JPH0653744B2 - Alkyl cyanophthalocyanine compound - Google Patents

Alkyl cyanophthalocyanine compound

Info

Publication number
JPH0653744B2
JPH0653744B2 JP60252038A JP25203885A JPH0653744B2 JP H0653744 B2 JPH0653744 B2 JP H0653744B2 JP 60252038 A JP60252038 A JP 60252038A JP 25203885 A JP25203885 A JP 25203885A JP H0653744 B2 JPH0653744 B2 JP H0653744B2
Authority
JP
Japan
Prior art keywords
gas
compound
alkyl
phthalocyanine
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60252038A
Other languages
Japanese (ja)
Other versions
JPS62111984A (en
Inventor
道也 藤木
栗原  隆
久男 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60252038A priority Critical patent/JPH0653744B2/en
Publication of JPS62111984A publication Critical patent/JPS62111984A/en
Publication of JPH0653744B2 publication Critical patent/JPH0653744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルキル基とシアノ基とを両方含むフタロシ
アニン化合物に関する。
TECHNICAL FIELD The present invention relates to a phthalocyanine compound containing both an alkyl group and a cyano group.

〔従来の技術〕[Conventional technology]

アルキル置換フタロシアニン化合物は、通常の無置換フ
タロシアニンに比べ溶解性が高くなることが知られ、導
電性、光導電性、ガスセンサー等の機能が期待されてい
る。これまで報告されているアルキル置換フタロシアニ
ンに関し、t−ブチル置換フタロシアニンがラングミユ
アープロジエツト(以下LBと略記する)法を用いて薄
膜形成できることが示されている〔コバクスG.J.(Kovac
s G.J.)ほか、カナデイアンジヤーナル オブ フイジ
クス(Can.J.Phys.)、第63巻、第346〜349頁
(1985年)、フライヤーJ.R.(fryer J.R.)ほか、
ネイチヤー(Nature)、第313巻、第382〜384
頁(1985年)、ベーカーS.(Baker s.)ほか、シン
ソリツド フイルム(Thin Solid Film)、第99
巻、第53〜59頁(1983年)〕。これらの報告に
よれば、分子極限断面積に関し、実測値と計算値とは必
ずしも一致しないし、実測値は報告者によつてまちまち
である。その原因について、本発明者等はフタロシアニ
ン環に極性の弱いt−ブチル基が置換されていることに
より、フタロシアニン溶液を水面上に展開する際、いく
らか高次の会合体が形成されているためと推定してい
る。これらのt−ブチル置換フタロシアニン薄膜の導電
性は報告されていないが、特開昭58−141246号
公報には、中心金属がCuの系で、アンモニアガスにさら
すことによつて導電率が20倍上昇するということが示
されている。t−ブチル置換ではないが、トリ(イソ−
プロピルアミノメチレン)銅フタロシアニンLB膜にお
いて、NO2ガスにさらすことによつて導電率が6倍上昇
したという報告がある〔ロバーツG.G.(Roberts G.G.)
ほか、IEE−プロシーデイング(Proceeding)I、第
130巻、第260〜263頁(1983年)〕。
It is known that the alkyl-substituted phthalocyanine compound has higher solubility than ordinary unsubstituted phthalocyanine, and is expected to have functions such as conductivity, photoconductivity, and gas sensor. Regarding the alkyl-substituted phthalocyanines reported so far, it has been shown that a t-butyl-substituted phthalocyanine can be formed into a thin film by using the Langmuir project (hereinafter abbreviated as LB) method [Kovacs GJ (Kovac
s GJ), Cana Deyan Journal of Physics (Can.J.Phys.), Volume 63, 346-349 (1985), fryer JR, etc.
Nature, Volume 313, Volumes 382-384
P. (1985), Baker S., Thin Solid Film, 99th.
Vol. 53-59 (1983)]. According to these reports, the measured value and the calculated value do not always match with respect to the molecular limit cross-sectional area, and the measured value varies depending on the reporter. The reason for this is that the present inventors have found that when the phthalocyanine solution is developed on the water surface, a somewhat higher-order aggregate is formed because the phthalocyanine ring is substituted with a weakly polar t-butyl group. I'm estimating. The conductivity of these t-butyl-substituted phthalocyanine thin films has not been reported, but JP-A-58-141246 discloses that the central metal is Cu and the conductivity is 20 times higher by exposing it to ammonia gas. It has been shown to rise. Although not t-butyl substituted, tri (iso-
It has been reported that the conductivity of propylaminomethylene) copper phthalocyanine LB film was increased by 6 times by exposing it to NO 2 gas [Roberts GG]
In addition, IEEE-Proceeding I, Vol. 130, pp. 260-263 (1983)].

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

これらのフタロシアニン薄膜は、アクセプター性ガス、
ドナー性ガスに対する導電率変化は極めて小さく、した
がつて、感度が極めて低いという欠点を有している。ま
た、ガスセンサーとしての観点から考えると、実用的に
はガス濃度減少に対する回復応答性が重要な問題にな
る。t−ブチル置換ニツケルフタロシアニンのLB膜に
ついてのI2及びトリエチルアミンガスに対する応答性を
調べた結果では、I2ガス導入に際しては急速な立上がり
を示し、良好な応答を示すが、ガス排出に対しては、初
期の低導電状態に回復するのに60分近くの時間を要す
るという致命的な欠点がある(後記比較例参照)。ま
た、アンモニア性のトリエチルアミンのようなガスに対
しては応答性も遅く、導電率変化も高々2倍程度である
という結果が得られる。
These phthalocyanine thin films are composed of acceptor gas,
The change in conductivity with respect to the donor gas is extremely small, and therefore the sensitivity is extremely low. Further, from the viewpoint of a gas sensor, the recovery responsiveness to a decrease in gas concentration is an important issue in practical use. As a result of investigating the responsiveness of t-butyl-substituted nickel phthalocyanine to the LB film to I 2 and triethylamine gas, the result shows a rapid rise upon introduction of I 2 gas and a good response, but to gas discharge. However, there is a fatal defect that it takes nearly 60 minutes to restore the initial low conductive state (see Comparative Example described later). Further, it is possible to obtain the result that the response is slow to a gas such as ammoniacal triethylamine, and the change in conductivity is about twice as high.

本発明の目的は、ドナー性ガス及びアクセプター性ガス
に対する感度(ダイナミツクレンジ)を飛躍的に高める
ことのできる、均一な単分子膜又はその累積膜を形成で
きるフタロシアニン化合物を提供することにある。
An object of the present invention is to provide a phthalocyanine compound capable of forming a uniform monomolecular film or a cumulative film thereof, which can dramatically improve the sensitivity (dynamic range) to a donor gas and an acceptor gas.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明はアルキルシアノフタロシ
アニン化合物に関する発明であつて、 下記一般式I: (式中R1はi−プロピル基又はt−ブチル基を示し、R1
がi−プロピル基の場合には、R2はシアノ基でR3が水素
を示し、R1がt−ブチル基の場合には、R2は水素でR3
シアノ基を示す)で表されることを特徴とする。
Briefly describing the present invention, the present invention relates to an alkylcyanophthalocyanine compound, which is represented by the following general formula I: (In the formula, R 1 represents an i-propyl group or a t-butyl group, and R 1
Is an i-propyl group, R 2 is a cyano group and R 3 is hydrogen, and when R 1 is a t-butyl group, R 2 is hydrogen and R 3 is a cyano group). It is characterized by being done.

本発明は、アルキルフタロシアニン環構造にシアノ基を
導入することによつて、電子親和力、イオン化ポテンシ
ヤルを少し大きくし、そのためにアンモニアガスに対す
る導電率上昇が4×102倍、ヨウ素ガスに対する導電率
上昇が5×103倍という高い導電率変化を持ち、ドナー
性、アクセプター性の両種のガスに対して導電率変化の
度合が大きく、かつ、ガスの導入、排出に対する応答速
度が極めて速いことを最も主要な特徴としている。これ
を従来化合物と比較すると、導電率上昇がアンモニア性
ガスに対して20倍、I2ガスのようなアクセプター性ガス
に対して103倍も異なるという高感度特性を有し、更に
特にI2ガスの排出応答速度に関しては200〜500倍
も優れている点が異なつている。
The present invention slightly increases the electron affinity and ionization potential by introducing a cyano group into the alkyl phthalocyanine ring structure, and therefore the conductivity increase with respect to ammonia gas is increased by 4 × 10 2 times, and the conductivity increase with respect to iodine gas is increased. Has a high conductivity change of 5 × 10 3 times, the degree of change in conductivity is large for both donor-type and acceptor-type gases, and the response speed to gas introduction and discharge is extremely fast. It has the most main feature. When this is compared with the conventional compounds, 20 times the conductivity increases with respect to ammonia gas, has high sensitivity characteristics different of 10 3 times the acceptor gas such as I 2 gas, more in particular I 2 The difference is that the gas discharge response speed is 200 to 500 times better.

〔実施例〕〔Example〕

以下本発明を実施例により更に具体的に説明するが、本
発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described more specifically by way of examples, but the present invention is not limited to these examples.

実施例1 テトラt−ブチルテトラシアノフタロシアニン化合物の
合成 反応式を以下に示す。(Bu:ブチル) (a)化合物(2)(3)の合成:出発原料(1)274g、二硫化
炭素500m中に鉄粉及びヨウ素を各1g加え、0〜
5℃にて、臭素115mを徐々に滴下した。HBrのガ
ス発生終了後、常法に従つて洗浄中和処理し、減圧蒸留
した。沸点71〜72℃/3mmHg。収量366g(86
%)。1H−及び13C−NMRスペクトルより(2)/(3)=
88/12の混合物であることを確認した。
Example 1 Synthesis of tetra-t-butyltetracyanophthalocyanine compound The reaction scheme is shown below. (Bu: Butyl) (a) Synthesis of compounds (2) and (3): Starting material (1) 274 g, iron powder and iodine 1 g each in 500 m of carbon disulfide,
At 5 ° C., 115 m of bromine was gradually added dropwise. After completion of HBr gas generation, washing and neutralization treatment was carried out according to a conventional method, and vacuum distillation was performed. Boiling point 71-72 ° C / 3 mmHg. Yield 366g (86
%). From the 1 H- and 13 C-NMR spectra, (2) / (3) =
It was confirmed to be a mixture of 88/12.

(b)化合物(4)の合成:(2)/(3)の混合物66g、二
硫化炭素250m、鉄粉及びヨウ素を各1g加え、0
〜5℃にて臭素60mを徐々に滴下した。HBrのガス
発生終了後、常法に従つて洗浄中和し、減圧蒸留した。
沸点93〜94.5℃/1mmHg。収量86g(60%)。1H−
及び13C-NMRスペクトルより純品であることを確認し
た。
(b) Synthesis of compound (4): 66 g of the mixture of (2) / (3), 250 m of carbon disulfide, 1 g of iron powder and 1 g of iodine were added, respectively.
Bromine 60 m was gradually added dropwise at -5 ° C. After completion of HBr gas generation, washing and neutralization were carried out according to a conventional method, and vacuum distillation was performed.
Boiling point 93-94.5 ℃ / 1mmHg. Yield 86 g (60%). 1 H-
And 13 C-NMR spectrum confirmed that the product was pure.

(c)化合物(5)の合成:(4)59g、二硫化炭素100m
に鉄及びヨウ素を各0.5g加え、室温にて臭素26m
を徐々に加えた。反応終了後、洗浄中和し、減圧蒸留
した。沸点127〜128℃/3mmHg。粗収量61g
(82%)。1 H−及び-13C−NMRスペクトルより、以下に示すトリブ
ロモ体の混合物であることが明らかとなつた。化合物
(5)は トリブロモ体粗生成物よりエタノール再結晶法により白
色結晶を得、1H−及び13C−NMRスペクトルより(5)の純
品であることを確認した。分析値(%):実測値C32.49、
H3.12、計算値(C10H11Br3)C32.38、H2.99 化合物(5)以外のトリブロモt−ブチルベンゼンは、(5)
の液より回収できたが、液体であつた。この液体のト
リブロモt−ブチルベンゼン混合物は次の実施例2に示
すように、同様にシアノ化ができ、対応するトリシアノ
t−ブチルベンゼンが生成した。これを適当な金属塩化
物と1−クロロナフタレン中反応させることによつて、
構造(18)に対応するアルキルシアノフタロシアニンを得
た。中心金属がCu(II)の場合、塩化第一銅を用いて、テ
トラt−ブチルテトラシアノフタロシアニン銅(II)錯体
(構造18)を得た。
(c) Synthesis of compound (5): (4) 59 g, carbon disulfide 100 m
Add 0.5 g of iron and 0.5 g of iodine to room temperature, and bromide 26 m
Was gradually added. After completion of the reaction, the mixture was washed, neutralized, and distilled under reduced pressure. Boiling point 127-128 ° C / 3 mmHg. Crude yield 61g
(82%). From the 1 H- and -13 C-NMR spectra, it was revealed to be a mixture of tribromo compounds shown below. Compound
(5) is White crystals were obtained from the crude product of the tribromo compound by an ethanol recrystallization method, and it was confirmed from 1 H- and 13 C-NMR spectra that the product was a pure product of (5). Analytical value (%): measured value C32.49,
H3.12, calculated value (C 10 H 11 Br 3 ) C32.38, H2.99 Tribromo t-butylbenzene other than the compound (5) is (5)
Although it could be recovered from the liquid of 1., it was a liquid. This liquid tribromot-butylbenzene mixture could similarly be cyanated, as shown in Example 2 below, to yield the corresponding tricyano t-butylbenzene. By reacting this with a suitable metal chloride in 1-chloronaphthalene,
An alkyl cyanophthalocyanine corresponding to structure (18) was obtained. When the central metal was Cu (II), cuprous chloride was used to obtain a tetra-t-butyltetracyanophthalocyanine copper (II) complex (Structure 18).

分析値(%):実測値C68.77、H5.35、N18.75、計算値
(C52H44N12Cu)C69.36、H4.92、N18.66 λmax(CHC)684nm(ε=1.9×10
−1cm−1)以上、分析値より目的生成物と確認
でき、可視スペクトルが、(5)を出発原料にして合成し
たフタロシアニンと異なり、長波長シフトし、かつ、分
子吸光係数εは、テトラ(i−プロピル)テトラシアノ
フタロシアニン銅(II)錯体とほぼ等しいことから、構造
(18)を持つテトラ(t−ブチル)テトラシアノフタロシ
アニン銅(II)錯体と同定できた。
Analytical value (%): Actual value C68.77, H5.35, N18.75, calculated value
(C 52 H 44 N 12 Cu) C 69.36, H4.92, N 18.66 λmax (CHC 3 ) 684 nm (ε = 1.9 × 10
5 M −1 cm −1 ) or more, it can be confirmed as the target product from the analysis value, the visible spectrum is different from phthalocyanine synthesized using (5) as a starting material, the wavelength shifts to a long wavelength, and the molecular absorption coefficient ε is , Tetra (i-propyl) tetracyanophthalocyanine copper (II) complex is almost the same,
It could be identified as a tetra (t-butyl) tetracyanophthalocyanine copper (II) complex having (18).

(d)化合物(6)の合成:(5)3.6g、シアン化第1銅5.49g
DMF40mを18時間還流し、常法に従つて後処理し
た。真空昇華精製(100℃)し、白色粉末を得た。1H、
13C−NMRスペクトル、IRスペクトルにより目的生成物で
あることを確認した。
(d) Synthesis of compound (6): 3.6 g of (5), 5.49 g of cuprous cyanide
DMF 40 m was refluxed for 18 hours and worked up in the usual way. Purification by vacuum sublimation (100 ° C) gave a white powder. 1 H,
It was confirmed to be the desired product by 13 C-NMR spectrum and IR spectrum.

分析値(%):実測値C74.28、H5.25、N19.75、計算値
(C13H11N3)C74.62、H5.30、N20.08 (e)テトラt−ブチルテトラシアノフタロシアニン銅錯
体(7)の合成:(方法1)化合物(6)8.2g塩化第一銅0.9
9gを1−クロロナフタレン中6時間加熱し、メタノー
ル中に注いで再沈した。析出固体をクロロホルムに溶か
し、カラム精製した。(シリカゲルカラム、クロロホル
ム/メタノール=100/2)収量3.2g(35%) λmax(CHC)676nm(ε1.2×10
−1cm−1) 分析値(%):実測値C68.86、H5.21、N18.65、計算
値(C52H44N12Cu)C69.36、H4.92、N18.66可視スペク
トル、元素分析値より目的生成物であると確認した。
Analysis value (%): Measured value C74.28, H5.25, N19.75, calculated value
(C 13 H 11 N 3 ) C74.62, H5.30, N20.08 (e) Synthesis of tetra-t-butyltetracyanophthalocyanine copper complex (7): (Method 1) Compound (6) 8.2 g primary chloride Copper 0.9
9 g was heated in 1-chloronaphthalene for 6 hours, poured into methanol and reprecipitated. The precipitated solid was dissolved in chloroform and column purified. (Silica gel column, chloroform / methanol = 100/2) Yield 3.2 g (35%) λmax (CHC 3 ) 676 nm (ε1.2 × 10 5
M -1 cm -1 ) Analytical value (%): measured value C68.86, H5.21, N18.65, calculated value (C 52 H 44 N 12 Cu) C69.36, H4.92, N18.66 visible It was confirmed to be the desired product from the spectrum and elemental analysis values.

(方法2)化合物(5)は(1)を出発原料にして(a)〜(c)と
同様の方法で(1)に対し、3倍モルの臭素を使用するこ
とによつて、1ポツトで合成することができた。化合物
(5)と大過剰のシアン化第一銅を反応させることによつ
て直接(7)を1ポツトで合成できた。(5)3.6g、シアン
化第一銅5.4g、DMF40mを18時間還流した。
希アンモニア水を加え、生じた沈殿を別し、クロロホ
ルムに再溶解したのち、希アンモニア水で洗浄した。溶
媒を減圧留去したのち、残渣をクロマトグラフイ法(シ
リカゲル、クロロホルム/エタノール=98/2)で分離精
製した。収量0.43g(19%)λmax、元素分析値共に
方法(1)と同様であつた。
(Method 2) Compound (5) was prepared by using (1) as a starting material in the same manner as in (a) to (c) by using bromine in an amount 3 times that of (1). Could be synthesized with. Compound
By reacting (5) with a large excess of cuprous cyanide, (7) could be directly synthesized in one pot. (5) 3.6 g, cuprous cyanide 5.4 g, and DMF 40 m were refluxed for 18 hours.
Dilute aqueous ammonia was added, the generated precipitate was separated, redissolved in chloroform, and then washed with diluted aqueous ammonia. After the solvent was distilled off under reduced pressure, the residue was separated and purified by a chromatography method (silica gel, chloroform / ethanol = 98/2). The yield of 0.43 g (19%) λmax and the elemental analysis values were the same as in the method (1).

実施例2 テトラi−プロピルテトラシアノフタロシアニン化合物
の合成 反応式を以下に示す。(Pr:プロピル) 化合物(13)は実施例1中(a)〜(c)に示したのと同様の方
法で得ることができた。また化合物(15)は実施例1(e)
方法1、方法2と全く同様の方法で合成できた。
Example 2 Synthesis of tetra-i-propyltetracyanophthalocyanine compound The reaction scheme is shown below. (Pr: propyl) The compound (13) could be obtained by the same method as shown in (a) to (c) of Example 1. In addition, the compound (15) is obtained in Example 1 (e)
It was possible to synthesize by the same method as Method 1 and Method 2.

元素分析(%):実測値C67.48、H4.86、N19.45、計算
値(C48H36N12Cu)C68.27、H4.30、N19.90λmax
(CHC)684nm(ε1.8×10−1
−1) ここで、アルキルシアノ置換フタロシアニンの原料であ
るトリブロモ置換アルキルベンゼンであるが、t−ブチ
ル基のような3級炭素がベンゼン環に置換されている
と、臭素のフリーデルークラフト反応の際、t−ブチル
の立体障害により、3、4、5一位に優先的に置換される。
一方、2級、あるいは1級炭素がベンゼン環に置換され
ると、臭素のフリーデル−クラフト反応の際、2、4、5−
位に優先的に置換されるという事実が今回本発明者等の
知見として得られた。特に、t−ブチル基の場合、t−
ブチルが1方向に置換された対称性の高いフタロシアニ
ンが得られる。これは3(あるいは5)位のBr(CN)基の
立体効果がフタロシアニン環化時に影響するためであ
る。
Elemental analysis (%): Found C67.48, H4.86, N19.45, calcd (C 48 H 36 N 12 Cu ) C68.27, H4.30, N19.90λmax
(CHC 3 ) 684 nm (ε 1.8 × 10 5 M −1 c
m −1 ) Here, tribromo-substituted alkylbenzene, which is a raw material for alkylcyano-substituted phthalocyanine, is used in the Friedel-Crafts reaction of bromine when tertiary carbon such as t-butyl group is substituted on the benzene ring. Due to the steric hindrance of t-butyl, it is preferentially substituted in the 3,4,5 position.
On the other hand, when a secondary or primary carbon is substituted on the benzene ring, 2,4,5-
The fact that the position is preferentially replaced was obtained as the findings of the present inventors. Particularly in the case of t-butyl group, t-
A highly symmetrical phthalocyanine in which butyl is substituted in one direction is obtained. This is because the steric effect of the Br (CN) group at the 3 (or 5) position affects the phthalocyanine cyclization.

この構造を(17)に示す。This structure is shown in (17).

一方、t−ブチル以外の立体障害の小さなアルキル基
(i−プロピル、n−オクチル、シクロヘキシル、n−
オクタデシル等)では、環化時の立体特異性はなく、フ
タロシアニンは種々の異性体の混合物であつた。これら
は液体クロマトグラフイーより確認した。構造を(18)に
示す。
On the other hand, alkyl groups with small steric hindrance other than t-butyl (i-propyl, n-octyl, cyclohexyl, n-
Octadecyl) had no stereospecificity during cyclization, and phthalocyanine was a mixture of various isomers. These were confirmed by liquid chromatography. The structure is shown in (18).

中心金属は、実施例1及び2で示したCu(II)イオンのみ
ならず、例えばニユーヨーク市 アカデミツク プレス
社1971年発行、K.ベンカタラマン(K.Venkatarama
n)編、“ザ ケミストリー オブ シンセチツク ダ
イス”(The Chemistry of Synthetic Dyes)第V巻、
第250〜253頁に記載されているような種々の金属
をフタロシアニン環内に取込むことができる。
The central metal is not limited to the Cu (II) ion shown in Examples 1 and 2, but may be, for example, K. Venkataramaman, issued 1971, Academic Press, New York City.
n), "The Chemistry of Synthetic Dyes," Volume V,
Various metals as described on pages 250-253 can be incorporated into the phthalocyanine ring.

これら合成したアルキルシアノ置換フタロシアニンをL
B法(水平付着法)により薄膜を形成し、アクセプター
性ガス(ヨウ素)、ドナー性ガス(トリエチルアミン)
に対する導電率変化並びに応答特性を調べた。ここで、
LB法の特性を調べるために常法に従つて、5℃、pH7
においてπ−A曲線を測定した。各結果を第1図及び第
2図にグラフとして示す。
These synthesized alkylcyano-substituted phthalocyanines are used as L
Thin film is formed by method B (horizontal deposition method), acceptor gas (iodine), donor gas (triethylamine)
The change in conductivity and the response characteristics were investigated. here,
In order to investigate the characteristics of the LB method, 5 ° C, pH7 was used in accordance with the usual method.
The π-A curve was measured at. Each result is shown as a graph in FIGS. 1 and 2.

すなわち第1図は本発明のアルキルシアノフタロシアニ
ン化合物、第2図は従来のアルキルフタロシアニン化合
物のそれぞれのA(Å2/分子、横軸)とπ(ダイン/c
m、縦軸)との関係を示すグラフである。略号を下記表
1にまとめて示す。
That is, FIG. 1 is an alkylcyanophthalocyanine compound of the present invention, and FIG. 2 is a conventional alkylphthalocyanine compound having A (Å 2 / molecule, horizontal axis) and π (dyne / c).
3 is a graph showing a relationship with (m, vertical axis). The abbreviations are summarized in Table 1 below.

アルキル基のみのTBP化合物の極限断面積値に関し、
実測値と計算値とが大きく異なるのに対し、アルキル基
とシアノ基を含むTBCP及びIPCP化合物では、実測値と計
算値とがほぼ一致し、空気−水面界面上で単分子膜を形
成していることがわかる。TBP及びTBCP化合物は表面
圧18〜20ダイン/cm、IPCP化合物は表面圧11ダイ
ン/cmで、ガラス基板上に累積した。導電率の変化を表
2に示す。
Regarding the limit cross-sectional value of the TBP compound having only an alkyl group,
While the measured and calculated values are significantly different, the measured and calculated values for TBCP and IPCP compounds containing an alkyl group and a cyano group are almost the same, and a monomolecular film is formed on the air-water interface. You can see that The TBP and TBCP compounds had a surface pressure of 18 to 20 dynes / cm, and the IPCP compound had a surface pressure of 11 dynes / cm, and accumulated on the glass substrate. Table 2 shows the change in conductivity.

表2から明らかなように、TBP類はヨウ素ガスに対し
て、0.5〜2×104倍の導電率上昇があるのに対し、トリ
エチルアミンガスに対しては2〜100倍の導電率上昇
しかない。それに対してシアノ基導入によつて電子親和
力を大きくしたTBCPやIPCPは、ヨウ素ガスに対してTB
P類と同様、0.1〜5×104倍の導電率上昇を示し、か
つ、トリエチルアミンガスに対しても0.2〜1×103倍も
の導電率上昇が認められた。一方、ヨウ素ガスに対する
対応特性を第3図に示す。すなわち第3図は時間(秒、
分、横軸)と導電率σ(Scm-1、縦軸)との関係を示す
グラフである。TBPNiは、ヨウ素に対し1秒以内で10-4S
cm-1に上昇するのに対し、TBCPCuは2〜3秒で10-4Scm
-1に達する。ヨウ素ガス排出に対して、TBP類はイオ
ン化ポテンシヤルが4.8eV(UPSより決定)と小さいた
め、フタロシアニンに吸着したヨウ素が抜け難く、元の
値に回復するまで約1時間を要する。それに対し、TBCP
Cuはイオン化ポテンシヤルが5.3eVと大きいためヨウ素
は容易に着脱し、したがつて、元の値に回復する時間は
約15秒と極めて短かい。この様子は他のアルキルフタ
ロシアニンとアルキルシアノフタロシアニンについても
言える。すなわち、ヨウ素に対する応答性はほぼ同じで
あるのに対し、回復時間は200〜500倍も異なる。
As is apparent from Table 2, the conductivity of TBPs is 0.5 to 2 × 10 4 times higher than that of iodine gas, whereas the conductivity of TBPs is only 2 to 100 times higher than that of triethylamine gas. . On the other hand, TBCP and IPCP, which have increased electron affinity by introducing a cyano group, are
Similar to Ps, the conductivity was increased by 0.1 to 5 × 10 4 times, and the conductivity was also increased by 0.2 to 1 × 10 3 times with respect to triethylamine gas. On the other hand, the corresponding characteristic to iodine gas is shown in FIG. That is, FIG. 3 shows time (seconds,
6 is a graph showing the relationship between the electric conductivity σ (Scm −1 , vertical axis) and the minute (horizontal axis). TBPNi is 10 -4 S against iodine within 1 second
It rises to cm -1 while TBCPCu takes 10 -4 Scm in 2-3 seconds.
Reaches -1 . With respect to the emission of iodine gas, TBPs have a small ionization potential of 4.8 eV (determined from UPS), so it is difficult for the iodine adsorbed by phthalocyanine to escape, and it takes about 1 hour to recover the original value. In contrast, TBCP
Since Cu has a large ionization potential of 5.3 eV, iodine can be easily attached and detached, and therefore the time to recover the original value is about 15 seconds, which is extremely short. The same can be said for other alkyl phthalocyanines and alkyl cyano phthalocyanines. That is, the responsiveness to iodine is almost the same, but the recovery times are different by 200 to 500 times.

トリエチルアミンガスに対する応答特性を第4図に示
す。すなわち第4図は時間(秒、横軸)と導電率σ(Sc
m1、縦軸)との関係を示すグラフである。このグラフか
ら明らかなようにTBPNi、TBCPCu共に、トリエチルアミ
ンに対して2秒で飽和値に達し、回復時間も10秒と極
めて速い。この傾向は他のアルキルフタロシアニンとア
ルキルシアノフタロシアニンと共に同様の早い対応−回
復時間であつた。
The response characteristics to triethylamine gas are shown in FIG. That is, Fig. 4 shows time (second, horizontal axis) and conductivity σ (Sc
3 is a graph showing a relationship with m 1 , vertical axis). As is clear from this graph, both TBPNi and TBCPCu reached the saturation value in 2 seconds with respect to triethylamine, and the recovery time was extremely fast as 10 seconds. This trend was the same fast response-recovery time with other alkyl phthalocyanines and alkyl cyano phthalocyanines.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明のシアノ基を導入したアル
キルフタロシアニン化合物はLB法において良好な単分
子膜を形成し、その薄膜はアクセプター性ガス、ドナー
性ガスの両方に対し、極めて高感度、高速応答−回復特
性を有することが明らかとなつた。これはアルキルシア
ノフタロシアニンがこれまで報告されているアルキルフ
タロシアニンと比べて、飛躍的にガス検知能に優れた材
料であることを示す。高い溶解性を持つフタロシアニン
化合物は、有機感光体、有機導電体、電子写真感光体、
太陽電池などに関連して極めて高い興味を持たれてる材
料であるが、電子親和力、イオン化ポテンシヤルを制御
する方法として、これまでは中心金属を変えることによ
つて制御されてきた。本発明は、高い溶解性を保持しつ
つ、シアノ基の導入によつて、エネルギーレベルを制御
できるという意味で極めて有利な効果を持つている。
As described above, the cyano group-introduced alkyl phthalocyanine compound of the present invention forms a good monomolecular film in the LB method, and the thin film has extremely high sensitivity and high speed for both acceptor gas and donor gas. It was found to have response-recovery properties. This indicates that the alkyl cyanophthalocyanine is a material that is far superior in gas detection ability to the alkyl phthalocyanines reported so far. Phthalocyanine compounds with high solubility are used for organic photoconductors, organic conductors, electrophotographic photoconductors,
Although it is a material that is of extremely high interest in relation to solar cells, it has been controlled by changing the central metal as a method of controlling electron affinity and ionization potential. The present invention has an extremely advantageous effect in that the energy level can be controlled by introducing a cyano group while maintaining high solubility.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のアルキルシアノフタロシアニンのπ−
A曲線を示すグラフ、第2図は従来のアルキルフタロシ
アニンのπ−A曲線を示すグラフ、第3図は本発明の実
施例及び比較例の化合物のヨウ素ガスに対する応答−回
復曲線を示すグラフ、第4図は本発明の実施例及び比較
例のトリエチルアミンガスに対する応答−回復曲線を示
すグラフである。
FIG. 1 shows π- of the alkylcyanophthalocyanine of the present invention.
Fig. 2 is a graph showing a curve A, Fig. 2 is a graph showing a π-A curve of a conventional alkylphthalocyanine, Fig. 3 is a graph showing a response-recovery curve of the compounds of Examples and Comparative Examples of the present invention to iodine gas, FIG. 4 is a graph showing a response-recovery curve for an example and a comparative example of the present invention with respect to triethylamine gas.

フロントページの続き (72)発明者 田部井 久男 茨城県那珂郡東海村大字白方字白根162番 地 日本電信電話株式会社茨城電気通信研 究所内 (56)参考文献 特開 昭57−7115(JP,A) 特開 昭58−141246(JP,A) 特開 昭60−199890(JP,A)Continuation of the front page (72) Inventor Hisao Tabei, Tokai-mura, Naka-gun, Ibaraki Prefecture, Shirahoji 162 Shirane, Nippon Telegraph and Telephone Corporation, Ibaraki Telecommunications Research Institute (56) Reference JP-A-57-7115 A) JP 58-141246 (JP, A) JP 60-199890 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下記一般式I: (式中R1はi−プロピル基又はt−ブチル基を示し、R1
がi−プロピル基の場合には、R2はシアノ基でR3が水素
を示し、R1がt−ブチル基の場合には、R2は水素でR3
シアノ基を示す)で表されることを特徴とするアルキル
シアノフタロシアニン化合物。
1. The following general formula I: (In the formula, R 1 represents an i-propyl group or a t-butyl group, and R 1
Is an i-propyl group, R 2 is a cyano group and R 3 is hydrogen, and when R 1 is a t-butyl group, R 2 is hydrogen and R 3 is a cyano group). An alkyl cyanophthalocyanine compound characterized by being obtained.
JP60252038A 1985-11-12 1985-11-12 Alkyl cyanophthalocyanine compound Expired - Fee Related JPH0653744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60252038A JPH0653744B2 (en) 1985-11-12 1985-11-12 Alkyl cyanophthalocyanine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60252038A JPH0653744B2 (en) 1985-11-12 1985-11-12 Alkyl cyanophthalocyanine compound

Publications (2)

Publication Number Publication Date
JPS62111984A JPS62111984A (en) 1987-05-22
JPH0653744B2 true JPH0653744B2 (en) 1994-07-20

Family

ID=17231709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60252038A Expired - Fee Related JPH0653744B2 (en) 1985-11-12 1985-11-12 Alkyl cyanophthalocyanine compound

Country Status (1)

Country Link
JP (1) JPH0653744B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752264Y2 (en) * 1992-01-22 1995-11-29 日本金属株式会社 Interior wall equipment
GB2350361B (en) * 1999-05-22 2003-12-03 Merck Patent Gmbh 3,4,5-tricyanophenyl derivatives
FR2881523B1 (en) * 2005-02-02 2007-03-09 Univ Bourgogne USE OF MOLECULAR PLIERS AS SENSITIVE MATERIALS IN CHEMICAL SENSORS FOR THE DETECTION OR DETERMINATION OF ORGANIC COMPOUNDS AS VAPORS
JP4859730B2 (en) * 2007-03-30 2012-01-25 三菱電機株式会社 Scroll compressor
CN102827226B (en) * 2012-08-28 2014-12-10 福州大学 Silicon phthalocyanine modified by uridine derivatives and preparation method and application of silicon phthalocyanine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577115A (en) * 1980-06-16 1982-01-14 Matsushita Electric Ind Co Ltd Organic semiconductor material
DE3274723D1 (en) * 1981-09-25 1987-01-29 Ici Plc Method of applying thin films to substrates
CH657864A5 (en) * 1984-02-17 1986-09-30 Ciba Geigy Ag WATER-SOLUBLE PHTHALOCYANINE COMPOUNDS AND THE USE THEREOF AS PHOTOACTIVATORS.

Also Published As

Publication number Publication date
JPS62111984A (en) 1987-05-22

Similar Documents

Publication Publication Date Title
Yamashita et al. Synthesis and properties of benzobis (thiadiazole) s with nonclassical π-electron ring systems
JP5113153B2 (en) Method for forming organic thin film layer of organic light emitting device by electrochemical deposition
Ohnesorge et al. Electrochemical oxidation of phenylethylenes. I. Conversion of tetraphenylethylene to 9, 10-diphenylphenanthrene
JPH0653744B2 (en) Alkyl cyanophthalocyanine compound
US5082539A (en) Ferrocene compounds and uses thereof
Neilands Dioxo-and aminooxopyrimido-fused tetrathiafulvalenes–base compounds for novel organic semiconductors and for design of sensors for recognition of nucleic acid components
JP4913007B2 (en) Novel liquid crystalline n-type organic conductor material
KR100253632B1 (en) Silacyclohexanone compounds as intermediates for the preparation of silacyclohexane-type liquid crystal compounds
Kobayashi et al. An Isomeric Series of Thiophene-Fused Tetracyanoquinodimethanes. I. Preparation and Physico-Chemical Properties
Becker et al. Ions derived from dianthrylethane species. How the mode of linking affects the intramolecular electron transfer
JPH0570455A (en) Bipyridinium salt extended with 5-membered heterocyclic ring and its production
JPH0689001B2 (en) Bis (octaalkyl phthalocyaninato) lanthanide compound
JPH08245636A (en) Selenoloselenophene oligomer and its production
Yamada et al. A new approach to the construction of BEDT-TTF derivatives condensed with heterocycles via BF3-promoted reactions of organotin thiolates
JP3032828B1 (en) Photoconductive silicon complex, liquid crystal material, composition thereof, and device using them
JP3228087B2 (en) 2,3-Diarylquinone and method for producing the same
US5654429A (en) Method for the preparation of 3-amino-2-chloro-4-alkylpyridines
Yamada et al. A rearrangement approach to the synthesis of new electron donors: TTF and DSDTF derivatives with a 1, 3-dioxolane ring
JP5860313B2 (en) Intramolecular donor-acceptor type molecules useful as dyes for organic solar cells
Azuma et al. Synthesis and properties of 1, 4, 8, 11, 15, 18, 22, 25‐octaalkoxy‐2, 3, 9, 10, 16, 17, 23, 24‐octakis (phenylthio) phthalocyaninato copper (II)
JPH0678300B2 (en) Novel tetraselenotetracene and its complex
Martín et al. Tetrafluoro and dichloro derivatives of thiophene-fused DCNQI-and TCNQ-type acceptors: a synthetic, electrochemical and crystallographic study
JP6842696B2 (en) Compounds, compound synthesis methods and organic semiconductor materials
JPH0348689A (en) Substituted tetracalcogenofulvalene and preparation thereof
JP3731812B2 (en) Bipyridinium derivatives

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees