JPH065385A - Ecr plasma ion generating device - Google Patents

Ecr plasma ion generating device

Info

Publication number
JPH065385A
JPH065385A JP4160594A JP16059492A JPH065385A JP H065385 A JPH065385 A JP H065385A JP 4160594 A JP4160594 A JP 4160594A JP 16059492 A JP16059492 A JP 16059492A JP H065385 A JPH065385 A JP H065385A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
generating means
plasma ion
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4160594A
Other languages
Japanese (ja)
Inventor
Toshihisa Nozawa
俊久 野沢
Takashi Kinoshita
隆 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4160594A priority Critical patent/JPH065385A/en
Publication of JPH065385A publication Critical patent/JPH065385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To provide an ECR plasma ion generating device which generates a stable plasma condition at all times by suppressing variation of the magnetic field profile. CONSTITUTION:An ECR plasma ion generating device A' turns a gas to be processed into plasma ions using the electron cyclotron resonance-(ECR) phenomenon generated by the interaction between the magnetic field generated by allowing a current to flow in at least a pair of in-line laid magnetic coils 6, 6 and the electric field generated by introducing microwaves into this magnetic field. Therein the magnetic field is sensed by sensors 8, 8 and measured by magnetic field measuring instruments 9, 9, and the current flowing to the coils 6, 6 is varied by a controller 10 in accordance with the obtained magnetic field so that the magnetic field is controlled. According to this configuration, an always stable plasma condition can be obtained through suppressing the variation of the magnetic field profile.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はECRプラズマイオン発
生装置に係り,詳しくはLSI等の製造に用いられるE
CRプラズマイオン発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ECR plasma ion generator, and more particularly to an ECR plasma ion generator used for manufacturing an LSI or the like.
The present invention relates to a CR plasma ion generator.

【0002】[0002]

【従来の技術】近年,LSI等の製造では,プラズマ反
応によるリソグラフィや薄膜成形技術であるECRエッ
チング,ECRスパッタリング,ECRプラズマCVD
等の各種処理(以下エッチング処理等と略す)方法が広
く用いられている。エッチング処理等を行うECRプラ
ズマイオン発生装置は,磁場とマイクロ波により発生す
る電場との相互作用によって生じる電子サイクロトロン
共鳴(Electron Cyclotron Res
onance,ECR)現象を用いて処理ガスをプラズ
マイオン化し,試料基板やターゲット等の被照射物に照
射するものである。図2は従来のECRプラズマイオン
発生装置Aの一例における概略構成を示す模式図であ
る。図2に示す如く,従来の装置Aでは,マイクロ波
は,マイクロ波発振器1からオートチューナ2及び導波
管3を介して石英ガラス板よりなるマイクロ波導入窓4
から処理ガスの入った真空容器内5へ導入される。真空
容器5の回りにこれを取り囲むように配置された磁気コ
イル6,6により真空容器5内に磁場が印加される。マ
イクロ波としては,一般的には工業周波数である2.4
5GHzのものが利用される。したがって,ECR条件
を満たす磁場強度(磁束密度)は875G(ガウス)と
なり,この875Gの面が最大のプラズマ密度が得られ
るECR面となる。このECR面から少し離して試料基
板11等を配置し,プラズマイオン化された処理ガスを
照射することにより,エッチング処理等が行われる。こ
の時,マイクロ波はオートチューナ2を用いることによ
り,常に一定の状態で磁場内に送られる。また,磁気コ
イルは通常いくつかのコイルが組み合わされ,試料基板
11の最適なエッチング処理等が行えるようにそれぞれ
のコイル電流が調整される(図中,1対の磁気コイル
6,6が並設されている)。即ち,磁場コイル6,6に
流す電流のコイル電源7,7には負荷の抵抗の変動にか
かわらず一定の電流が流れるような電源が使用されてお
り,コイル電流は予め実験を行い最適なエッチング処理
状態等が得られるように設定される。その後はそこで設
定されたコイル電流を使用して運転が行われる。このよ
うにして所定のプラズマ状態を得ることにより,エッチ
ング処理等を行うことができた。
2. Description of the Related Art In recent years, in the production of LSIs and the like, lithography by plasma reaction and thin film forming technology such as ECR etching, ECR sputtering, ECR plasma CVD
Various treatment methods (hereinafter abbreviated as etching treatment etc.) are widely used. An ECR plasma ion generator that performs an etching process or the like uses an electron cyclotron resonance (Electron Cyclotron Res) generated by an interaction between a magnetic field and an electric field generated by a microwave.
oncance, ECR) phenomenon is used to plasma-ionize a processing gas and irradiate an irradiation target such as a sample substrate or a target. FIG. 2 is a schematic diagram showing a schematic configuration in an example of a conventional ECR plasma ion generator A. As shown in FIG. 2, in the conventional device A, the microwave is transmitted from the microwave oscillator 1 through the auto tuner 2 and the waveguide 3 to the microwave introduction window 4 made of a quartz glass plate.
Is introduced into the vacuum container 5 containing the processing gas. A magnetic field is applied inside the vacuum container 5 by the magnetic coils 6 and 6 arranged around the vacuum container 5 so as to surround the vacuum container 5. As a microwave, the industrial frequency is generally 2.4.
5 GHz is used. Therefore, the magnetic field strength (magnetic flux density) satisfying the ECR condition is 875 G (Gauss), and this 875 G surface is the ECR surface where the maximum plasma density is obtained. By arranging the sample substrate 11 and the like slightly away from the ECR surface and irradiating the plasma-ionized processing gas, etching processing and the like are performed. At this time, the microwave is always sent in a constant state in the magnetic field by using the auto tuner 2. In addition, the magnetic coil is usually a combination of several coils, and the respective coil currents are adjusted so that the sample substrate 11 can be optimally etched (a pair of magnetic coils 6 and 6 is arranged in parallel in the figure). Has been). That is, the coil power supplies 7 and 7 for the currents to be applied to the magnetic field coils 6 and 6 are such that a constant current flows regardless of the fluctuation of the resistance of the load. It is set so that the processing state and the like can be obtained. After that, the operation is performed using the coil current set there. By obtaining a predetermined plasma state in this way, etching treatment and the like could be performed.

【0003】[0003]

【発明が解決しようとする課題】上記したような従来の
ECRプラズマイオン発生装置Aでは,電子サイクロト
ロン共鳴現象を利用しているので,マイクロ波および磁
場プロフィールが所定の値でないとそこで発生するプラ
ズマの状態が大きく異なってしまい,その結果エッチン
グ処理状態等も大きく異なってしまうことがある。この
ため,マイクロ波と磁場とは常に同じ状態になるように
コントロールされる必要がある。マイクロ波の供給にお
いては前述したようにオートチューナ2があり,常にマ
イクロ波の状態を監視しながらプラズマの変動に対応し
ている。即ち,負荷の変動を常にフィードバックした制
御を行っているため,マイクロ波の供給は常に同じ状態
に保つことができる。これに対し磁場の方は,一度設定
したコイル電流は常に一定であり,負荷の変動に対する
フィードバックはされていない。このため,エッチング
付着物等による真空容器5の経時変化によるプラズマ状
態の変化あるいは使用環境の変化により磁場強度が変化
した場合,この強度の変化を修正することができない。
その結果,磁場プロフィールが変動し,これに伴うエッ
チング処理状態等が変化してしまうことがあった。本発
明は,このような従来の技術における課題を解決するた
めに,ECRプラズマイオン発生装置を改良し,磁場プ
ロフィールの変動を抑えて常に安定したプラズマ状態が
得られるECRプラズマイオン発生装置を提供すること
を目的とするものである。
Since the conventional ECR plasma ion generator A as described above utilizes the electron cyclotron resonance phenomenon, if the microwave and magnetic field profiles do not have predetermined values, the plasma generated there will be generated. The state may change greatly, and as a result, the etching process state may change greatly. Therefore, the microwave and magnetic field must be controlled so that they are always in the same state. As described above, the microwave is supplied by the auto-tuner 2, which constantly monitors the state of the microwave to cope with the fluctuation of the plasma. That is, since the load is constantly fed back and controlled, the microwave supply can always be kept in the same state. On the other hand, in the case of the magnetic field, the coil current once set is always constant, and no feedback is given for load fluctuations. Therefore, when the magnetic field strength changes due to changes in the plasma state or changes in the operating environment due to changes over time in the vacuum container 5 due to etching deposits and the like, this change in strength cannot be corrected.
As a result, the magnetic field profile may fluctuate, and the etching process state may change accordingly. In order to solve the problems in the conventional technique, the present invention provides an ECR plasma ion generator which improves the ECR plasma ion generator and suppresses the variation of the magnetic field profile to obtain a stable plasma state at all times. That is the purpose.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,並設された少なくとも1対の磁気コイル群
に電流を流すことにより磁場を発生させる磁場発生手段
と,上記磁場発生手段により発生させる磁場内にマイク
ロ波を導入して電場を発生させる電場発生手段とを備
え,上記磁場発生手段により発生させる磁場と上記電場
発生手段により発生させる電場との相互作用によって生
じる電子サイクロトロン共鳴現象を用いて処理ガスをプ
ラズマイオン化するECRプラズマイオン発生装置にお
いて,少なくとも上記磁気コイル群に対応して設けられ
上記磁場発生手段により発生させる磁場を所定場所にて
検出する磁場センサ群と,上記磁場センサ群により検出
される磁場に応じて上記磁気コイル群に流す電流値を変
化させることにより上記磁場発生手段により発生させる
磁場を制御する磁場制御手段とを設けてなることを特徴
とするECRプラズマイオン発生装置として構成されて
いる。更には,上記所定場所が少なくとも上記マイクロ
波の導入部付近と上記試料付近とであるECRプラズマ
イオン発生装置である。
In order to achieve the above object, the present invention provides a magnetic field generating means for generating a magnetic field by passing an electric current through at least one pair of magnetic coil groups arranged in parallel, and the magnetic field generating means. And an electric field generating means for generating an electric field by introducing a microwave into a magnetic field generated by the electron cyclotron resonance phenomenon caused by the interaction between the magnetic field generated by the magnetic field generating means and the electric field generated by the electric field generating means. In an ECR plasma ion generator for plasma ionizing a processing gas by using a magnetic field sensor group, which is provided corresponding to at least the magnetic coil group and detects a magnetic field generated by the magnetic field generating means at a predetermined location, and the magnetic field sensor. By changing the value of the current flowing through the magnetic coil group according to the magnetic field detected by the group Is configured as ECR plasma ion generating apparatus characterized by comprising providing a magnetic field control means for controlling the magnetic field generated by serial magnetic field generating means. Further, it is an ECR plasma ion generator in which the predetermined place is at least in the vicinity of the microwave introduction portion and in the vicinity of the sample.

【0005】[0005]

【作用】本発明によれば,少なくとも磁場発生手段を構
成する磁気コイル群に対応して設けられた磁場センサ群
が上記磁場発生手段により発生させる磁場を所定場所に
て検出する。そして,磁場制御手段が上記磁場センサ群
により検出される磁場に応じて上記磁気コイル群に流す
電流値を変化させることにより上記磁場発生手段により
発生させる磁場を制御する。その結果,磁場プロフィー
ルの変動を抑えて常に安定したプラズマ状態を得ること
ができる。更に,上記所定場所を少なくともマイクロ波
の導入部付近と試料付近とすることにより,磁場センサ
群による磁場検出を比較的高精度に行うことができる。
According to the present invention, at least the magnetic field generated by the magnetic field generating means is detected at a predetermined location by the magnetic field sensor group provided corresponding to at least the magnetic coil group constituting the magnetic field generating means. Then, the magnetic field control means controls the magnetic field generated by the magnetic field generation means by changing the value of the current flowing through the magnetic coil group according to the magnetic field detected by the magnetic field sensor group. As a result, it is possible to suppress fluctuations in the magnetic field profile and always obtain a stable plasma state. Furthermore, the magnetic field can be detected by the magnetic field sensor group with relatively high accuracy by setting the predetermined place at least near the microwave introduction part and the sample.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係るECRプラズマイオ
ン発生装置A′の概略構成を示す模式図である。また,
前記図2に示した従来のECRプラズマイオン発生装置
Aの一例における概略構成を示す模式図と共通する要素
には同一の符号を使用する。図1に示す如く,本実施例
に係るECRプラズマイオン発生装置A′では,電場発
生手段に相当するマイクロ波発振器1,オートチューナ
2,導波管3及びマイクロ波導入窓4と,真空容器5
と,磁場発生手段に相当する磁気コイル6,6及びコイ
ル電源7,7とを備えている点は従来例と同様である。
しかし,本実施例ではマイクロ波導入窓4付近と試料基
板11付近とに磁気コイル6,6に対応して設けられた
磁場センサ8,8及び磁場サンサ8,8により検出され
る磁場を測定する磁場測定器9,9(磁場センサ8,8
及び磁場測定器9,9が磁場センサ群に相当)と,磁場
測定器9,9により測定された磁場に応じて磁気コイル
6,6に流す電流値を変化させることにより磁場を制御
する磁場コントローラ10(磁場制御手段に相当)とを
設けた点で従来例と異なる。本実施例では主として従来
例と異なる部分について説明し,従来例と同様の部分に
ついては既述の通りであるのでその詳細な説明は省略す
る。以下,本実施例に係るECRプラズマイオン発生装
置A′の動作について説明する。まず,磁場センサ8,
8はその設置場所の磁場強度を磁場測定器9,9を介し
て磁場コントローラ10におくる。磁場コントローラ1
0は所定の磁場強度に必要な電流を流すようにコイル電
源7,7に信号をおくる。コイル電源7,7は磁場コン
トローラ10から送られてきた信号にしたがって所定の
電流を磁気コイル6,6に流す。磁場プロフィールの制
御に先立って,予め実験等により各磁場センサ8,8の
位置における必要な磁場強度の値を求めておき,この値
を磁場コントローラ10に設定しておく。磁場コントロ
ーラ10は運転中の装置A′の磁場センサ8,8の位置
における磁場強度の値を磁場測定器9,9を介して受取
る。この受取値が設定値に対してずれていれば,設定値
に戻るように修正した電流値に相当する信号をコイル電
源7,7におくる。コイル電源7,7は信号に応じてコ
イル電流を変更する。このループにより,設定した磁場
強度が常に一定に保たれる。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a schematic diagram showing a schematic configuration of an ECR plasma ion generator A'according to an embodiment of the present invention. Also,
The same reference numerals are used for the elements common to the schematic diagram showing the schematic configuration in the example of the conventional ECR plasma ion generator A shown in FIG. As shown in FIG. 1, in the ECR plasma ion generator A'according to this embodiment, a microwave oscillator 1, an auto tuner 2, a waveguide 3 and a microwave introduction window 4 corresponding to an electric field generating means and a vacuum container 5 are provided.
And the magnetic coils 6 and 6 and the coil power sources 7 and 7 corresponding to the magnetic field generating means are the same as in the conventional example.
However, in the present embodiment, the magnetic field detected by the magnetic field sensors 8 and 8 and the magnetic field sensors 8 and 8 provided corresponding to the magnetic coils 6 and 6 near the microwave introduction window 4 and the sample substrate 11 are measured. Magnetic field measuring device 9, 9 (magnetic field sensor 8, 8
And the magnetic field measuring devices 9 and 9 correspond to a magnetic field sensor group), and a magnetic field controller for controlling the magnetic field by changing the value of the current flowing through the magnetic coils 6 and 6 according to the magnetic field measured by the magnetic field measuring devices 9 and 9. 10 (corresponding to the magnetic field control means) is different from the conventional example. In the present embodiment, parts different from the conventional example will be mainly described, and the same parts as the conventional example are as described above, and thus detailed description thereof will be omitted. The operation of the ECR plasma ion generator A'according to this embodiment will be described below. First, the magnetic field sensor 8,
8 sends the magnetic field strength of the installation location to the magnetic field controller 10 via the magnetic field measuring devices 9, 9. Magnetic field controller 1
For 0, a signal is sent to the coil power supplies 7 and 7 so that a current required for a predetermined magnetic field strength will flow. The coil power supplies 7 and 7 supply a predetermined current to the magnetic coils 6 and 6 according to the signal sent from the magnetic field controller 10. Prior to the control of the magnetic field profile, the value of the required magnetic field strength at the position of each magnetic field sensor 8, 8 is obtained in advance by experiments or the like, and this value is set in the magnetic field controller 10. The magnetic field controller 10 receives the value of the magnetic field strength at the position of the magnetic field sensor 8, 8 of the device A'in operation via the magnetic field measuring device 9, 9. If the received value deviates from the set value, a signal corresponding to the current value corrected to return to the set value is sent to the coil power supplies 7, 7. The coil power supplies 7 and 7 change the coil current according to the signal. With this loop, the set magnetic field strength is always kept constant.

【0007】以上のように本実施例の装置A′によれ
ば,磁場のプロフィールの変動を抑えてマイクロ波と磁
場とを同じ状態になるようにコントロールできるため,
常に安定したプラズマ状態が得られる。その結果,試料
基板11のエッチング,スパッタリング,CVD等の処
理状態を適性に保持することができ,装置A′の信頼性
が向上すると共に長期自動連続運転が可能となる。又,
上記実施例の磁場センサ8,8の位置はプラズマ発生エ
リア外の任意の場所に移動することもできるが,上記実
施例のようにマイクロ波導入窓4付近と試料基板11付
近とすれば磁場強度の分布状態に応じた磁場計測となる
ため,磁場の検出を比較的高精度に行うことができる。
又,上記実施例では磁場センサを磁気コイルと対応させ
ているが,実使用に際しては,磁場センサを追加配備し
ても良い。例えば,磁気コイル6,6に対応して設けら
れた磁場センサ8,8をマイクロ波導入窓4付近と試料
基板11付近とに設置し,これに加えて磁場センサ
8′,8′…をECR面付近の真空容器5まわり等に配
備することにより,磁場強度の分布状態をより正確に計
測可能となり,磁場の検出精度を更に向上させることが
できる。尚,上記実施例ではマイクロ波と磁場とをそれ
ぞれ独立して制御しているが,実使用に際しては両者を
組み合わせた制御(例えばカスケード制御等)を行って
も良い。この場合,マイクロ波と磁場とを同じ状態にな
るようにより正確にコントロールできるため,より安定
したプラズマ状態が得られ,装置A′の信頼性等を更に
向上させることができる。
As described above, according to the apparatus A'of the present embodiment, it is possible to suppress the variation of the magnetic field profile and control the microwave and the magnetic field to be in the same state.
A stable plasma state is always obtained. As a result, the processing states of the sample substrate 11, such as etching, sputtering, and CVD, can be appropriately maintained, the reliability of the apparatus A'is improved, and long-term automatic continuous operation is possible. or,
Although the positions of the magnetic field sensors 8 and 8 in the above-mentioned embodiment can be moved to any place outside the plasma generation area, the magnetic field strength is set near the microwave introduction window 4 and the sample substrate 11 as in the above-mentioned embodiment. Since the magnetic field is measured according to the distribution state of, the magnetic field can be detected with relatively high accuracy.
Further, although the magnetic field sensor is made to correspond to the magnetic coil in the above-mentioned embodiment, the magnetic field sensor may be additionally provided in actual use. For example, the magnetic field sensors 8 and 8 provided corresponding to the magnetic coils 6 and 6 are installed near the microwave introduction window 4 and the sample substrate 11, and in addition to this, the magnetic field sensors 8 ', 8' ... By disposing around the vacuum container 5 near the surface, the distribution state of the magnetic field strength can be measured more accurately, and the magnetic field detection accuracy can be further improved. In the above embodiment, the microwave and the magnetic field are controlled independently, but in actual use, control combining them (eg, cascade control) may be performed. In this case, since the microwave and the magnetic field can be controlled more accurately so that they are in the same state, a more stable plasma state can be obtained and the reliability of the apparatus A ′ can be further improved.

【0008】[0008]

【発明の効果】本発明に係るECRプラズマイオン発生
装置は,上記したように構成されているため,磁場のプ
ロフィールの変動を抑えてマイクロ波と磁場とを同じ状
態になるようにコントロールでき,常に安定したプラズ
マ状態が得られる。その結果,試料基板のエッチング,
スパッタリング,CVD等の処理状態を適正に保持する
ことができ,装置A′の信頼性が向上すると共に長期自
動連続運転が可能となる。又,磁場センサの位置はプラ
ズマ発生エリア外の任意の場所に移動することもできる
が,マイクロ波導入窓付近と試料基板付近とすれば磁場
強度の分布状態に応じた磁場計測となるため,磁場の検
出を比較的高精度に行うことができる。更に,磁気セン
サを追加配備することにより,磁場の検出精度を向上さ
せることもできる。
Since the ECR plasma ion generator according to the present invention is configured as described above, it is possible to suppress the variation of the magnetic field profile and control the microwave and the magnetic field to be in the same state, and A stable plasma state can be obtained. As a result, etching of the sample substrate,
The processing conditions such as sputtering and CVD can be properly maintained, the reliability of the apparatus A'is improved, and long-term automatic continuous operation is possible. The position of the magnetic field sensor can be moved to any place outside the plasma generation area. However, if it is near the microwave introduction window and near the sample substrate, the magnetic field will be measured according to the distribution state of the magnetic field strength. Can be detected with relatively high accuracy. Further, by additionally disposing a magnetic sensor, it is possible to improve the detection accuracy of the magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係るECRプラズマイオ
ン発生装置A′の概略構成を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of an ECR plasma ion generator A ′ according to an embodiment of the present invention.

【図2】 従来のECRプラズマイオン発生装置Aの一
例における概略構成を示す模式図。
FIG. 2 is a schematic diagram showing a schematic configuration of an example of a conventional ECR plasma ion generator A.

【符号の説明】[Explanation of symbols]

A′…ECRプラズマイオン発生装置 6…磁気コイル(磁場発生手段に相当) 8…磁場センサ(磁場センサ群に相当) 9…磁場測定器(磁場センサ群に相当) 10…磁場コントローラ(磁場制御手段に相当) A '... ECR plasma ion generator 6 ... Magnetic coil (corresponding to magnetic field generating means) 8 ... Magnetic field sensor (corresponding to magnetic field sensor group) 9 ... Magnetic field measuring device (corresponding to magnetic field sensor group) 10 ... Magnetic field controller (magnetic field control means) Equivalent to)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 並設された少なくとも1対の磁気コイル
群に電流を流すことにより磁場を発生させる磁場発生手
段と,上記磁場発生手段により発生させる磁場内にマイ
クロ波を導入して電場を発生させる電場発生手段とを備
え,上記磁場発生手段により発生させる磁場と上記電場
発生手段により発生させる電場との相互作用によって生
じる電子サイクロトロン共鳴現象を用いて処理ガスをプ
ラズマイオン化するECRプラズマイオン発生装置にお
いて,少なくとも上記磁気コイル群に対応して設けられ
上記磁場発生手段により発生させる磁場を所定場所にて
検出する磁場センサ群と,上記磁場センサ群により検出
される磁場に応じて上記磁気コイル群に流す電流値を変
化させることにより上記磁場発生手段により発生させる
磁場を制御する磁場制御手段とを設けてなることを特徴
とするECRプラズマイオン発生装置。
1. A magnetic field generating means for generating a magnetic field by passing an electric current through at least one pair of magnetic coil groups arranged in parallel, and a microwave is introduced into the magnetic field generated by the magnetic field generating means to generate an electric field. In an ECR plasma ion generating device, comprising: an electric field generating means for effecting plasma ionization of a processing gas by using an electron cyclotron resonance phenomenon generated by interaction between a magnetic field generated by the magnetic field generating means and an electric field generated by the electric field generating means , A magnetic field sensor group that is provided corresponding to at least the magnetic coil group and that detects a magnetic field generated by the magnetic field generating means at a predetermined location, and flows to the magnetic coil group according to the magnetic field detected by the magnetic field sensor group A magnetic field for controlling the magnetic field generated by the magnetic field generating means by changing the current value. An ECR plasma ion generator comprising a control means.
【請求項2】 上記所定場所が少なくとも上記マイクロ
波の導入部付近と上記試料付近とである請求項1記載の
ECRプラズマイオン発生装置。
2. The ECR plasma ion generator according to claim 1, wherein the predetermined locations are at least in the vicinity of the microwave introduction portion and in the vicinity of the sample.
JP4160594A 1992-06-19 1992-06-19 Ecr plasma ion generating device Pending JPH065385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160594A JPH065385A (en) 1992-06-19 1992-06-19 Ecr plasma ion generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160594A JPH065385A (en) 1992-06-19 1992-06-19 Ecr plasma ion generating device

Publications (1)

Publication Number Publication Date
JPH065385A true JPH065385A (en) 1994-01-14

Family

ID=15718332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160594A Pending JPH065385A (en) 1992-06-19 1992-06-19 Ecr plasma ion generating device

Country Status (1)

Country Link
JP (1) JPH065385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288799A (en) * 1998-01-26 1999-10-19 Commiss Energ Atom Linear microwave plasma generating device using permanent magnet
WO2018061235A1 (en) * 2016-09-28 2018-04-05 株式会社日立ハイテクノロジーズ Plasma treatment device and plasma treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288799A (en) * 1998-01-26 1999-10-19 Commiss Energ Atom Linear microwave plasma generating device using permanent magnet
WO2018061235A1 (en) * 2016-09-28 2018-04-05 株式会社日立ハイテクノロジーズ Plasma treatment device and plasma treatment method
KR20180051429A (en) * 2016-09-28 2018-05-16 가부시키가이샤 히다치 하이테크놀로지즈 Plasma processing apparatus and plasma processing method
TWI655666B (en) * 2016-09-28 2019-04-01 日商日立全球先端科技股份有限公司 Plasma processing device and plasma processing method
US10460913B2 (en) 2016-09-28 2019-10-29 Hitachi High-Technologies Corporation Plasma processing apparatus and plasma processing method

Similar Documents

Publication Publication Date Title
US5374327A (en) Plasma processing method
US5571366A (en) Plasma processing apparatus
US7853364B2 (en) Adaptive controller for ion source
CN101681781B (en) Ion sources and methods of operating an electromagnet of an ion source
US20130228550A1 (en) Dry etching apparatus and method
JPS60126832A (en) Dry etching method and device thereof
US7338581B2 (en) Sputtering apparatus
JP5210659B2 (en) Plasma processing equipment
US4585541A (en) Plasma anodization system
JP3923323B2 (en) Plasma processing apparatus and plasma processing method
JP3531511B2 (en) Plasma processing equipment
US6010755A (en) Method and apparatus for forming thin films using dual ECR plasma generators
JPH0927395A (en) Plasma treatment device, and plasma treatment method using this device
JPH065385A (en) Ecr plasma ion generating device
US6501082B1 (en) Plasma deposition apparatus and method with controller
JP2001007089A (en) Plasma treatment method and apparatus
US20090283502A1 (en) Plasma processing apparatus and control method for plasma processing apparatus
JP2000124204A (en) Method for measuring anions in plasma, and method and device for plasma treatment
JPS62228482A (en) Low-temperature plasma treating device
JPS63103088A (en) Plasma treating device
Samukawa et al. Optimally stable electron cyclotron resonance plasma generation and essential points for compact plasma source
JPH06216073A (en) Plasma processing apparatus
JP3038828B2 (en) Plasma processing method
JPH07263180A (en) Plasma measuring method
JPH0757682A (en) Ion radiating device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040302

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110319

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120319

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130319

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

EXPY Cancellation because of completion of term