場合においても、基地局51と52の間
あるいは基地局52と53の間における誤差は最悪でも
1.5σとなり、2基地局を基準局として平均をとったほ
うが有利であることが分かる。
However, in the base station 52, when both the base stations 51 and 53 are used as the reference stations, that is, when the phase shift for both base stations is measured and the phase synchronization is adjusted by the average thereof, the base station 51 and Even when the phase shift between 53 is maximum σ, the error between the base stations 51 and 52 or the base stations 52 and 53 is at worst.
It becomes 1.5σ, and it can be seen that it is more advantageous to take the average with two base stations as reference stations.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、無線チャネルが
サービス状態のままで、基準局と自局の位相同期状態を
監視し、位相ずれがある場合には調整を行なうことがで
きるので、位相同期のために無線チャネルを別に用意す
る必要がないという利点がある。
As described above, according to the present invention, it is possible to monitor the phase synchronization state of the reference station and the own station while the wireless channel remains in the service state, and to adjust if there is a phase shift. Therefore, there is an advantage that it is not necessary to separately prepare a wireless channel.

また、無線区間の送信信号を直接比較して位相ずれを監
視・調整するため、従来方式に比べて正確な位相同期を
とることができる利点もある。
In addition, since the phase shift is monitored and adjusted by directly comparing the transmission signals in the wireless section, there is an advantage that more accurate phase synchronization can be achieved as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の複局送信位相同期方式の構成を示す図、
第2図は本発明の1実施例の構成を示す図、第3図は送
信信号のタイムチャート例を示す図、第4図は本発明の
1実施例の調整局における位相同期監視・調整部の構成
の例を示すブロック図、第5図は本発明の1実施例の位
相同期監視・調整部における時間差測定部の構成の例を
示すブロック図、第6図は量子化した位相ずれ測定値の
度数分布の例を示す図、第7図は本発明の応用例の無線
ゾーン配置を示す図、第8図は本発明の他の応用例の無
線ゾーン配置を示す図である。 1,12,47……回線制御局、2,13……位相同期
時に基準となる基地局(基準局)、3,14……位相同
期時に調整する基地局(調整局)、4,15……位相同
期用受信機、5,6,16,17……下り回線、7,1
9……基準局より送信される無線チャネル、8,20…
…調整局より送信される無線チャネル、9……受信機4
の上り回線、10,22,39〜42,48〜50……
無線ゾーン、11,18……可変遅延回路、21……受
信機15で受信した信号を調整局14に転送する回線、
23,26……各基地局が同時に送信するタイムスロッ
ト、24−1……基準局が送信するタイムスロット、2
4−2〜24−n……調整局が送信するタイムスロッ
ト、27……回線制御局からの信号の入力端子、28…
…受信機からの受信信号入力端子、29……信号発生
部、30……時間差測定部、31……可変遅延回路、3
2……位相同期制御部、33……送信機への送信信号出
力端子、34……送信機へのON/OFF信号出力端
子、35……基準局の識別符号の検出回路、36……調
整局の識別符号の検出回路、37……タイマ、38……
位相同期制御部への出力端子、43〜46,51〜53
……基地局
FIG. 1 is a diagram showing a configuration of a conventional multi-station transmission phase synchronization system,
FIG. 2 is a diagram showing a configuration of an embodiment of the present invention, FIG. 3 is a diagram showing an example of a time chart of a transmission signal, and FIG. 4 is a phase synchronization monitoring / adjusting unit in an adjusting station of an embodiment of the present invention. FIG. 5 is a block diagram showing an example of the configuration of the time difference measuring unit in the phase synchronization monitoring / adjusting unit of one embodiment of the present invention, and FIG. 6 is a quantized phase shift measurement value. 7 is a diagram showing an example of the frequency distribution of FIG. 7, FIG. 7 is a diagram showing a wireless zone arrangement of an application example of the present invention, and FIG. 8 is a diagram showing a wireless zone arrangement of another application example of the present invention. 1, 12, 47 ... Line control station, 2, 13 ... Base station (reference station) that serves as a reference during phase synchronization, 3, 14 ... Base station (adjustment station) adjusted during phase synchronization, 4, 15 ... Phase synchronization receivers, 5, 6, 16, 17 ... Downlink, 7, 1
9 ... Radio channel transmitted from the reference station, 8, 20 ...
… Radio channel transmitted from coordination station, 9… Receiver 4
Uplink, 10, 22, 39-42, 48-50 ...
Radio zone, 11, 18 ... Variable delay circuit, 21 ... Line for transferring signal received by receiver 15 to adjustment station 14,
23, 26 ... Time slots transmitted by each base station at the same time, 24-1 ... Time slots transmitted by the reference station, 2
4-2 to 24-n ... Time slot transmitted by the coordinating station, 27 ... Input terminal for signals from the line control station, 28 ...
... Received signal input terminal from receiver, 29 ... Signal generating section, 30 ... Time difference measuring section, 31 ... Variable delay circuit, 3
2 ... Phase synchronization control unit, 33 ... Transmitter signal output terminal to transmitter, 34 ... ON / OFF signal output terminal to transmitter, 35 ... Reference station identification code detection circuit, 36 ... Coordination station Identification code detection circuit, 37 ... Timer, 38 ...
Output terminals to the phase synchronization control unit, 43 to 46, 51 to 53
……base station

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の無線ゾーンでサービスエリアを構成
し、該各無線ゾーンに基地局を配置し、該各基地局から
はサービスエリア内で共通の無線チャネルによって同一
信号を同時送信する移動通信の系において、該無線チャ
ネルに各基地局が個別に時分割で使用するタイムスロッ
トを設け、該タイムスロットによって各基地局の識別符
号を送信する手段を設けると共に、該複数の基地局のう
ちの1つを位相同期の基準局とし、他の局を該基準局の
位相に同期させる調整局として、該調整局には、基準局
および自局の送信する無線チャネルを受信する手段と、
基準局と自局の識別符号の受信タイミングの差を測定す
る手段と、自局の信号送信タイミングの遅延量を調整す
る手段とを設け、該調整局は、基準となる基地局と自局
の識別符号の受信タイミングの差から位相ずれを算出
し、位相ずれが存在する場合は自局の信号送信タイミン
グの遅延量を調整することによって、各基地局が複局同
時送信する信号の位相同期を監視・調整することを特徴
とする複局送信位相同期方式。
1. A mobile communication system in which a service area is constituted by a plurality of wireless zones, a base station is arranged in each of the wireless zones, and the same signal is simultaneously transmitted from each of the base stations by a common wireless channel within the service area. In this system, a time slot that each base station uses individually in a time division is provided in the radio channel, and means for transmitting the identification code of each base station by the time slot is provided, and among the plurality of base stations, One of the reference stations is a phase-synchronized reference station, and another station is an adjustment station that synchronizes with the phase of the reference station, and the adjustment station has means for receiving the reference station and a radio channel transmitted by the own station.
A means for measuring the difference between the reception timings of the identification codes of the reference station and the own station and a means for adjusting the delay amount of the signal transmission timing of the own station are provided, and the adjustment station identifies the reference base station and the own station. Phase shift is calculated from the difference in code reception timing, and if there is a phase shift, the delay of the signal transmission timing of the local station is adjusted to monitor the phase synchronization of the signals transmitted simultaneously by multiple base stations. -Multi-station transmission phase synchronization method characterized by adjustment.
【請求項2】各調整局において基準局と自局の識別符号
の受信タイミングの差を複数回測定し、それらの測定値
の平均値から位相ずれを算出する特許請求の範囲第(1)
項記載の複局送信位相同期方式。
2. The phase shift is calculated from the average value of the measured values of the reception timings of the identification codes of the reference station and the own station at each adjusting station a plurality of times, and the phase shift is calculated.
The multi-station transmission phase synchronization method described in the item.
【請求項3】各調整局において基準局と自局の識別符号
の受信タイミングの差を複数回測定し、それらの測定値
をビット長単位に量子化した値の間で多数決をとり、該
多数決で得た量子化値についてのみ元の測定値の平均を
とって位相ずれを算出する特許請求の範囲第(1)項記載
の複局送信位相同期方式。
3. Each adjustment station measures the difference in the reception timing of the identification code between the reference station and its own station a plurality of times, and a majority decision is made among the values quantized in bit length units. The multi-station transmission phase synchronization method according to claim (1), wherein the phase shift is calculated by averaging the original measured values only for the obtained quantized values.
JP61169828A 1986-07-21 1986-07-21 Multi-station transmission phase synchronization method Expired - Lifetime JPH0654895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61169828A JPH0654895B2 (en) 1986-07-21 1986-07-21 Multi-station transmission phase synchronization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61169828A JPH0654895B2 (en) 1986-07-21 1986-07-21 Multi-station transmission phase synchronization method

Publications (2)

Publication Number Publication Date
JPS6327133A JPS6327133A (en) 1988-02-04
JPH0654895B2 true JPH0654895B2 (en) 1994-07-20

Family

ID=15893662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61169828A Expired - Lifetime JPH0654895B2 (en) 1986-07-21 1986-07-21 Multi-station transmission phase synchronization method

Country Status (1)

Country Link
JP (1) JPH0654895B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300721A (en) * 1988-05-30 1989-12-05 Nippon Telegr & Teleph Corp <Ntt> Tdma radio communication system
US4914649A (en) * 1988-09-12 1990-04-03 Motorola, Inc. Multiple frequency message system
US20070177492A1 (en) * 2006-01-27 2007-08-02 Qualcomm Incorporated Methods and tools for expanding coverage of an ofdm broadcast transmitter via transmit timing advance
JP4546567B2 (en) * 2009-01-05 2010-09-15 株式会社日立製作所 Wireless base station

Also Published As

Publication number Publication date
JPS6327133A (en) 1988-02-04

Similar Documents

Publication Publication Date Title
US6470006B1 (en) Timing control of transmission time slot
JP3290831B2 (en) Antenna device and base station
US6285876B1 (en) Test unit with programmable transmit timing for telecommunication systems
US20090279531A1 (en) Method for synchronizing radio communication system divided into radio cells
JPH06334593A (en) Mobile communication system base station synchronizing method
KR100512543B1 (en) Synchronizing base stations in a wireless telecommunications system
CA2294835A1 (en) Method, mobile station and base station for frequency synchronization for a mobile station in a radio communications system
AU1239599A (en) Base station synchronization method and cellular system
US6064888A (en) Method and system for determining position of mobile radio terminals
JPH0654895B2 (en) Multi-station transmission phase synchronization method
JPS59161138A (en) Controlling system of mobile communication system
AU2570697A (en) Method for measuring intermodulation
JP2970989B2 (en) Radio frame synchronization method and base station for mobile communication system
EP0821496A2 (en) Interoffice phase synchronization system and interoffice phase synchronization method
JPH09275382A (en) Synchronization adjustment method in time division duplex communication method and communication system using it
JP3076308B2 (en) Mobile communication system
KR100596724B1 (en) An apparatus and method of synchronization systems for TDD based small-scaled radio frequency repeaters
JPH01300721A (en) Tdma radio communication system
JPH02276322A (en) Automatic inter-station phase compensating system
JPH0336342B2 (en)
JPS63132535A (en) Start control system for radio repeating and transmitting station
JPH08116569A (en) Radio transmission system,central radio station and radio station
JPH06103853B2 (en) Same frequency time division transmission / reception mobile communication system
JP3048930B2 (en) Digital cordless telephone equipment
JPH0815345B2 (en) Phase adjustment method in mobile communication system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term